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INTRODUCTION

The loss of neurons is the most common cause of nervous system disorders, such as stroke,
spinal cord injury (SCI), and neurodegenerative diseases including Alzheimer’s disease (AD),
Parkinson’s disease (PD), and Huntington’s disease (HD). Given that neurons cannot divide to
regenerate themselves, together with the fact that only a small number of new neurons derived
from external cell transplantation can survive in vivo (Goldman, 2016), few neuroregenerative
strategies have succeeded in adult mammalian brains. In order to avoid the limitations of cell
transplantation therapy, such as ethical issues and transplantation rejection (Chen et al., 2019),
there are research groups that have developed a technology that allows reprogramming of astrocytes
into functional new neurons in situ. For example, the single neural transcription factor NeuroD1-
based gene therapy can successfully reprogram astrocytes into functional neurons in AD mouse
brains (Guo et al., 2014), damaged spinal cord (Puls et al., 2020), and stroke mouse brains, as well
as promote functional recovery in a mouse stroke model (Chen et al., 2020). Besides, astrocytes
in the striatum of HD mice can be directly converted into GABAergic medium spinal neurons
by co-overexpressing NeuroD1 and Dlx2, leading to motor function recovery and longer life
spans (Wu et al., 2020). Three groups have shown that astrocytes also can be converted into
dopaminergic neurons, which led to behavioral improvement in a mouse PD model by highly
expressing three transcription factors, NeuroD1, Ascl1, and Lmx1a, and the microRNA, miR218,
collectively referred to as NeAL218 (Fyfe, 2017; Rivetti di Val Cervo et al., 2017), or by depleting an
RNA-binding protein called PTB (Arenas, 2020; Qian et al., 2020; Zhou et al., 2020). Additionally, in
an adult rat model of SCI, astrocytes can be reprogrammed into neurons by overexpressing SOX2,
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leading tomotor function recovery (Su et al., 2014), or into neural
stem cells by highly expressing Zfp521 (Zarei-Kheirabadi et al.,
2019). Notably, it has been confirmed that human astrocytes
can be successfully converted into neurons or neuroblasts in
vitro (Corti et al., 2012; Ghasemi-Kasman et al., 2015; Zhang
et al., 2015; Li et al., 2016; Rivetti di Val Cervo et al., 2017;
Yin et al., 2019; Qian et al., 2020). These studies provide
a potential alternative approach to regenerate functional new
neurons in the central nervous system of adult mammals by
directly reprogramming glial cells in situ into neurons.

ADVANTAGES OF NEUROD1-MEDIATED

ASTROCYTE-TO-NEURON CONVERSION

FOR EVALUATING THERAPEUTIC

TREATMENT AFTER STROKE IN ADULT

NON-HUMAN PRIMATES

Recently, Chen’s research group firstly reported that an in situ
neuronal regeneration approach using AAV NeuroD1-based
gene therapy could repair damaged brains in adult non-human
primates (NHPs) with ischemic stroke (Ge et al., 2020). These
findings were based on earlier successful investigations in vitro
and in vivo (Guo et al., 2014; Brulet et al., 2017; Chen et al., 2020;
Wu et al., 2020; Zhang et al., 2020).

The results have shown that high expression of a neural
transcription factor NeuroD1 in astrocytes can successfully
reprogram nearly 90% of infected astrocytes into neurons
in the monkey cortex following ischemic stroke, and those
neurons could survive over 1 year. The neurons from NeuroD1-
mediated astrocyte-to-neuron (AtN) conversion displayed
Tbr1+ cortical neuron identity and were mostly located in
the monkey gray matter (Ge et al., 2020), which is entirely
consistent with earlier findings in rodent ischemic stroke
models (Chen et al., 2020; Liu et al., 2020). Interestingly, the
number and intrinsic proliferative property of astrocytes in
the converted areas were not changed compared with those in
the control side.

Moreover, it was extremely attractive that the NeuroD1-
mediated AtN conversion not only significantly increased the
cortical neuronal density, dendritic marker, and synaptic marker
levels in the ischemic injured areas of the monkey cortex but
also improved the microenvironment, including reducing the
number of reactive microglia and macrophages (Ge et al., 2020).
The improvement of the inflammatory microenvironment was
beneficial for the survival of parvalbumin-positive GABAergic
interneurons that were badly damaged by ischemic injury
(Povysheva et al., 2019). Another interesting finding different
from that in rodent animal models was that the expression
of NeuroD1 was significantly decreased in newly regenerated
neurons after 6 months of AAV injection, which may
be beneficial in future clinical trials (Ge et al., 2020).
Furthermore, this study reported that this treatment had a
broad time window from 10 to 30 days following ischemic
stroke, and the cell conversion effect is long-lasting, ranging
from 2 months to 1 year after viral infection (Ge et al.,
2020), suggesting that the NeuroD1-mediated AtN conversion

therapy might be a potential approach for neural repair in
NHP brain.

DISCUSSION

Many clinical trials of treatment for cerebral ischemia based on
preclinical parameters obtained from rodent animal models have
failed in the past (Turner et al., 2013), because the successful
discoveries in rodent animal models may not be replicated
in primates. The main reason for such problems is that the
human brain is largely different from rodent brain, while the
brains of large animal models, such as monkeys, are more
similar to those of humans (Modo et al., 2018). Therefore, in
order to confirm the validity of in vivo astrocyte conversion
in human clinical trials, it is very important and necessary
to first test such findings in adult NHP models, such as in
monkeys. Previously, acute NHP stroke models often were used
to test drug effects, and the drug administration time was
typically within a few hours after stroke (Takamatsu et al.,
2001; Cook and Tymianski, 2012, Cook et al., 2017). In this
study, a focal stroke model with a very low mortality rate
was employed through intracranial injection of endothelin-1
to induce blood vessel constriction in the motor cortex of
rhesus macaque monkeys. This study demonstrated that in situ
NeuroD1-mediated AtN conversion therapy had a broad time
window from 10 to 30 days following ischemic stroke (Ge et al.,
2020).

Nevertheless, in this study, some neuronal functions of
converted neurons were not investigated, such as neuronal
excitability, production, and release neurotransmitter.
Furthermore, there is a question as to why and how
NeuroD1-mediated AtN conversion could reduce the number
of microglia and macrophages; unfortunately, the mechanisms
were not investigated, and further studies will be required.
However, there is mounting evidence that the expression
of NeuroD1 is often high during early brain development
and is lower in the adult brain (Pataskar et al., 2016);
further studies are needed to clarify the mechanism of the
significant decrease in NeuroD1 expression following AtN
conversion in the monkey cortex over time. There was no
evidence about a correlation with behavioral improvement
in adult NHPs after stroke, and to our knowledge, neuronal
recovery at the cellular level needs to be accompanied by
behavioral improvement.

Taken together, this is the first report about successful
application of NeuroD1-mediated AtN conversion technology
in NHP models, which might fill some gaps between in vivo
rodent models and in vitro human astrocyte culture models,
as well as take an important step toward future clinical
trials using such technology for nervous system diseases with
neuronal loss.
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