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Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability
for renewal and regeneration. This ability is crucial for survival as epithelia are essential to
provide the ultimate barrier against the external environment, protecting the underlying
tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair
during homeostasis and following injury. Upon wounding, epithelial tissues undergo
different phases of haemostasis, inflammation, proliferation and remodelling, often
resulting in fibrosis and scarring. In this review, we explore the phenotypic differences
between the skin, the oesophagus and the oral mucosa. We discuss the plasticity
of these epithelial stem cells and contribution of different fibroblast subpopulations
for tissue regeneration and wound healing. While these epithelial tissues share global
mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa
is known for its outstanding healing potential with minimal scarring. We aim to provide
an updated review of recent studies that combined cell therapy with bioengineering
exporting the unique scarless properties of the oral mucosa to improve skin and
oesophageal wound healing and to reduce fibrotic tissue formation. These advances
open new avenues toward the ultimate goal of achieving scarless wound healing.

Keywords: oral mucosa, oesophagus, skin, homeostasis, wound repair, regenerative therapy, tissue engineering,
regenerative medicine

INTRODUCTION

Epithelial tissues provide the body’s first line of protection from physical, chemical and biological
damage. Mammalian epithelia vary in structure throughout the body according to their function
and microenvironment. Skin is considered the largest organ of our body; however, it is not the only
epithelium exposed to the external environment. The airways, digestive tract, as well as the urinary
and reproductive systems, are all exposed to external stress and are lined by an epithelium, sharing
some important structural and functional features.

In this review, we focus on three stratified squamous epithelial tissues – the skin, the oesophagus
and the oral mucosa – and provide a comparative analysis of the architecture, cell composition and
behaviour of these three different tissues during homeostasis and wound healing. We discuss the
outstanding regenerative potential of the oral mucosa and how its scarless wound healing properties
can be applied to the other tissues.
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COMPARATIVE ANALYSIS OF SKIN,
OESOPHAGUS, AND ORAL MUCOSA

Adult epithelia harbour resident stem cells (SCs) responsible for
homeostasis and tissue repair. The epithelial lining of the skin
develops from the ectoderm, the oesophageal epithelium derives
from the endoderm, while the oral epithelium derives both from
ectoderm and endoderm (Wells and Melton, 1999; Fuchs, 2007;
Que et al., 2007; Rothova et al., 2012). Skin, oesophagus and
oral mucosa share global cellular architecture (Figure 1) and
homeostasis, however several studies have highlighted different
markers for their SCs and differentiated cells (Figure 2).

Skin, Oesophagus and Oral Mucosa
Structural Comparison
The skin is comprised of three different layers: epidermis, dermis
and hypodermis, and harbours additional appendages, such as
hair follicles, nails, sweat and sebaceous glands (Watt, 2014).
The interfollicular epidermis (IFE) is the outermost layer and
is responsible not only for mechanical protection from the
hostile environment, but also prevents from dehydration and
invasion by microorganisms. The IFE is a multi-layered stratified
squamous epithelium with four layers that have different
degrees of differentiation: basal, spinous, granular and stratum
corneum or cornified layer (Figures 1, 2A), and is composed
of keratinocytes, Merkel cells, melanocytes, Langerhans cells and
lymphocytes (Rushmer et al., 1966; Matoltsy, 1986; Odland, 1991;
Holbrook, 1994; Joost et al., 2020). The IFE is separated from
the underlying dermis by a basement membrane (Figure 1), an
extracellular matrix (ECM) rich in type IV collagen and laminin
(Timpl and Brown, 1996).

The dermis is the connective tissue layer that provides skin
elasticity and tensile strength (Frantz et al., 2010) and it is mainly
composed of fibroblasts, but also monocytes, macrophages, mast
cells, lymphocytes, dermal adipocytes, as well as blood vessel- and
sensory nerves-related cells (Lai-Cheong and McGrath, 2013).
Using intra-vital imaging on normal mouse ear and paw skin
showed that fibroblasts maintain a stable position, and that upon
loss of neighbouring cells, the cell membranes extend to fill in the
space in a Rac1-dependent process. This process is also conserved
upon fibroblast loss in skin ageing (Marsh et al., 2018). However,
it is the non-cellular component of the dermis – the ECM – that
provides the scaffolding for the skin cellular constituents and
that regulates the signalling required for tissue morphogenesis,
differentiation and homeostasis (Sorrell and Caplan, 2004; Frantz
et al., 2010).

The dermis can be separated into three spatially distinct layers
with unique characteristics in development, regeneration and
fibrosis: (1) the papillary layer, closest to the epidermis with
a high cell density and loose connective tissue and expressing
CD90+CD39+FAP+ in human; (2) the reticular layer, with
lower cell density but rich in connective tissue and expressing
FAP−CD90+ in human (and CD36+ for the lower reticular);
and (3) the hypodermis which consists mainly of adipose tissue,
loose connective tissue and is highly vascularised and rich in
hormones and growth factors and expressing CD90+CD36+

in human (Figure 1; Harper and Grove, 1979; Azzarone and
Macieira-Coelho, 1982; Schafer et al., 1985; Sorrell et al., 1996;
Freinkel and Woodley, 2001; Sorrell and Caplan, 2004; Watt and
Fujiwara, 2011; Driskell et al., 2013; Driskell and Watt, 2015;
Sriram et al., 2015; Hiraoka et al., 2016; Philippeos et al., 2018;
Korosec et al., 2019). Another fibroblast subpopulation associated
with hair follicles lies in the dermal papilla and on the hair follicle
dermal sheath, and belongs to the papillary lineage (Reynolds and
Jahoda, 1991; Jahoda and Reynolds, 1996; Driskell et al., 2013;
Joost et al., 2020). Several studies have highlighted the functional
heterogeneity of fibroblasts with different healing potential
(Driskell et al., 2013; Rinkevich et al., 2015; Mastrogiannaki
et al., 2016; Jiang and Rinkevich, 2018; Jiang et al., 2018;
Philippeos et al., 2018; Tabib et al., 2018; Correa-Gallegos et al.,
2019; Guerrero-Juarez et al., 2019; Abbasi et al., 2020; Joost
et al., 2020; Phan et al., 2021) as well as differences in the
expression of collagen subtypes and proteoglycans (Meigel et al.,
1977; Zimmermann et al., 1994; Sorrell et al., 1999; Sorrell and
Caplan, 2004) and response to different signals originating from
neoplastic epidermal SCs (Lichtenberger et al., 2016). Papillary
fibroblasts are more proliferative than site-matched reticular
fibroblasts, in both mouse and human skin (Harper and Grove,
1979; Azzarone and Macieira-Coelho, 1982; Schafer et al., 1985;
Sorrell et al., 1996; Sorrell and Caplan, 2004) and more effectively
support the formation of a multi-layered epithelium in two- and
three-dimensional (3D) cultures (Higgins et al., 2017; Korosec
and Lichtenberger, 2018; Philippeos et al., 2018). Reticular dermis
is richer in fibrous connective tissue and, when in culture,
reticular dermal fibroblasts contract collagen latices faster than
papillary dermal fibroblasts (Schafer et al., 1985; Sorrell et al.,
1996). According to lineage tracing and skin reconstitution assays
in mice, reticular fibroblasts descending from PDGFRα+Dlk1+
progenitors are responsible for the first wave of dermal wound
repair and produce the bulk of the ECM whereas papillary
fibroblast lineage supports healthy skin regeneration and hair
follicle development, namely through expression of the key
transcription factor Lef1 (Driskell et al., 2013; Rognoni et al.,
2016, 2018; Phan et al., 2020). More recently, the quiescence-
associated factor hypermethylated in cancer 1 positive (Hic1+)
progenitors, primarily distributed in the reticular dermis, was
shown to robustly contribute to regenerate injured dermis and
to populate neogenic hair follicles in adult mice (Abbasi et al.,
2020). As for the hypodermis, the deepest layer of the mammalian
skin that provides insulation and cushioning, is crucial for wound
healing, re-epithelialisation and angiogenesis processes (Freinkel
and Woodley, 2001; Rivera-Gonzalez et al., 2014; López et al.,
2018; Zomer et al., 2020).

A recent study has identified an additional fibroblast
subpopulation below the hypodermis called the fascia that
contribute to skin scar formation (see section “The Outstanding
Regenerative Potential of Oral Mucosa – Scarless Wound
Healing”; Correa-Gallegos et al., 2019; Jiang et al., 2020a; Jiang
and Rinkevich, 2021).

In continuity with the skin epithelium, the stratified oral
mucosa provides an important barrier to the external challenges.
The structure of the oral epithelium comprises a stratified
squamous epithelium (keratinised or non-keratinised) and the
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FIGURE 1 | Comparison of skin, oesophagus, oral mucosal tissue structure in Mus musculus. Diagram (Left) and representative histological images (Right) of skin,
oesophagus and oral mucosa keratinised (dorsal tongue) and non-keratinised (buccal mucosa) tissues identifying the different layers. 5 µm-sections collected from a
16-week-old C57BL/6 mouse stained with haematoxylin and eosin staining (H&E). Scale bar: 100 µm. HF, hair follicle.

underlying lamina propria, which is rich in connective tissue,
fibroblasts, nerves, minor salivary glands and blood vessels (Jones
and Klein, 2013; Hand and Frank, 2014; Figure 1).

The non-keratinised oral epithelia comprise basal, spinous,
intermediate and superficial layers, while the keratinised oral
epithelia resemble the skin epidermis and include basal, spinous,

granular and cornified layers (example of keratinised vs. non-
keratinised oral epithelia in Figures 1, 2; comparison between
all mouse oral epithelia reviewed in Jones and Klein, 2013).
Furthermore, the oral mucosa is subdivided in masticatory
(hard palate and gingiva), specialised (dorsal tongue) and lining
subtypes (soft palate, buccal mucosa, ventral tongue, intra-oral
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FIGURE 2 | Expression pattern of keratins and others markers on the adult mouse skin, oesophagus and oral epithelia. Schematic of epithelial layers and respective
expression markers for (A) skin, (B) oesophageal, (C) buccal mucosa, and (D) dorsal tongue epithelia. During normal epithelial homeostasis, epithelial cells
proliferate on the basal layer (blue) and keratinocyte differentiation (yellow) is accompanied by an upward migration through the suprabasal layers, replacing dead
cells that shed from the epithelium surface. *Expressed only on ear, sole and tail skin; #expressed only on sole and palm skin; §expressed only on paw skin.

lips and alveolar mucosa) (Gartner, 1991; Jones and Klein, 2013),
reflecting the different structures within the oral cavity. For
instance, the cheek buccal mucosa and soft palate are covered
by non-keratinised lining mucosa which confers flexibility
(Figure 1). The hard palate and gingiva are characterised by a
keratinised masticatory epithelium prepared for stresses caused
by chewing food. The tongue presents two different phenotypes:
the ventral surface displays a non-keratinised lining epithelium,

and the dorsal surface is covered by a specialised keratinised
epithelium (Figures 1, 2; Jones and Klein, 2013; Hand and Frank,
2014; Groeger and Meyle, 2019). The specialised epithelium of
the dorsal tongue houses four types of lingual papillae, three
gustatory papillae (fungiform, circumvallate and foliate) with
taste buds for sensorial stimuli, and filiform papillae important
to grip and process food (Mistretta and Kumari, 2017). Filiform
papillae are found in large numbers through the dorsal tongue
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and present a spinous cone-shaped structure (Figures 1, 2D;
Hume and Potten, 1976).

Oral (gingival) fibroblasts are known to resemble foetal
skin regenerative potential, namely on their migratory capacity
through production of MSF, a migration stimulating factor not
present in adult skin (Irwin et al., 1994).

From a development perspective, dorsal skin and oral mucosal
fibroblasts have different origins: while the non-cranial dorsal
skin dermis has an Engrailed1-lineage-positive somitic origin, the
oral mucosa lamina propria and cranial skin dermis originates
from Wnt1-lineage-positive neural crest cells (Janebodin et al.,
2011; Ishii et al., 2012; Rinkevich et al., 2015). This may be the
basis for the intrinsic phenotypic differences between oral and
skin fibroblasts in wound healing. For instance, CD90+CD26+
skin fibroblasts were linked to scarring in skin wound healing,
however, in gingiva CD26+ fibroblasts are only residually present
(Mah et al., 2017; Worthen et al., 2020). Oral mucosal fibroblasts
are also primed with higher expression levels of hepatocyte
growth factor and its most relevant isoform NK1, therefore more
effectively resist to TGF-β1-driven myofibroblast differentiation
when compared to dermal fibroblasts (Dally et al., 2017). Another
crucial difference relies on the phenotypic activity of the matrix
metalloproteinase (MMP) tissue inhibitors (TIMP), namely
TIMP-1 and TIMP-2 production, which in the oral mucosa is
reduced, therefore allowing for increased MMP-2 activity in the
remodelling phase of oral wound healing (Stephens et al., 2001).

Importantly, the epithelial-stromal interaction is key
determinant of the phenotypic dynamics of the epithelium
in homeostasis and when challenged. The epithelium is
affected by the underlying mesenchymal cells, as these produce
keratinocyte growth factor and hepatocyte growth factor/scatter
factor molecules, important for the regulation of epithelial
growth and integrity (Grøn et al., 2002; Costea et al., 2003;
McKeown et al., 2003; Shannon et al., 2006; Sa et al., 2019).
Furthermore, the epithelial-stromal-immune cell crosstalk
in gingival mucosa was recently described as determinant of
inducing an immune response to environmental cues and in
regulating mucosal immunity (Nowarski et al., 2017; Caetano
et al., 2021; Williams et al., 2021).

The submucosal layer of the oral cavity can be compared to the
hypodermis in skin, being composed of loose fatty or glandular
connective tissue. The presence of a submucosal layer depends
on the oral cavity region and is directly linked to the flexibility
of the attachment of the oral mucosa to underlying structures. In
regions of lining epithelium (such as the cheek buccal mucosa,
lips and some hard palate regions) this layer separates the oral
mucosa from the bone or muscle below (Figure 1), while regions
of masticatory and specialised mucosa (such as gingiva and some
hard palate regions) lack this layer (Squier and Kremer, 2001).

Compared to skin and oral mucosa, the oesophagus
epithelium is relatively simpler. Given its physiological
function of transferring food from the oral cavity to the
stomach, this organ is extended from the upper to the lower
oesophageal sphincters which are respectively overlapped by
the pharyngoesophageal and gastroesophageal junctions. The
sphincters open during swallowing and the oesophagus initiates
the process of peristalsis to assure the unidirectional transport of

the content to the stomach. The mouse oesophagus comprises
a keratinised stratified squamous epithelium, differing from
non-keratinised human oesophageal epithelium (Figure 1).
There are a few other key aspects that differentiate the mouse
and human oesophageal epithelia. In humans, the oesophageal
epithelium is folded around structures called papillae, which
separates the basal layer into either interpapillary or papillary
basal layers; it is also characterised by the presence of submucosal
glands. This contrasts with the simple epithelium found in
mice, devoid of papillae and glands (Messier and Leblond, 1960;
Seery, 2002; Doupé et al., 2012; Alcolea, 2017). Additionally,
while in mice the oesophageal epithelium comprises a basal
layer of proliferating cells (Goetsch, 1910; Messier and Leblond,
1960; Marques-Pereira and Leblond, 1965; Gavaghan, 1999),
in humans, cycling cells extend to the 5th-6th suprabasal layers
(Barbera et al., 2015).

The oesophagus mucosa is composed of two other layers:
the lamina propria, which in this organ is a very thin layer
of connective tissue supporting the epithelium, as well as a
thin layer of longitudinally organised smooth muscle (Goetsch,
1910; Oezcelik and DeMeester, 2011). To add to this diversity,
it is known that the human oesophagus is not only composed
of squamous epithelium, but on the most distal area there
is a 1-2cm transition to columnar epithelium, which is the
same lining epithelium covering the stomach (Gavaghan, 1999).
Furthermore, the muscularis mucosae thickness increases from
the most proximal to the most distal part of the oesophagus
(Goetsch, 1910; Oezcelik and DeMeester, 2011).

Both the oral and the oesophageal epithelia are devoid of
appendages. Although they belong to the gastrointestinal tract,
they share the same stratified epithelium architecture as the skin
rather than the single layer of cells that line the stomach, the small
intestine and the large intestine, important for greater absorption
capacity (Goetsch, 1910; Gordon, 1994).

Comparison of the Keratin Expression
Programme Between Different Epithelia
Keratins are intermediate filament proteins of epithelial cells
providing mechanical integrity and structure to the epithelia
and act as a scaffold that enables cells to resist stress and
damage, which is essential for normal tissue function (Coulombe
et al., 1991; Moll et al., 2008). Changes in keratin synthesis
leads to alterations in cell movement or cell differentiation
and, consequently, their function (Vassar et al., 1991; Singh
and Gupta, 1994). Mutations that impair keratin assembly have
been identified in a range of human skin or multifactorial
disorders, such as epidermolysis bullosa, typically leading to
loss of epithelial integrity, abnormal differentiation and affecting
epithelial regeneration (Lane, 1994; Quinlan et al., 1994; Knöbel
et al., 2015; Herrmann and Aebi, 2016; Bardhan et al., 2020).

While different epithelia exhibit different patterns of keratin
expression (Franke et al., 1981) the keratin patterns are similar
between the same anatomic regions of different species. During
epithelial homeostasis, epithelial cells migrate from the basal into
the suprabasal layer and progressively loose their proliferative
potential and begin to synthesise a set of structural proteins
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(Candi et al., 2005). The switch in the keratin expression from
proliferating basal cells to differentiated suprabasal cells indicates
a change in the cell cytoskeleton organisation, influencing their
functional properties.

In all skin, oesophageal and oral stratified squamous epithelia,
the basal dividing cells produce keratin 5 (Krt5) and Krt14
(Squier and Kremer, 2001; Rosekrans et al., 2015; Gonzales and
Fuchs, 2017). Krt15 is additionally expressed in the oesophageal
basal cells (Rosekrans et al., 2015; Giroux et al., 2017). As
cells leave the basal layer and start differentiating, the keratin
expression suffers a transition to other keratins and differences
arise between types of epithelia. For instance, mouse skin
epidermal suprabasal cells switch to expressing Krt10 and Krt1
on interfollicular epidermis and Krt2e on the ears, soles and tail
(Fuchs and Green, 1980; Candi et al., 2005; Fischer et al., 2016;
Figure 2A). Interestingly, the epidermis of palms and soles, which
are the thickest epidermis withstanding the highest degree of
mechanical stress the body is exposed to, also express Krt9 in
suprabasal layers to provide additional mechanical reinforcement
(Knapp et al., 1986; Moll et al., 1987; Candi et al., 2005;
Fu et al., 2014).

The heterogeneity of oral epithelia is reflected in its suprabasal
keratin expression. The non-keratinised lining mucosa shares
the expression of Krt4 and Krt13 (Dale et al., 1990), whereas
the palatal and gingival masticatory epithelia are keratinised and
share the expression of Krt1, Krt2p (now called Krt76) and Krt10
with skin (Dale et al., 1990; Collin et al., 1992). The gingiva
itself is composed of a heterogeneous combination of keratin
expression varying between the gingival epithelium mentioned
above, the sulcular epithelium (expressing Krt4 and Krt13) and
junctional epithelium (expressing Krt8, Krt13, Krt16, Krt18 and
Krt19) (Dale et al., 1990; Groeger and Meyle, 2019). Regarding
the specialised epithelium of the dorsal tongue, a heterogeneous
pattern is also found: Krt4 and Krt13 are expressed in the
interpapillary zone and anterior papillae, Krt1 and Krt6a are
expressed in the anterior papillae and Krt1 and Krt10 are locally
expressed in the posterior papillae (Dale et al., 1990; Howard
et al., 2014; Nishiguchi et al., 2016). A recent study has also
shown the expression of Krt76 in the palate, buccal mucosa
and dorsal tongue suprabasal layers, including filiform papillae
(Figures 2C,D; Sequeira et al., 2018).

With more similarities with oral than with skin epithelia,
the oesophageal epithelium expresses Krt4 and Krt13 on the
suprabasal layers (Figure 2B; Treuting et al., 2012; Rosekrans
et al., 2015; Zhang et al., 2017). The mouse oesophagus contains
an acellular layer of keratin on the top of the squamous
epithelium, similar to the skin, however this keratin layer is
absent in the human oesophagus (Treuting et al., 2012).

In addition to keratins, important transcription factors are
also expressed in the basal layer of different stratified epithelia:
Lef/Tcf-family transcription factor Tcf3 was found in paw skin,
dorsal tongue and oesophagus (Howard et al., 2014); Bmi1, Lrig1
and p63 are enriched as well in all these epithelial basal layers
(Figure 2; Que et al., 2007; Senoo et al., 2007; Choy et al., 2012;
Jones and Klein, 2013; Zhang et al., 2017; Byrd et al., 2019;
Jones et al., 2019; Piedrafita et al., 2020); Gli1+ cells are present
in oral mucosa and skin epithelial basal layer while Sox2 is in

oesophageal and oral epithelia, including tongue taste bud cells
(Que et al., 2007; Jones and Klein, 2013; Zhang et al., 2017; Jones
et al., 2019; Ohmoto et al., 2020; Figure 2).

The proteins filaggrin, involucrin, and loricrin are also
expressed in the suprabasal layers of these epithelia, being
key differentiation proteins involved in the thickening of the
cornified cell envelope (Figure 2; Mehrel et al., 1990; Squier
and Kremer, 2001; Howard et al., 2014; Nishiguchi et al.,
2016; Quiroz et al., 2020). Considering the lack a cornified
layer in non-keratinised epithelia, keratinocytes retain their
nucleus and despite presenting membrane-coating granules, the
accumulation and aggregation of cytokeratins with formation of
bundles of filaments seen in keratinised epithelia is much less
pronounced (Squier, 1977).

Interestingly, keratin expression programmes can change
when epithelial cells are exposed to a different environment.
Epithelial cells respond to extrinsic signals and change their
identity when placed in a different microenvironment, as
observed when oesophageal, thymic or cornea epithelial are
placed on skin microenvironment (Ferraris et al., 2000; Bonfanti
et al., 2010; Bejar et al., 2021). For instance, when oesophageal
epithelial cells are grafted into skin, the suprabasal layers loose
Krt4 expression as it transforms into a skin identity (Bejar et al.,
2021). The mechanisms regulating this identity change remain
to be elucidated.

Epithelia Homeostasis and Cellular
Differentiation
Tissues such as the squamous epithelia of the epidermis,
oral cavity and oesophagus hold the natural capacity of self-
renewal, with resident adult SCs actively replacing dying cells to
accomplish homeostasis. The skin epidermis is by far the most
studied epithelium, and this reflects the depth of the knowledge
on SC behaviour and differentiation. In adult skin, different
epithelia maintain homeostasis by their own pool of SC niches
that are found in the basal layer of the IFE, as well as in the sweat
glands, touch domes and hair follicle (Fuchs and Green, 1980;
Cotsarelis et al., 1990; Blanpain et al., 2004; Morris et al., 2004;
Ito et al., 2005; Legué and Nicolas, 2005; Clayton et al., 2007; Jaks
et al., 2008; Jensen et al., 2009; Snippert et al., 2010b; Legué et al.,
2012; Lu et al., 2012; Sequeira and Nicolas, 2012; Doucet et al.,
2013; Page et al., 2013; Schepeler et al., 2014; Sada et al., 2016;
Donati et al., 2017; Mesler et al., 2017; Yang et al., 2017).

There has been a great effort to understand the organisation
and fate of stem cells in the basal layer that maintain tissue
homeostasis. The first proposed model was the SC-transient
amplifying cell hierarchy of the epidermal proliferative unit
(EPU) (Potten, 1974; Figure 3A). The EPU model defends
that each stack of cornified cells is maintained by a single
slow-cycling SC basally located within the basal layer. The SC
divides asymmetrically to generate another SC and a daughter
transient amplifying cell, organised in 3D columns. The transient
amplifying cells show high proliferative potential, undergo a fixed
number of divisions prior upward migration and differentiation
(Potten, 1974; Mackenzie, 1997). This model predicts clone size
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FIGURE 3 | Models for epithelial self-renewal. (A) Epidermal proliferative unit or invariant asymmetry model (Potten, 1974) suggests that epithelial renewal relies on
quiescent slow-cycling SCs that generate transient amplifying actively cells, which in turn generate non-dividing, differentiated cells. (B) A second model defends
that the epithelial renewal is achieved long-term by a single population of actively cycling and through stochastic fate of committed progenitor cells that directly
generate differentiated cells (single-progenitor model) (Clayton et al., 2007; Doupé et al., 2010). (C) The stem cell and committed progenitor model aroused from the
observation of a fast-cycling stem cell population (committed progenitor) within the basal layer that is generated by slow-cycling stem cells. These progenitors
eventually produce differentiated cells, however due to its short lifespan their contribution to wound healing is limited (Mascré et al., 2012; Sánchez-Danés et al.,
2016). (D) The two stem cell model suggests the co-existence of two stem cell populations independent from each other, with different division rates (Joost et al.,
2016; Rompolas et al., 2016; Sada et al., 2016; Aragona et al., 2020; Piedrafita et al., 2020).

to rise into a plateau and then remain stable, although this was
ruled out by lineage-tracing experiments (Clayton et al., 2007).

More recently, another study proposed the “population
asymmetry” or “single-progenitor” model (Clayton et al., 2007),
where the epidermal maintenance is achieved long-term through
stochastic fate of a single committed keratinocyte progenitor
in the basal layer from a pool of relatively fast cycling
undifferentiated Krt5+Krt14+ epidermal SCs (Figure 3B). This
pool is maintained by an autocrine mechanism of Wnt signalling
(Lim et al., 2013). According to this model, SCs divide to generate
one basal cell that attaches to the basement membrane and one
committed progenitor cell which will be prone to leave the basal
layer to enter an upward differentiation process. The progenitor
population will continuously divide wile committed cells leave
the basal layer and differentiate. This model suggests that the
progenitor population randomly undergoes either asymmetrical
or symmetrical divisions, the latter giving two progenitors or two
differentiated cells (Clayton et al., 2007; Doupé et al., 2010; Lim
et al., 2013; Rompolas et al., 2016; Figure 3B). Lineage-tracing
experiments have shown that following this stochastic choice
between symmetric or asymmetric SC division, the mean clone
size progressively increases with time (Clayton et al., 2007).

An alternative to this model is the “Stem cell – committed
progenitor model” (Figure 3C) that proposes a hierarchy of
slow-cycling SCs that will give rise to active SCs (progenitors)
which will then follow symmetric of asymmetric divisions to self-
renew or to generate the differentiated cells (Mascré et al., 2012;
Sánchez-Danés et al., 2016; Figure 3C).

Finally, a fourth model proposes the existence of two SC
populations that differ in their proliferative dynamics, their gene-
expression profile and their ability to repair the epidermis after
injury (Figure 3D; Rompolas et al., 2016; Sada et al., 2016;
Piedrafita et al., 2020). Some studies have already demonstrated
heterogeneity within the mouse IFE basal cells. Joost and
colleagues found two basal subpopulations in mouse dorsal IFE
basal I and basal II, differing in the additional expression of

Avpi1, Krt16, Thbs1, and the transcription factor Bhlhe40 by IFE
basal I (Joost et al., 2016). Furthermore, the IFE progenitors
found in different regions of the body were slow-cycling cells
able to both self-renew and give rise to intermediate progenitors
with a shorter lifespan and greater tendency to differentiation
(Mascré et al., 2012; Sada et al., 2016; Sánchez-Danés et al., 2016;
Piedrafita et al., 2020). The different observations on IFE basal cell
populations in relation to the anatomical position were proposed
to be dependent on hair follicle density in those regions. Both the
distance to the hair follicles and its cycling status were shown
to influence clonal progression reflecting fast- and slow-cycling
progenitors (Roy et al., 2016; Gonzales and Fuchs, 2017). This
two-stem cell model (Figure 3D) was very recently reinforced
by Aragona and colleagues through the study of cellular and
molecular mechanisms underlying stretch-mediated expansion
in vivo (Aragona et al., 2020). The authors show that stretching
induces changes in the renewal activity of a subset of epidermal
SCs, which is crucial for expansion, while a second progenitor
subpopulation committed to differentiation is preserved. These
events were shown to be more consistently governed by the
two-stem cell model when compared to the single-progenitor
model (Figures 3B,D). Interestingly, a recent single-cell RNA-
sequencing analysis of human neonatal foreskin discovered four
basal SC populations with differential spatial distribution on
the rete ridges of the epidermis, agreeing with a model of
multiple SC pools that differ in their proliferation capacity (Wang
et al., 2020). Future lineage-tracing, single-cell and microscopic
analysis will be needed to further elucidate the basal layer cellular
heterogeneity as well as novel markers and regulators.

The hair follicle has separate pools of long-term SCs [CD34+
(Blanpain et al., 2004), Gata6+ (Donati et al., 2017), Lgr5+ (Jaks
et al., 2008), Lgr6+ (Snippert et al., 2010a), Lrig1+ (Jensen et al.,
2009)] that are responsible for the homeostasis and the cycling
regeneration of the hair follicle; and some of these subpopulations
can contribute to the IFE for wounding regeneration, although
they do not contribute to normal homeostasis maintenance
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of the IFE (Ito et al., 2005; Legué et al., 2012; Mesa et al.,
2015; Liakath-Ali et al., 2018; Dekoninck and Blanpain, 2019;
Abbasi et al., 2020).

IFE and oesophageal epithelia appear to share common
homeostasis mechanisms (Piedrafita et al., 2020). As for the
IFE, oesophageal homeostasis mechanisms of cell behaviour
remain controversial. Some studies postulated that a hierarchy
of stem and transient amplifying cells maintains homeostasis.
Croagh and colleagues reported the existence of three basal
cell subpopulations, according to the expression profiles of
α6integrin and transferrin receptor (CD71): one α6

briCD71dim

is a putative oesophageal SC population, the α6
briCD71bri

represents the transient amplifying cell population and the third
population α6

dim which is a population of early differentiating
cells (Croagh et al., 2007). In agreement to the postulated
heterogeneity of basal cells, DeWard and colleagues used a
combination of cell-surface markers and labelled proliferating
basal epithelial cells in vivo to infer cell-cycle profiles and
proliferation kinetics. Differences on the expression of α6
integrin (Itgα6, also known as CD49f) and β4 integrin (Itgβ4,
CD104) in Sox2+ basal cells, combined with CD73 and Krt14,
Krt13and Krt4 revealed three different basal subpopulations:
Itgα6/Itgβ4HighCD73+ is a SC population, the faster dividing
Itgα6/Itgβ4HighCD73− is a transient-amplifying population and
Itgα6/Itgβ4Low represented the more differentiated basal cell
population (DeWard et al., 2014). However, more studies argue
that proliferation of a single progenitor population is confined
to the basal layer in contact to the basement membrane and
as progenitors are committed to differentiation, they withdraw
from the cell cycle and migrate from this layer toward the
epithelial surface. The fate of a dividing cell is randomly assigned,
however the probabilities are balanced, so equal proportions
of progenitor and differentiated cells are generated to maintain
cellular homeostasis (Piedrafita et al., 2020). How this balance is
maintained is not yet clear (Jankowski, 1993; Doupé et al., 2010,
2012; Alcolea et al., 2014; Frede et al., 2016). Recently, Giroux
and colleagues defended the existence of a long-lived Krt15+
population with stem/progenitor cell characteristics through
in vivo lineage-tracing and pointed against the single-progenitor
model (Giroux et al., 2017).

All these paradigms around the proposed models of skin
and oesophageal epithelia cell dynamics prompted Piedrafita
and colleagues to conduct an in-depth study of nine lineage-
tracing datasets in both oesophagus and various skin regions
(paw, ear, back, tail scale and tail interscale) (Doupé et al., 2010,
2012; Mascré et al., 2012; Lim et al., 2013; Füllgrabe et al.,
2015; Sada et al., 2016; Sánchez-Danés et al., 2016; Giroux et al.,
2017; Murai et al., 2018), defending that divergent hypothesis
result from distinct datasets analysis through distinct interpreting
and suitable procedures, lacking alternative hypotheses tests.
The authors used cell-cycle properties from the H2B-GFP
dilution data to fit lineage-tracing results by maximum likelihood
parameter inference. The results show that all these datasets are
in unison with the single-progenitor model (Figure 3B), with the
exception of the tail inter-scale region of the skin, defending that
skin and oesophageal epithelia homeostasis is equally controlled
by this model of basal cell behaviour (Piedrafita et al., 2020).

Besides intrinsic ability for division, the factors that drive
basal cells to make the decision to proliferate or differentiate
were not yet disclosed. For instance, upon skin wounding
different SC populations were shown to contribute to different
compartments and change their behaviour in order to increase
proliferation over differentiation until complete wound closure,
only then reverting to homeostasis (Jaks et al., 2008; Lim et al.,
2013; Roshan et al., 2016; Donati et al., 2017). This highlights
their plasticity when challenged. More recently the concepts
of local fate coordination and epidermal cell competition were
brought into discussion as key players of epithelial cell dynamics
(Lei and Chuong, 2018; Mesa et al., 2018; Murai et al., 2018;
Piedrafita et al., 2020). SC self-renewal was shown to be driven
by differentiation of neighbouring cells, supporting the concept
of local fate coordination, needed to achieve a precise balance
of SC activity (Mesa et al., 2018). Upon differentiation, the
space left is occupied by one of the directly neighbouring
progenitors which competes with the others for filling the space.
Cell competition is the process of elimination of less fit cells
that regulates tissue homeostasis and defence against mutant
populations which ultimately could evolve to tumours (Murai
et al., 2018). Cell competition has been found in different
tissues, such as skin, oral mucosa, intestine and oesophagus,
and it is often associated with differential gene expression
between competing cells (Klein et al., 2010; Snippert et al.,
2010b; Klein and Simons, 2011; Alcolea et al., 2014; Lynch
et al., 2017; Martincorena et al., 2018; Corominas-Murtra
et al., 2020). Clone growth is restricted by the limited size of
the proliferating compartment; therefore, since the epithelial
progenitors reside in a continuous sheet with no barriers, the
mutant clones can expand and collide with other surrounding
progenitors. When these encounter similar competitive cells, the
fate of the mutant clones reverts to a homeostatic behaviour
(Hall et al., 2018; Martincorena et al., 2018; Colom et al.,
2020). Both the skin and oesophageal local fate coordination
and competition events were shown to be compatible with
the single-progenitor model, regulating epithelial cell dynamics
governed by stochastic, but, also biased progenitor fates
(Piedrafita et al., 2020).

The oral epithelia SCs remain largely uncharacterised and
the attribution of the EPU model of homeostasis was often
assumed from studies performed in other epithelia, mainly skin
(Alonso and Fuchs, 2003; Dabelsteen and Mackenzie, 2006;
Thomson, 2020). More recent studies have been exploring
different regions of the oral cavity and pointing to which
model of epithelial homeostasis suits best with the results.
Some studies have defended the EPU model for mouse
tongue SC patterns (Luo et al., 2009; Tanaka et al., 2013;
Tang et al., 2013). The specialised epithelium of the tongue
was demonstrated to house two different SC niches, one
in the basal layer where long-term progenitors characterised
as Krt14+Krt5+Trp63+Sox2Low maintain the physiology of
filiform and fungiform papillae, circumvallate papilla and
soft palate, and the other is located outside the taste buds
and is a Krt14+Krt5+Trp63+Sox2+ population of bipotential
progenitor cells which give rise to both taste pore keratinocytes
and receptor cells of the taste buds (Okubo et al., 2009).
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Jones and colleagues presented a study using lineage-tracing,
label retention and single-cell RNA-sequencing that argues
against the EPU model, stating that both the dorsal tongue
and buccal mucosa epithelia are maintained by the single-
progenitor model of homeostasis (Figure 3B). Additionally,
the oral epithelial progenitor cells responded to epithelial
damage by amending their daughter cell fates (Jones et al.,
2019). Label-retaining cells were not found in tongue and
oropharynx epithelia, however they observed that the hard
palate displays a heterogeneous pattern of proliferation. The
palate rugae junctional zone was proposed to hold a reserve
SC niche, as these present characteristics of quiescence,
self-renewal by symmetric cell divisions, Lrig1 expression,
and activation after injury (Byrd et al., 2019). Furthermore,
Lrig1 plays a critical role in regulating the oral epithelial
SCs of the hard palate: upon decrease of Lrig1 expression,
cells exit their quiescence mode, inducing proliferation in
response to stress and injury (Byrd et al., 2019). Another
study points to a Wnt-responsive long-lived SC population
in the hard and soft palates basally located, responsible
for homeostasis and response to injury. However, the soft
palate showed a more robust and faster re-epithelialisation
(Yuan et al., 2019).

Overall, the oral cavity is composed of a variety of types
of epithelia with different lineage origins (Rothova et al.,
2012) that serve distinct functions. More studies are needed
to unveil the mechanisms underlying normal physiology
of these tissues.

The main differences between epithelia of the skin,
oesophagus and oral cavity, are their function, external
microenvironment and differentiation markers. Their SCs
are also estimated to divide at different rates: proliferating
cells on the oesophagus and the oral mucosa divide on
average every 2.4 days, while on the epidermis on average
between 3.5 and 6 days, depending on the body region
(Jones et al., 2019; Piedrafita et al., 2020). Furthermore, tissue
expansion during growth or in adulthood (for example,
ventral skin during pregnancy) also regulates SC division rate
and global behaviour. This further supports the notion that
SC behaviour is regulated by a combination of molecular
and mechanical cues that regulate tissue microenvironment
and cell behaviour (Vining and Mooney, 2017; Li et al.,
2018; Shyer et al., 2018; Aragona et al., 2020; Biggs et al.,
2020; Mcginn et al., 2021). Importantly, one of the crucial
components of the microenvironment surrounding epithelial
progenitor cells are fibroblasts. It has been shown that
different fibroblast subpopulations which carry regionally
intrinsic signals, determine the behaviour of adult epithelial
cells, namely in skin and oral mucosa (Locke et al., 2008;
Rinkevich et al., 2015; Yang et al., 2017; Abbasi et al., 2020).
For instance, in the gingiva structure, the gingival and the
junctional epithelia are phenotypically distinct. This is in
part due to heterogeneous resident fibroblasts that provide
different support to the epithelial growth and differentiation
(Locke et al., 2008). These interactions between epithelial
and subepithelial tissues hold a key role in tissue repair
(McKeown et al., 2003).

WOUND REPAIR MECHANISMS IN SKIN,
OESOPHAGUS, AND ORAL EPITHELIA

Skin Wound Healing Process
Mammalian epithelia are prepared to respond to assaults to
the normal tissue homeostasis, including physical, chemical and
biological stress that often result in wounding. Skin wound
healing response has been extensively studied giving cues to
what may also be happening in the process of wound healing
in other tissues.

Wound healing response begins right after injury and
comprises a series of coordinated events that make part of a
highly dynamic process. Although there are variations among
different species, the mammalian wound healing follows a
general pattern organised in four main phases: haemostasis,
inflammation, proliferation and remodelling. As a very tightly
regulated mechanism, minor changes could lead to impaired
healing (Gurtner et al., 2008; Shaw and Martin, 2009).

The first phase, haemostasis, is triggered by damaged blood
vessels leading to bleeding. At first, blood vessels constrict to
stop blood flow, platelets are activated and aggregate in order to
seal the ruptured blood vessel wall. Consequently, a fibrin clot
is formed to keep the platelets and blood cells in the wound
site. The clot holds a role as an initial matrix scaffold rich in
growth factors that will recruit cells for further wound healing
stages (Etulain, 2018). Platelets were also shown to produce
a positive effect on mouse skin wound healing by enhancing
the angiogenic potential of mesenchymal SCs (Levoux et al.,
2021). Upon activation, platelets release respiration-competent
mitochondria that are internalised by recipient mesenchymal
SCs, where it stimulates their metabolism to produce increased
levels of certain metabolites. Particularly citrate, which works as
the main fuel for de novo fatty acid synthesis that in turn increase
secretion of pro-angiogenic factors by mesenchymal SCs (Levoux
et al., 2021). The inflammatory phase of wounding response
starts with the recruitment of immune cells that travel to the
injury site in order to remove pathogenic microbes. Following
the platelets, neutrophils and monocytes, which differentiate
into macrophages, are recruited. These have been shown to also
participate in later phases of wound healing, contributing largely
to cytokines and growth factors secretion, which activates and
recruits other cells important for the wound healing process (Park
and Barbul, 2004). The proliferation phase of wound healing
comprises the rebuild of the wound site where new tissue is
generated. In skin, it starts from 2 to 10 days after injury and can
last for up to 3 weeks. This phase is characterised by abundant
formation of a highly vascularised granulation tissue through
deposition of ECM by fibroblasts (mainly composed of type
III collagen), replacing the fibrin matrix (Rognoni et al., 2018).
Keratinocytes and endothelial cells are recruited and activated
in the wound site, actively promoting re-epithelialisation and
neovascularization. Fibroblasts in the wound bed will transition
to an activated state, myofibroblasts, which will not only
contribute for ECM deposition but also to allow wound closure
through contraction (Hinz, 2007; Velnar et al., 2009; Darby
et al., 2014; Rognoni et al., 2018; DesJardins-Park et al., 2019).
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Importantly, in mice the presence of a thin muscular layer, the
panniculus carnosus, promotes skin contraction and union of the
wound edges; while human skin is devoid of this muscular layer
(Zomer and Trentin, 2018).

The last and longest phase of wound healing is the remodelling
phase which starts around week 3 and can last for up to more
than 1 year. During this phase the type III collagen is actively
remodelled to type I collagen by fibroblasts, macrophages and
endothelial cells, which secrete MMPs (Martins et al., 2013). This
rearrangement of collagen fibres allows the new skin area to
become stronger and reduces scar thickness over time; however,
the tensile strength of the wound area can only reach 80%
compared to unwounded tissue (Gurtner et al., 2008; Xue and
Jackson, 2015; Marshall et al., 2018; DesJardins-Park et al., 2019).
Recent findings highlighted the role of two fibroblast-expressing
transcription factors in wound healing impairment and scarring
of the skin: the cyclin-dependent kinase inhibitor p21 and the
gap junction alpha-1 protein Connexin43 (Jiang et al., 2020b;
Wan et al., 2021).

Wound healing in the oral cavity has a different timeline from
the skin. Epithelial cells start migrating and proliferating 24h
post wounding and, for wound areas up to 5mm, a complete
re-epithelialisation is reached by day 2 to 3 in oral mucosa,
while in skin it would take up to 7 days (Szpaderska et al.,
2003; Chen et al., 2010; Larjava, 2012; Glim et al., 2013;
Iglesias-Bartolome et al., 2018). Inflammation peaks at days 2
to 3 as well and is resolved by day 6 (Bodner et al., 1993;
Szpaderska et al., 2003; Iglesias-Bartolome et al., 2018). The
further proliferation phase takes place very early from day 2 to
7, being followed by the remodelling of collagen (Bodner et al.,
1993; Nikoloudaki et al., 2020).

The cellular and molecular mechanisms underlying
oesophageal wound healing have recently attracted attention.
Despite comparisons with gastric healing, the similarities to
the epidermis have also prompted studies to disclose possible
critical players in oesophageal response to wounding (Baatar
et al., 2002a,b; Chai et al., 2007; Tarnawski and Ahluwalia, 2012;
Jönsson et al., 2016; Tabola et al., 2016; Cai et al., 2018; Komaki
et al., 2019; Boudaka et al., 2020).

The Multifaceted Outcomes of Scarring
The regeneration of a skin wound will lead to fine scar
formation in superficial injuries. However, there are more
complex outcomes for scarring including widespread scars,
atrophic scars, scar contractures, hypertrophic scars, and keloid
scars (Karppinen et al., 2019). Hypertrophic and keloid scars are
pathological outcomes that come with devastating consequences
for patients, such as pain and itching. Hypertrophic scars are
lifted, erythematous, pruritic lesions confined to the wound
boundaries while keloids are benign fibroproliferative dermal
scars, growing beyond the wound margins (Bayat et al., 2003;
Brown et al., 2008; Karppinen et al., 2019). Given their quasi-
neoplastic tendencies, it has been argued that keloids should
be classified as a pathological disease rather than a scar (Ud-
Din and Bayat, 2020). Besides minor traumatic wounds and
acne, other cases can arise from clinical surgeries, chemical and
thermal burns or in consequence of allergic reactions. Self-harm

scarring and combat wounds also a matter of concern (Mitchell
et al., 2019; Johnson et al., 2020). The traumatic wounds in the
hostility of war context come with exposure of bone, ligaments
and tendons, as well as contamination, and the limited available
resources in conflict zones’ hospitals impede the treatment of
these wounds (Johnson et al., 2020).

On the one hand, skin scars carry long-term psychosocial
effects, including anxiety and avoiding social interaction. This
behaviour will interfere with future work life and relationships.
In some contexts, scars result from traumatising events and
bury a psychological meaning (Brown et al., 2008; Gibson et al.,
2018; Mitchell et al., 2019). On the other hand, while visible
skin scarring implies a social burden, oral and oesophagus
scarring result in difficulties swallowing food and weight loss
(Campos et al., 2020).

The fibrous tissues formed upon oesophageal injury are
named oesophageal strictures and are mainly a consequence
of various benign and malignant disorders. Some other causes
include radiation therapy and caustic ingestions. Peptic strictures
are caused by gastroesophageal reflux disease when stomach acid
damages the oesophagus epithelium over time (Yamasaki et al.,
2016). Stricture formation may result from extended endoscopic
mucosal resection and submucosal dissection, two techniques
used for treatment of superficial gastrointestinal neoplasia, gastric
cancer and superficial Barrett’s oesophagus (Yang et al., 2019;
Huang et al., 2020). The oesophageal stricture may be persistent
or recurrent despite application of several therapies. These
can cause complications such as solid and liquid dysphagia,
regurgitations or aspiration, abdominal and chest pain as well as
obstruction of the oesophagus (Ferguson, 2005).

Compared to the skin and oesophagus, the oral mucosa has
an exceptional regenerative ability, being much less prone to
scar formation. Despite owning this scar-free healing capacity,
there are some particular cases of scar formation. The mucosal
trauma applied by oral and perioral piercings may in some
rare cases cause complications. Moreover, the oral mucosa
may form a keloid or hypertrophic scar as a consequence of
medication or of systematic disease (Escudero-Castaño et al.,
2008). Additional scar formation may be a consequence of the
cleft lip, palate and gum reconstruction, as well as removal
of benign and malignant oral tumours (Goodacre and Swan,
2008; Chang et al., 2012; Fierz et al., 2013; Botticelli et al.,
2019). Some diseases are also associated with oral mucosal
fibrosis, including submucous fibrosis, pemphigus vulgaris and
cicatricial pemphigoid, lichen planus, epidermolysis bullosa and
proliferative verrucous leukoplakia (Evans, 2017). These can lead
to failure in normal growth and restricted oral aperture (Wright,
2010). The molecular mechanisms underpinning these changes
in oral wound healing are a subject of ongoing research.

The Outstanding Regenerative Potential
of Oral Mucosa – Scarless Wound
Healing
The only adult tissue with the potential to heal with minimal
scar formation is the oral mucosa. This capacity is comparable
to foetal skin scarless healing, occurring during the first and
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second trimesters of pregnancy (Rowlatt, 1979; Colwell et al.,
2005; Karppinen et al., 2019). Several studies have evidenced that
oral mucosa heals faster than skin (Szpaderska et al., 2003; Mak
et al., 2009; Chen et al., 2010; Iglesias-Bartolome et al., 2018).
Studies exploring the mechanisms of oral repair have allowed to
point key differences responsible for the superior outcome when
compared to skin (Figure 4). The main differences are:

(1) Environment: the oral mucosa comes in contact with
a very different environment compared to skin. The
external factors such as saliva and the oral microbiota
have been shown to play a role in oral wound healing
(Hutson et al., 1979; Bodner et al., 1993; Su et al.,
2018). The oral microbiota was shown to affect wound
repair through secretion of lipopolysaccharides which
maintains oral mesenchymal SCs homeostasis via miRNA-
21/Sp1/telomerase reverse transcriptase pathway (Su et al.,
2018). Bacteria may accelerate wound healing with
beneficial effects in the immune response, granulation
tissue and collagen formation (Jones et al., 2004). The
positive role of saliva in wound repair has been explained by
it being composed of growth factors such as the epidermal
growth factor and peptides as histatins with antimicrobial
function, responsible for enhanced oral keratinocyte and
fibroblast migration. Therefore, saliva modulates oral and
eventually skin wound healing mediating the inflammatory
response (Figure 4; Zelles et al., 1995; Oudhoff et al., 2008;
Boink et al., 2016; Neves et al., 2019).

(2) Inflammation: the inflammatory response in oral wounds
was shown to be reduced and to be concluded earlier
than in skin wounds (Mak et al., 2009). In fact,
there is much evidence linking excessive fibrosis with
a strong inflammatory response to injury (Shaw et al.,
2010; Wang et al., 2015). The number of immune
cells such as neutrophils, macrophages and T cells in
oral wound response is reduced when compared to
skin, and linked with reduced levels of inflammatory
cytokines [as interleukin (IL)-23, IL-24, IL-6, IL-8, tumour
necrosis factor alpha (TNF-α)] and pro-fibrotic cytokines
[transforming growth factor β1 (TGF-β1)], leading to
decreased recruitment of inflammatory cells, and elevated
anti-fibrotic cytokine TGF-β3 (Szpaderska et al., 2003;
Schrementi et al., 2008; Chen et al., 2010; Glim et al.,
2013). The reduced inflammation observed in the oral
tissues during wound healing is a reflection of a tissue
with the right tools to respond more efficiently. The
local oral defences are constantly stimulated by the
commensal microbiota and mastication, which trigger
cellular crosstalk essential for homeostasis maintenance
(Moutsopoulos and Konkel, 2018; Caetano et al., 2021;
Williams et al., 2021). Another key immunosuppressive
population in the mouth is Foxp3+ regulatory T cells (Park
et al., 2018). Inflammatory response in the oral mucosa
can be significantly amplified in cases of chemotherapy
treatment or as a consequence of systemic conditions
involving autoimmune responses, as of lichen planus,
leading to increased probability of fibrotic tissue formation

(Roopashree et al., 2010; Park et al., 2018; Basile et al., 2019).
In fact the local oral tissue immunity can affect and be
affected by extra-oral diseases (Moutsopoulos and Konkel,
2018; Kitamoto et al., 2020).

(3) Angiogenesis: reduced angiogenesis could be expected to
impair healing, though some studies have proven that
inhibition of the angiogenic response in oral wounds is
linked to reduced scar formation (Szpaderska et al., 2003;
Wilgus et al., 2008). Angiogenesis can directly affect scar
formation through oedema, apoptosis and transition of
recruited pericytes to an activated fibroblast phenotype
(Dulmovits and Herman, 2012; Johnson and Di Pietro,
2013; DiPietro, 2016). Angiogenesis and the inflammatory
response act together as inflammatory cells release pro-
angiogenic molecules (vascular endothelial growth factor
(VEGF) and CXC chemokines) to promote capillary
growth, which in turn will support the inflammatory
response (Lucas et al., 2010; DiPietro, 2016).

(4) Keratinocyte proliferation: the oral epithelia present faster
re-epithelialisation (Szpaderska et al., 2003; Chen et al.,
2010; Glim et al., 2014). Oral keratinocytes present higher
proliferative potential and are less differentiated than
skin keratinocytes therefore contributing with a greater
regenerative potential (Glim et al., 2014; Turabelidze et al.,
2014; Iglesias-Bartolome et al., 2018).

(5) Fibroblasts: the major players of the proliferative phase
of wound healing are fibroblasts that are responsible for
collagen deposition and wound contraction, being critical
players in the process of scarring. Several studies have
investigated how different fibroblast lineages contribute to
oral and to skin wound healing (Rinkevich et al., 2015;
Gölz et al., 2016; Jiang et al., 2020a). Apart from the
Engrailed1-lineage-positive fibroblast subpopulation, the
study from Rinkevich and colleagues reports a Wnt1-
lineage-positive population in the oral dermis tightly linked
to the non-fibrotic healing that characterises the oral
mucosa. A reciprocal transplantation of these oral mucosal-
and skin-derived fibroblast populations performed in mice
revealed that these mimic the response of the tissue
of origin. Thus, the grafting of Wnt1-lineage-positive
oral fibroblasts in skin resulted in decreased scar tissue
formation while skin fibroblasts contributed for a scar-
like tissue formation in the oral wound site, proving
that the oral fibroblast lineage is determinant for the
scarless healing of the oral mucosa (Rinkevich et al.,
2015). Comparison between dermal and gingival fibroblasts
showed that the latter have increased in vitro proliferation,
migration and efficiency in remodelling connective tissue
(Chaussain et al., 2002; Boink et al., 2016; Isaac et al.,
2018), however contradictory results were reported in
regard to the contraction capacity of oral fibroblasts (Lygoe
et al., 2007; Mak et al., 2009). Recent studies in mice
revealed the contribution of subcutaneous fascia fibroblasts
to large deep skin wound healing through deposition of
matrix and further contraction into a more exuberant scar
matrix architecture (Correa-Gallegos et al., 2019). This
is mediated by migration and swarming to the surface
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involving N-cadherin-mediated cell-cell adhesion. Further
experiments with an ex vivo explant technique termed scar-
like tissue in a dish (SCAD) using oral mucosa (without
fascia) showed that swarming is absent and N-cadherin
is minimally expressed, agreeing with its typical scarless
healing phenotype (Jiang et al., 2020a).
Several studies explored the differential response of oral
and dermal fibroblasts to TGFβ1, a cytokine known to
mediate fibroblast to myofibroblast differentiation and up-
regulating the α-smooth muscle actin (αSMA) in these
cells. Oral fibroblasts were shown not only to express
higher basal levels of αSMA but also have higher number
of αSMA-positive myofibroblasts in oral mucosal wounds
(Lygoe et al., 2007; Mak et al., 2009). However, these were
shown to resist more to TGFβ1-controlled myofibroblast
differentiation, together with decreased levels of TGFβ1 in
oral wounds, and supporting its non-scarring phenotype
(Meran et al., 2007). This can be regulated by the
increased expression of the hepatocyte growth factor
(Dally et al., 2017).

(6) ECM: compared to cutaneous wounds, the ECM
composition of oral wounds diverges and is a key
determinant for the scarless phenotype. Oral wounds
showed increased expression of hyaluronic acid, tenascin
and fibronectin and decreased expression of elastin (Glim
et al., 2013, 2014. MMP mediate ECM remodelling and are
regulated by MMP tissue inhibitors. The balance between
these two molecules was shown to be important for the
final healing outcome. In oral wounds the ratio between
MMP and MMP tissue inhibitors is high, namely the levels
of MMP 2 and 3 (Stephens et al., 2001; Glim et al., 2013).
Also, the collagen III to collagen I ratio is increased in
oral wounds (Glim et al., 2013; Figure 4). The pro-fibrotic
matricellular protein periostin was recently shown to
be involved in ECM synthesis regulation in gingival
wound healing, while in skin it appears as a mediator of
myofibroblast differentiation through β1 integrin-focal
adhesion kinase (FAK) signalling (Nikoloudaki et al.,
2020). Another study related the activation of autophagic
pathways with an increase in myofibroblast differentiation
and noted heterogeneity within the oral cavity, namely
between buccal mucosa and gingiva. The gingival tissue
showed no autophagic process upon wound repair
therefore leading to less myofibroblast differentiation
when comparing to buccal mucosal tissue (Vescarelli et al.,
2017). It would be interesting to deepen our knowledge
on the different wound healing responses associated with
different tissues of the oral cavity. Overall, the surrounding
environment is capable of eliciting various responses
that contribute for the scarless potential of oral mucosa,
nevertheless, also inside the cells molecular differences can
be pointed between skin and oral mucosa.

(7) Molecular cues: transcriptomic analysis have uncovered
the molecular differences between skin and oral mucosal
wound healing (Chen et al., 2010; Turabelidze et al., 2014;
Iglesias-Bartolome et al., 2018). Healthy oral mucosa is
primed with transcriptional networks readily prepared to

respond to wounding, suggesting that the oral epithelia
is equipped with a specially prepared intrinsic genetic
response, particularly for cellular growth and proliferation
and inflammatory response (Turabelidze et al., 2014;
Iglesias-Bartolome et al., 2018). Importantly, the discovery
of key players in transcriptional networks directly working
for a scarless healing is of major importance. For instance,
the Sox2 and Pitx1 transcription factors were shown to
be the master regulators of the oral mucosal wound
healing response (Iglesias-Bartolome et al., 2018). However,
the intrinsic features playing to scarless healing are not
restricted to the protein coding genes; microRNAs were
differentially expressed between skin and oral wound
healing, highlighting that genetic and epigenetic response
of oral mucosa through growth factor production, SC levels
and cellular proliferation capacity gives this epithelium its
superior final repair (Simões et al., 2019).

To conclude, the ability of the oral mucosa to heal without
scarring cannot be attributed to a single feature but to key
extrinsic and intrinsic factors present in all stages of the wound
healing process, which are crucial to the final improved outcome.

EXPORTING THE PROPERTIES OF ORAL
EPITHELIA – THE SOURCE FOR FUTURE
THERAPIES IN WOUND REPAIR?

Improving wound healing in skin is an unmet need. Chronic skin
wounds have devastating consequences for patients and treating
chronic wounds costs the UK National Health Service £5 billion
per annum (Guest et al., 2015). Development of more efficient
wound treatments is urgently needed to increase the quality of
life of patients and to effectively reduce healthcare costs.

Reconstruction of skin or oral mucosal tissues using tissue-
engineering methods resembles wound healing processes. It
requires active SCs, epithelial proliferation, epithelial and
fibroblast cell migration and ECM production, all processes
coordinated to regenerate the new 3D tissue with similar
properties and functions.

A large number of studies have been exploring SC therapies
to improve skin regeneration. A major breakthrough recently
published has used autologous transgenic skin epithelial cultures
to regenerate an entire, fully functional epidermis from a patient
with an epidermolysis bullosa disease caused by a mutation in
laminin 332 usually expressed in skin’s basement membrane
(Hirsch et al., 2017). Using retrovirus bearing healthy copies of
the needed gene, LAMB3, epithelial cells from the patient were
corrected, expanded in culture and grafted back to the patient. By
combining cell and gene therapy, this clinical study demonstrated
a life-saving regeneration of virtually the entire epidermis. This
study inspires the use of other tissues for skin regeneration. Oral
mucosal cells present advantages over skin cells in therapeutic
applications due to their unique scarless properties and are an
easy source to harvest reducing time for surgical procedures and
accelerating patient’s recovery time (Izumi et al., 2015; Chapple,
2020). However, the direct use of mucosal grafts comes with
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FIGURE 4 | Key factors contributing for scarring and scarless wound healing. The comparison of the inflammatory and proliferation phases (Top) and the
remodelling phase (Bottom) of wound healing highlight crucial factors that notably contribute to the distinct healing outcome of skin (with scar formation) and oral
mucosa (scarless).

various disadvantages associated with availability of sufficient
amount of donor tissue as well as other graft-associated problems,
such as donor site morbidity, recipient site, pain and risk of
infection (Llames et al., 2014). To overcome these problems, the
clinical use of tissue-engineered oral mucosa (TEOM) is the most
adopted method (Figure 5).

TEOMs are based on a scaffold matrix that provides structural
support for the cells to seed, or as a scaffold used to deliver
drugs or growth factors directly into the injured tissue, upon

transplantation. The key factors are the optimal choice of the
scaffold and the cells to seed. Collagen scaffolds are the golden
standard, but advances in tissue engineering are proposing other
synthetic scaffolds such as biodegradable hydrogels, as well as
decellularised dermis (Figure 5). TEOM is a potential technique
to reconstruct the oral cavity after tumour excision or after injury,
and to repair congenital defects, such as cleft palate. Furthermore,
it is a great model for in vitro testing of oral care products
efficiency and safety, for evaluating cigarette smoke effects and

Frontiers in Cell and Developmental Biology | www.frontiersin.org 13 July 2021 | Volume 9 | Article 682143

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-682143 July 21, 2021 Time: 14:51 # 14

Pereira and Sequeira Oral Mucosa Regenerative Potential

FIGURE 5 | Schematic representation of the current work on wound healing improvement using oral mucosa. The oral mucosa represents a valuable source of
different components that translates into different routes of exploration and expansion of its unique healing potential. Through different techniques these components
can be applied to different tissues such as the oral mucosa itself, the skin and the oesophagus.

to analyse cellular and molecular mechanisms of infection in the
oral cavity (Chen et al., 2020; Wang et al., 2020; Zhong et al., 2020;
Huang et al., 2021).

The TEOM explores the outstanding regenerative potential
of the oral mucosal to reconstruct the oral cavity itself or in
other tissues of the body. The following subchapters cover pre-
clinical and clinical studies on the use of the oral mucosal tissue
to improve the healing outcome of other intra- and extra-oral
tissues (Tables 1, 2).

Exploring the Use of Oral Mucosa for
Oral Tissue Repair
The human clinical application of oral mucosal scarless
potential and exceptional properties for repair is still scarce,
however the number of case reports and pilot studies has
been growing (Figure 5 and Table 1). TEOM produced
ex vivo from autologous keratinocytes from the hard palate
or gingiva were successfully used for reconstruction of intra-
oral lining tissues and periodontal plastic surgeries (Lauer
and Schimming, 2001; Izumi et al., 2003; Hotta et al., 2007),
while full-thickness TEOM combined with fibula flap allowed
for the lining reconstruction of maxilla and mandible (Gil
et al., 2015). Other cases of congenital anomalies such as
hemifacial microsomia, ankyloglossia (tongue-tie) and cleft
palate were treated with TEOM yielding satisfactory outcomes
(Llames et al., 2014; Hixon et al., 2019). The use of TEOM
to repair mucogingival defects demonstrated its capacity to
integrate and vascularise (Izumi et al., 2013), however this
technique still needs to be improved to avoid postoperative
wound shrinkage.

The buccal fat pad flap is reported to be a reliable and
effective flap with clinical application in reconstruction of oral
defects due to its high vascularity, reducing tissue hypoxia and
improving graft survival. This has been used to treat oroantral
fistula, congenital defects such as the cleft palate, osteonecrosis
of the jawbone and defects induced by removal of tumours
or cysts (Egyedi, 1977; Ashtiani et al., 2011; Kim et al., 2017;
Yaguchi et al., 2021).

The clinical use of oral-derived SCs is still limited. Oral
SCs have been derived from dental pulp, periodontal ligament,
exfoliated deciduous teeth, apical papilla, dental follicle, gingiva,
oral mucosa, salivary glands and alveolar bone (Kanwal et al.,
2017; Bryja et al., 2019; Sanz et al., 2019). The work with
oral SCs for hard and soft tissue regeneration within the oral
cavity has focused on the use of oral SCs for reconstructing
periodontal, bone, dentin and pulp tissues (Seo et al., 2004;
Feng et al., 2010; Giuliani et al., 2013; Shiehzadeh et al., 2014;
Surendran and Sivamurthy, 2015; Chen et al., 2016; Kanwal
et al., 2017). Human gingival and mouse palatal epithelial
cells were used to develop teeth in combination with mouse
embryonic tooth mesenchyme following transplantation into
renal capsules (Nakagawa et al., 2009; Volponi et al., 2013).
The combination of human oral epithelial cells and dental pulp
SCs using a matrigel as scaffold allowed the 3D construction
of an epithelial invagination model, an important feature of
early tooth development (Xiao and Tsutsui, 2012). Furthermore,
human salivary gland-derived SCs were used to restore saliva
production after radiation of salivary glands, opening doors for
the treatment of hyposalivation resulting from head and neck
cancer radiotherapy (Pringle et al., 2016).
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TABLE 1 | Clinical application of cellular therapy using human oral mucosa cells to regenerate oral tissues or other recipient tissues.

Intra-oral

Cell type Method Donor tissue Recipient tissue Outcome Reference(s)

Keratinocytes TEOM Hard palate Tongue (intra-oral wound) Improved tissue adhesion, speech
and tongue mobility

Lauer and
Schimming, 2001

Keratinised oral mucosa on
human dermis (AlloDerm R©)

Tongue, alveolar gingiva, buccal
mucosa, floor of mouth and
Oropharyngeal mucosa

No postoperative pain, excellent
adhesiveness and good epithelial
coverage

Izumi et al., 2003

Gingiva keratinocytes on
human dermis (AlloDerm R©)

Tongue, gingiva, buccal
mucosa and alveolar ridge

Faster healing, negligible scar
contracture

Hotta et al., 2007

Hard palate keratinocytes
on human dermis
(AlloDerm R©)

Gingiva Good adhesiveness, increased
gingival tissue

Izumi et al., 2013

Keratinocytes and
fibroblasts

TEOM Buccal mucosa Tongue Good mobility of tongue,
satisfactory speech, residual
fibrosis

Llames et al., 2014

Palatal mucosa Fibula flaps for maxillary and
mandibular reconstruction

Granulation tissue formation in one
patient, good restoring outcome

Gil et al., 2015

Fat pad Grafting Buccal fat Posterior alveolus and hard
palate

Full recovery Egyedi, 1977

Buccal fat Mid-palatal and posterior
palatal fistulas

Full recovery Ashtiani et al., 2011

Buccal fat Palatal fistulas Full recovery Yaguchi et al., 2021

Fibroblasts Injection Gingiva Gingiva Test treatment improved papillary
tissue augmentation

McGuire and
Scheyer, 2007

Scaffold Gingiva Gingiva Increased gingival width,
keratinised epithelium supported by
dense connective tissue

Mohammadi et al.,
2011

Gingiva Gingiva Efficient gingival augmentation Dominiak et al.,
2012

Extra-oral

Epithelial flap TEOM Buccal mucosa Trachea Faster healing, buccal mucosa and
fascia form an optimised tissue
combination

Delaere et al., 2001

Keratinocytes TEOM Buccal mucosa Eye Vision restored, no complications Nishida et al., 2004

Lip Skin (scalp) 30% success of engraftment due to
local infection

Iida et al., 2005

Buccal mucosa Oesophagus Effective re-epithelialisation, no
dysphagia or stricture formation

Ohki et al., 2012

Buccal mucosa Oesophagus Safe, reduced risk for post-ESD
stricture formation

Jonas et al., 2016

Buccal mucosa Oesophagus Short post-ESD ulcer healing
period, successful cell sheet
fabrication,
transport and transplantation.

Yamaguchi et al.,
2017

Lingual tissue Grafting Ventrolateral tongue Urethra Good success rates of
reconstruction of short strictures,
combination with buccal mucosa
for longer grafts

Simonato et al.,
2008

Buccal mucosal
cells

TEOM Buccal mucosa Urethra Safe and effective anterior
urethroplasty

Barbagli et al.,
2018

Comparison of the outcomes according to the tissue of origin, the therapeutic method used and the recipient tissue. TEOM, tissue-engineered oral mucosa; ESD,
endoscopic submucosal dissection.
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TABLE 2 | Pre-clinical studies with oral mucosa.

In vivo

Species Cell type or
component

Method Donor tissue Recipient tissue Outcome Reference(s)

Mouse SCs Injection Deciduous teeth Skin Accelerated wound healing Nishino et al., 2011

Keratinocytes Topical application Human gingiva Skin Rapid re-epithelialisation Kim et al., 2013

Fibroblasts Injection Buccal mucosa Skin Reduced scarring,
lineage-dependent
behaviour

Rinkevich et al.,
2015

SC/progenitor cells Salisphere cell
transplantation

Human
submandibular
salivary gland

Mouse
submandibular
salivary gland

Rescue of saliva production Pringle et al., 2016

Keratinocytes and
fibroblasts

TEOM Oral mucosa
(non-specified)

Skin Faster wound healing,
reduced scarring

Roh et al., 2017

miRNA-31 mimic Injection Hard palate Skin Significant acceleration of
wound closure

Chen et al., 2019

Keratinocytes and
fibroblasts

TEOM Human oral
mucosa

Skin Accelerated wound healing,
reduced scarring

Lee et al., 2019

Exosomes Injection Human saliva Skin Efficient wound healing
through promotion of
angiogenesis

Mi et al., 2020

SCs Injection Oral mucosa
(non-specified)

Skin Accelerated wound healing Kuperman et al.,
2020

Rat Keratinocytes TEOM Oral mucosa
(non-specified)

Uterus Highly effective against
intrauterine adhesions

Kuramoto et al.,
2015

Keratinocytes and
fibroblasts

pre-vascularized TEOM Oral mucosa
(non-specified)

Buccal mucosa Accelerated and more
efficient healing

Lee et al., 2017

Exosomes Hydrogel topical
application

Human gingival
mesenchymal SCs

Skin Promotion of
re-epithelialisation,
deposition and remodelling
of ECM

Shi et al., 2017

Keratinocytes and
fibroblasts

TEOM Buccal mucosa Skin Accelerated wound healing,
reduced scarring

Lee et al., 2018

Dental pulp SCs Injection via tail vein Upper and lower
incisors

Oesophagus Improved healing Zhang et al., 2018

EGF, HA, bFGF and
lysozyme

Biomimetic hydrogel Commercial Skin Accelerated wound healing,
reduced scarring

Kong et al., 2019

Mucosal tissue Grafting Tongue Skin Lower levels of EGF and
VEGF-C

Qi et al., 2019

Exosomes Topical application Human buccal
epithelial cell sheets

Skin Significant acceleration of
wound closure

Sjöqvist et al., 2019

Dog Keratinocytes TEOM Buccal mucosa Oesophagus Complete faster wound
healing, no stenosis

Ohki et al., 2006

Keratinocytes and
fibroblasts

TEOM Oral mucosa
(non-specified)

Oesophagus Good distensibility and
epithelial thickness,
successful oesophageal
replacement

Nakase et al., 2008

Keratinocytes TEOM Buccal mucosa Oesophagus Successful attachment and
re-epithelisation

Takagi et al., 2010

Rabbit Dental pulp SCs TEOM Human deciduous
teeth

Eye Corneal reconstruction Gomes et al., 2010

Keratinocytes TEOM Buccal mucosa Urethra Urethroplasty
reconstruction

Yudintceva et al.,
2020

Goat Epithelial graft Grafting Oral mucosa
(non-specified)

Trachea Coverage of the
constructed trachea lumen

Li et al., 2019

Pig Keratinocytes Injection Buccal mucosa Oesophagus Improved re-epithelisation,
reduced risk of stenosis
and contraction

Sakurai et al., 2007

(Continued)
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TABLE 2 | Continued

In vitro

Species Cell type Method Donor tissue Outcome Reference(s)

Human Keratinocytes TEOM Gingiva Fabrication of oral
mucosal equivalent
similar to the native
tissue

Yoshizawa et al., 2004

Fibroblasts Reprogramming Buccal mucosa Efficient reprogramming
into induced pluripotent
SCs

Miyoshi et al., 2010

Keratinocytes TEOM Cryopreserved lip
mucosa

Successful fabrication
of oral mucosa
equivalents

Xiong et al., 2010

Fibroblasts Low-level laser therapy Cell line Increased cell number
and migration

Basso et al., 2012

Keratinocytes TEOM Lip Fabrication of 3D
human lip skin
equivalent

Peramo et al., 2012

Keratinocytes TEOM Keratinised oral
mucosa

Development of large
TEOM

Kato et al., 2015

Fibroblasts and
immortalised
OKF6/TERET-2 oral
keratinocytes

TEOM Gingiva Development of 3D
bone-oral mucosa
model

Almela et al., 2016

Fibroblasts Feeder cells Gingiva Improved cell
proliferation, promising
candidate feeder cells

Yu et al., 2016

Fibroblasts In vitro differentiation,
feeder cells

Oral mucosa
(non-specified)

Fabrication of corneal
epithelial sheets,
multipotent
differentiation into
mesenchymal or neural
crest-derived cells,
good source of feeder
cells

Higa et al., 2017

Keratinocytes and
fibroblasts

Scaffolds Buccal mucosa Tri-layer micro-nano-3D
porous synthetic
scaffold mimics normal
human oral mucosa,
minimal contraction,
good mechanical
properties

Simsek et al., 2018

Keratinocytes and
fibroblasts

TEOM Gingiva Development of 3D
epithelium and lamina
propria

Nishiyama et al., 2019

Pig Keratinocytes TEOM Buccal mucosa Culture on acellular
scaffolds

Poghosyan et al., 2013

Dog Keratinocytes TEOM Buccal mucosa Successful
construction of TEOM
with adipose derived
SCs and small intestine
submucosa

Zhang et al., 2021

Comparison of the outcomes according to the animal species, the cell type or non-cell component, the method used and the recipient tissue. TEOM, tissue-engineered
oral mucosa; EGF, epidermal growth factor; HA, hyaluronic acid; bFGF, basic fibroblast growth factor; VEGF-C, vascular endothelial growth factor C.

Several clinical studies explored the potential of using oral
mucosal fibroblasts for gingival tissue augmentation. Autologous
gingival fibroblasts seeded in different scaffolds improved
keratinised tissue formation (Mohammadi et al., 2011; Dominiak

et al., 2012). Additionally, the injection of autologous fibroblasts
harvested from keratinised tissue from the maxillary tuberosity
in interdental papillary recession defects improved the papillary
tissue augmentation (McGuire and Scheyer, 2007; Table 1).
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In addition to clinical studies, in vitro and in vivo research
is progressing with more viable alternatives (Table 2). A large
size ex vivo fabricated oral mucosal equivalent was successfully
achieved using higher cell seeding density of oral keratinocytes
and a thinner AlloDerm scaffold, reaching a final 15cm2 size,
which can be applied in the reconstruction of significant
soft tissue defects (Kato et al., 2015). Cryopreservation of
abundant lip mucosa tissues harvested upon cleft lip repair
proved to be a useful approach to biobank oral keratinocytes
for TEOMs. The 4- to 6-month cryopreservation did not
affect the characteristics of the TEOM when compared
with the equivalents engineered from fresh lip and palate
(Xiong et al., 2010). Furthermore, pre-vascularised oral
mucosal cell sheets grafted into deep wounds in the buccal
region of rats healed more rapidly and without fibrosis
(Lee et al., 2017).

Using cell surface coating through layer-by-layer assembled
ECM films succeeded in creating the 3D oral mucosal equivalents
composed of epithelium, lamina propria and blood capillaries,
recreating the tissue cellular heterogeneity (Nishiyama et al.,
2019). Furthermore, the in vitro incorporation of oral mucosa
and bone components in a composite scaffold model that mimics
the natural structure of alveolar bone with an overlying oral
mucosa was achieved and is a possible future application in cleft
palate repair (Almela et al., 2016; Hixon et al., 2019).

Oral mucosal fibroblasts were recently reprogrammed into
induced pluripotent SCs (Miyoshi et al., 2010) and were shown
to be efficient feeders for induced pluripotent SCs expansion
(Yu et al., 2016; Figure 5). This represents a promising tool for
ex vivo cell expansion.

Recent technologies have been exploring the use of cell-free
therapies for oral maxillofacial regeneration, particularly the use
of extracellular vesicles (Figure 5; reviewed in Lv et al., 2019; Shi
et al., 2020). This technology overcomes the shortcoming of cells
and instead explores the cell paracrine effects that can activate
endogenous repair pathways (Jiang et al., 2017; Zheng et al., 2018;
Ren, 2019). As in TEOMs, it remains important to consider
the origin and the differentiation status of the secreting
cells to guarantee not only improved outcome but also safe
clinical applications.

Exploring Oral Mucosal Properties to
Improve Skin and Oesophageal Repair
It is well known that adult skin wounds are frequently
accompanied by scar formation that can become fibrotic, while
oral mucosal wounds heal in an accelerated fashion, displaying
minimal scar formation (see section “Wound Repair Mechanisms
in Skin, Oesophagus, and Oral Epithelia”). While surgical
reconstruction of the oral cavity with skin grafts has been easily
and routinely accomplished for a long time, particularly after
tumour resection, the clinical application of oral mucosa grafts
into skin has been less explored (Schramm and Myers, 1980;
Schramm et al., 1983; de Bree et al., 2008). However, exploring
the scarless potential of the oral mucosa offers an exciting strategy
to accelerate skin wound healing and to improve the quality of
life for patients with chronic wounds. There have been promising

studies around this topic, but few clinical studies. Iida and
colleagues used TEOMs based on an acellular allogeneic dermal
matrix grafted into scalp skin with extensive deep skin burn
showing 30% of the graft efficacy (Iida et al., 2005; Table 1).

In vitro studies have demonstrated the potential of
oral mucosal fibroblasts, to improve wound healing after
biostimulation with low-level laser therapy (Basso et al., 2012).
A recent study by Kong and colleagues engineered a biomimetic
gel inspired by the characteristics of oral mucosal wound healing.
The hydrogel was loaded with epidermal growth factor, basic
fibroblast growth factor, lysozyme and hyaluronic acid, as
these were observed to be highly expressed in the oral mucosal
wound healing when comparing to skin (Kong et al., 2019).
The authors were able to simulate the oral mucosal trauma
microenvironment through controlled release of these molecules
resorting to microspheres and chitosan thermo-sensitive gels.
The use of this biomimetic hydrogel in skin wounds of rats
resulted in rapid wound healing and reduced scar formation
(Kong et al., 2019).

As for pre-clinical studies, topical grafting of human oral
keratinocytes onto skin wounds in nude mice improved
regeneration of skin wounds, with increased production of
keratinocyte growth factor and cytokines IL-6, and IL-1α

(Kim et al., 2013).
SCs from human exfoliated deciduous teeth and oral mucosa

were shown to improve skin wound healing in mice when
injected around the wound or topically applied onto the wound
bed highlighting the plasticity of different SC types that could
be used to regenerate skin (Nishino et al., 2011; Kuperman
et al., 2020). Other studies have explored the potential of oral
mucosal engineered cell sheets to apply on skin excisional and
burn wounds. All reported results indicated the plasticity of the
cell sheets in adapting to the skin wounds, the contribution to
accelerated healing and limited scar formation (Roh et al., 2017;
Lee et al., 2018, 2019).

The implementation of recent knowledge in the prevention
of oesophageal stricture after endoscopic submucosal dissection
has attracted increasing attention. Autologous oral mucosal
keratinocytes were endoscopically implanted after oesophageal
resection in a porcine model, resulting in accelerated re-
epithelialisation and wound healing (Sakurai et al., 2007). On a
“bench to bedside” approach, tissue-engineered autologous
oral epithelial cell sheets and full-thickness substitutes
were endoscopically transplanted into an oesophageal ulcer
immediately after a large endoscopic submucosal dissection,
showing excellent results with no cases of dysphagia or stricture
formation (Ohki et al., 2006, 2012, 2015; Arakelian et al.,
2018; Ohki and Yamamoto, 2020). The first clinical trial
using cell sheet technology for oesophageal reconstruction in
Europe used cell sheets from autologous oral epithelial cells,
transplanted right after endoscopic submucosal dissection of
Barrett’s neoplasms, resulting in decreased risk and extent
of strictures (Jonas et al., 2016). On a canine model, the
replacement of the full-circumference and full-thickness
intrathoracic oesophagus was achieved using autologous oral
keratinocytes and fibroblasts seeded on amniotic membrane,
sheeted on polyglycolic acid filled with smooth muscle tissue
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(Nakase et al., 2008), a technique later also achieved without
animal-derived materials that could compromise future human
clinical trials (Takagi et al., 2010). On a porcine model, an
in vitro engineered oesophageal substitute was obtained with
an acellular small intestinal submucosa scaffold seeded with
autologous skeletal myoblasts, covered with a human amniotic
membrane and seeded with autologous oral epithelial cells
(Poghosyan et al., 2013).

Other non-cellular-based approaches have also emerged
which explore the benefits of oral microRNA and exosomes for
skin and oesophageal wound repair (Shi et al., 2017; Chen et al.,
2019; Sjöqvist et al., 2019; Mi et al., 2020).

Finally, an interesting and challenging study tested the
safety and feasibility of transplanting engineered autologous oral
mucosal cell sheets in patients who had undergone extensive
endoscopic submucosal dissection for oesophageal squamous cell
carcinoma removal. The challenge of this study was the use
on non-autologous cell sheets produced 1200km away from the
patients that were transported by air for 7h before transplantation
(Yamaguchi et al., 2017). Such studies are of major relevance
when thinking about future tissue-engineering therapies reaching
remote hospitals with no tissue engineering facilities, or hospitals
in conflict zones.

Exploring the Use of Oral Mucosa for the
Repair of Other Tissues
The use of oral mucosa to improve wound healing in other tissues
has taken its first steps with successful applications in the clinical
field, such as in urethral reconstruction and stricture repair
through grafting, with recent research focused on improving the
TEOM for better outcomes (Simonato et al., 2008; Barbagli and
Lazzeri, 2015; Horiguchi, 2017; Barbagli et al., 2018; Simsek et al.,
2018; Chapple, 2020; Yudintceva et al., 2020; Zhang et al., 2021).
The advantages of using buccal mucosa instead of other donor
sites, such as skin, are the fact that the buccal mucosa is a non-
keratinised squamous epithelium that lacks hair (Figure 1) and
has low associated morbidity and short harvest time.

Tissue-engineered cell sheets of autologous oral epithelial
cells alone, or combined with other tissues have been used
for ocular diseases treatment, including eyelid and corneal
reconstructions (Nishida et al., 2004; Yoshizawa et al., 2004;
Oliva et al., 2020; Sasaki et al., 2020). Using an in vivo
rabbit model of total limbal SC deficiency, dental pulp SCs
were used in a tissue-engineered cell sheet for ocular surface
reconstruction (Gomes et al., 2010) highlighting the plasticity
of these cells. Furthermore, oral mucosal fibroblasts containing
neural crest-origin cells showed plasticity in differentiating into
mesenchymal and neural cell lineages, being proposed as an
autologous cell source for establishing human corneal epithelial
cell sheets suitable for corneal regeneration (Higa et al., 2017).
Other applications of the oral mucosa comprise the treatment
of tracheal defects (Delaere et al., 2001; Li et al., 2019) and
prevention of intrauterine adhesions caused by endometrial
damage (Kuramoto et al., 2015).

While in full-thickness skin transplant into the oral cavity
(to reconstruct tongue or buccal mucosa), the recipient organ

keeps characteristics of the donor tissue (Vural and Suen, 2000;
Sebastian et al., 2008; Amin et al., 2011; Aslam-Pervez et al.,
2018), there is mounting evidence that grafted epithelial cells can
adopt the phenotype of the recipient tissue, stressing the plasticity
of these cells and the importance of the underlying connective
tissue and fibroblasts to determine epithelial cells phenotype.
Recent animal work has successfully grafted oesophageal tissue
into skin demonstrating that when exposed to the adult skin
dermis, oesophageal epithelial cells transition to a skin identity
following a cell fate conversion process (Bejar et al., 2021). This
highlights how the stromal cells influence the final epithelial
phenotype in a homeostatic tissue. However, this is a topic
of much controversy and variability of results over the years,
especially when considering clinical and in vivo applications
(Billingham and Silvers, 1967; Mackenzie and Hill, 1984; Luca
et al., 1990; Katou et al., 2003). Whether the epithelium is
transplanted alone or with subepithelial tissue as full thickness
flaps, or applied as single-cell suspensions of fully differentiated
cells or stem cells alone might contribute for the observed
heterogenous responses. Additionally, the majority of these
events lack a more in depth study of the molecular mechanisms
driving the final outcomes. Nonetheless, we can’t discard the
intrinsic identity and programmes that epithelial and fibroblastic
cells carry themselves, which differ between oral mucosa and
skin (Turabelidze et al., 2014; Rinkevich et al., 2015; Iglesias-
Bartolome et al., 2018). This heterogeneity could as well explain
the predisposition of a tissue to resemble the origin characteristics
or to be more influenced by the recipient. Regardless, the studies
presented in this final chapter highlight a very promising venue
for using these intrinsic cellular properties into other tissue
wounds, mainly through improved in vitro tissue engineering.

CONCLUSION

Techniques to improve skin wound healing are currently under
development and are an unmet need, particularly following
large burns and war injuries, where treatment is still primarily
performed by split-thickness skin grafting and accompanied by
problems associated with limited donor tissue, pain and scarring
(Singh et al., 2015; Connolly et al., 2016).

Mounting evidence over the last two decades has
demonstrated a remarkable plasticity in adult epithelial cell
fate while in in different niches, leaving behind the concept
of strict SC fates (Bonfanti et al., 2010; Blanpain and Fuchs,
2014; Chacón-Martínez et al., 2018; Yuan et al., 2019). While
epithelial cells and fibroblasts reciprocal grafting have dissected
their contribution to wound healing, the plasticity of these cells
in the new microenvironment and their cellular behaviour need
further investigation. There is an exciting future for collaborative
efforts to understand the heterogeneity and plasticity between
these tissues and yet their common features and the mechanisms
behind the cell fate conversion, in order to improve the use of
heterotypic transplants for future therapeutic strategies.

In this review, we elucidate the intrinsic properties that prime
the oral mucosa with scarless wound healing response. Lessons
should be learned from the oral mucosa to apply on other
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tissues, exploring these unique properties in future innovative
therapies combining cell therapy with bioengineering to prevent
pathologies associated with impaired wound healing and scar
formation in both skin and oesophagus.
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