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Prostate cancer (PCa) is the most common malignant tumor affecting males worldwide.
The substantial heterogeneity in PCa presents a major challenge with respect to
molecular analyses, patient stratification, and treatment. Least absolute shrinkage and
selection operator was used to select eight risk-CpG sites. Using an unsupervised
clustering analysis, called consensus clustering, we found that patients with PCa
could be divided into two subtypes (Methylation_H and Methylation_L) based on the
DNA methylation status at these CpG sites. Differences in the epigenome, genome,
transcriptome, disease status, immune cell composition, and function between the
identified subtypes were explored using The Cancer Genome Atlas database. This
analysis clearly revealed the risk characteristics of the Methylation_H subtype. Using
a weighted correlation network analysis to select risk-related genes and least absolute
shrinkage and selection operator, we constructed a prediction signature for prognosis
based on the subtype classification. We further validated its effectiveness using four
public datasets. The two novel PCa subtypes and risk predictive signature developed in
this study may be effective indicators of prognosis.

Keywords: prostate cancer, DNA methylation, predictive signature, prognosis, RND3, hypermethylation, systems
biology

INTRODUCTION

As the most common cancer in males, prostate cancer (PCa) is a major public health threat (Siegel
et al., 2020). Based on the latest global cancer data from the World Health Organization (WHO)1,
the age-standardized rate for PCa ranks second, 5-year prevalence ranks first, and age-standardized
mortality ranks sixth. Despite the ongoing development of therapeutic strategies, the heterogeneity
of PCa contributes to treatment failure (Chang et al., 2014; Peng et al., 2018). Therefore, it is
necessary to identify subtypes of PCa during diagnosis and treatment.

During the process of DNA methylation, methyl groups are added to CpG islands on
the DNA molecule. Hypermethylation acts on promoters and could lead to gene silencing,
whereas hypomethylation is associated with chromosomal instability and a loss of imprinting

1https://gco.iarc.fr/
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(Daura-Oller et al., 2009). In many diseases, including cancer,
abnormal hypermethylation on gene promoters, which could be
inherited by daughter cells, has been detected (Wang and Lei,
2018). Abnormal DNA methylation status is now considered a
significant determinant of cancer development. Abundant stable
DNA methylation in the genome is a candidate for diagnosis and
treatment (Mikeska and Craig, 2014). Accordingly, the use of
DNA methylation status to divide PCa into subtypes may provide
important new insights.

Novel methylation-based subtypes have been reported
in PCa. For example, the Cancer Genome Atlas Research
Network (Abeshouse et al., 2015) conducted a comprehensive
molecular analysis of 333 primary prostate carcinomas and
identified different subtypes with highly diverse genomic,
epigenomic, and transcriptomic patterns. In particular, an
unsupervised hierarchical cluster analysis of the 5,000 most
variable hypermethylated CpG sites revealed four epigenetically
distinct subtypes of PCa. In another multicenter study, a new
epigenetic CpG methylator phenotype in advanced PCa was
reported, and this subtype is characterized by hypermethylation
both within and outside CpG sites, shores, and shelves (Zhao
et al., 2020). These important studies have improved our
understanding of the DNA methylation landscape in PCa,
providing a reference for future research. Recent studies have
focused on revealing associations of novel DNA methylation
subtypes with driver events in the genome and transcriptome.
Utilizing a different approach, in this study, we identified DNA
methylation subtypes based on clinical outcomes, with further
analyses linking these subtypes with molecular mechanisms.
In particular, we screened out eight CpG sites in which the
DNA methylation status was associated with prognosis in PCa
and identified two subtypes based on these DNA methylation
statuses. Thereafter, differences in the epigenome, genome,
transcriptome, disease status, immune cell infiltration, and
function between these two subtypes were explored. Lastly, genes
related to the high-risk subtype were selected and screened to
construct an eight-gene signature with the ability to predict
prognosis. The effectiveness of the signature was validated using
four public datasets.

MATERIALS AND METHODS

Data Processing
RNA-seq data (in the form of HTSeq-Counts and HTSeq-
FPKM), DNA methylation (450 K), somatic variation, copy
number alterations (CNA), and clinical information for patients
with PCa were downloaded from The Cancer Genome Atlas
(TCGA) database2 (Blum et al., 2018). The gene annotation
file was downloaded from the Ensembl database3 (Howe
et al., 2020). RNA-seq data in FPKM were converted to
TPM. The TPM and β-values for CpG sites were quantile-
normalized. In total, 477 patients with both the data described
above (RNA-seq and methylation data) and complete clinical

2https://portal.gdc.cancer.gov/
3http://asia.ensembl.org/index.html

information were included. Disease-related clinical information
for these patients is provided in Table 1. To validate the
effectiveness of the risk signature, gene expression profiles

TABLE 1 | The disease-related clinical information of patients with PCa
included in the study.

Characteristics Value

Patients (n) 477

Age (year), median (IQR) 62.0 (56.0–66.0)

PSA (ng/ml), median (IQR) 7.5 (5.1–11.4)

Pathological Gleason score, n (%)

≤6 43 (9.0%)

7 (3+4) 143 (30.0%)

7 (4+3) 100 (21.0%)

8 56 (11.7%)

9∼10 135 (28.3%)

Prior malignancy, n (%)

No 450 (94.3%)

Yes 27 (5.7%)

Race, n (%)

Asian 12 (2.5%)

Whit, American Indian or Alaska native 398 (83.4%)

Black or African American 55 (11.6%)

NA 12 (2.5%)

Residual tumor, n (%)

R0 301 (63.1%)

R1 15 (3.1%)

R2 142 (29.8%)

Rx 5 (1.0%)

NA 14 (3.0%)

Clinical M, n (%)

M0 437 (91.6%)

M1a or M1c 2 (0.4%)

NA 38 (8.0%)

Pathological T, n (%)

T1c 2 (0.4%)

T2a 13 (2.7%)

T2b 10 (2.1%)

T2c 160 (33.5%)

T3a 151 (31.7%)

T3b 129 (27.0%)

T4 9 (1.9%)

NA 3 (0.7%)

Pathological N, n (%)

N0 329 (69.0%)

N1 78 (16.4%)

NA 70 (14.6%)

Diagnostic CT or MRI, n (%)

No evidence of extraprostatic extension 196 (41.1%)

Equivocal 6 (1.3%)

Extraprostatic extension localized 22 (4.6%)

Extraprostatic extension 9 (1.9%)

NA 244 (51.1%)

Outcome, n (%)

DFS 53 (11.1%)

Disease free 424 (88.9%)

PCa, prostate cancer; PSA, prostate-specific antigen; DFS, disease-free survival;
IQR, interquartile range; NA, not analyzed.
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and clinical data from four public datasets were used, i.e.,
GSE70769 and GSE116918 from the Gene Expression Omnibus
(GEO) database4 (Barrett et al., 2013; Ross-Adams et al.,
2015; Jain et al., 2018) and DKF2018 and MSKCC2010 from
cBioPortal for Cancer Genomics5 (Cerami et al., 2012; Gao
et al., 2013). Information about these four datasets is provided
in Table 2.

Identification of DNA Methylation-Based
Subtypes
We previously identified 120 CpG sites that were differentially
methylated between PCa and normal prostate tissues and
were significantly associated with disease-free survival (DFS)
(Zhang et al., 2020b). Least absolute shrinkage and selection
operator (LASSO) regression enables variable selection and
regularization, while fitting the generalized linear model.
Therefore, LASSO regression was used to reduce the number
of CpG sites as the input for subtype identification using
the glmnet R package (Engebretsen and Bohlin, 2019).
After the CpG sites were screened, the β values for these
sites in 477 patients were used as inputs for consensus
clustering, an unsupervised clustering analysis. Consensus
clustering was performed using the ConsensusClusterPlus
R package (Monti et al., 2003) and the following operating
parameters: maxK = 10, reps = 1000, pItem = 0.8, pFeature = 1,
clusterAlg = hc, and distance = pearson. A heatmap was
generated to visualize the methylation status of the subtypes
using the pheatmap R package (Kolde and Kolde, 2015).
Furthermore, a survival analysis of the subtypes was performed
by the log rank test using the survival R package (Therneau
and Lumley, 2014). To further demonstrate the differences
between subtypes, a principal component analysis was
performed using the 477 patients. Finally, correlations
between disease-related clinical information and subtype
status were evaluated by the Mann–Whitney U test, χ2 test, or
Fisher’s exact test.

Single Nucleotide Variation Between
Subtypes
Simple nucleotide variants were compared between subtypes
using the GenVisR R package (Skidmore et al., 2016). Genes

4https://www.ncbi.nlm.nih.gov/geo/
5https://www.cbioportal.org

TABLE 2 | Information of the four publicly available independent
validation datasets.

Dataset Sample size Transcriptome platform Tissue

DKFZ2018 82 Illumina HiSeq 2000
(RNAseq)

Fresh frozen

GSE70769 90 Illumina humanHT-12 V4.0 Fresh frozen

GSE1166918 248 ADXPCv1a520642
Affymetrix human

Formalin-fixed
Paraffin-embedded

MSKCC2010 140 Affymetrix human Exon 1.0
ST array

Fresh frozen

TABLE 3 | The association between subtypes and disease-related clinical
information of PCa.

Clinicopathologic variables Consensus clusters P

Methylation_H Methylation_L

(n = 220) (n = 257)

Age (year), median (IQR) 63.0 (57.8–67.0) 60.0 (55.0–65.0) 0.001a

PSA (ng/ml), median (IQR) 8.0 (5.8–12.9) 6.8 (4.6–10.1) < 0.001a

Pathological Gleason score, n (%) < 0.001b

≤6 11 (5.0%) 32 (12.5%)

7 (3+4) 53 (24.1%) 90 (35.0%)

7 (4+3) 45 (20.5%) 55 (21.4%)

8 26 (11.8%) 30 (11.7%)

9∼10 85 (38.6%) 50 (19.4%)

Prior malignancy, n (%) 0.828b

No 207 (94.1%) 243 (94.6%)

Yes 13 (5.9%) 14 (5.4%)

Race, n (%) 0.529b

Asian 7 (3.2%) 5 (2.0%)

Whit, American Indian or Alaska
native

181 (82.3%) 217 (84.4%)

Black or African American 28 (12.7%) 27 (10.5%)

NA 4 (1.8%) 8 (3.1%)

Residual tumor, n (%)

R0 126 (57.3%) 175 (68.1%) 0.005b

Rx/R1/R2 90 (40.9%) 72 (28.0%)

NA 4 (3.0%) 10 (3.9%)

Clinical M, n (%) 0.226c

M0 207 (94.1%) 230 (89.5%)

M1a or M1c 2 (0.9%) 0 (0.0%)

NA 11 (5.0%) 27 (10.5%)

Pathological T, n (%) 0.013c

T1c 0 (0.0%) 2 (0.8%)

T2a 3 (1.4%) 10 (3.9%)

T2b 3 (1.4%) 7 (2.7%)

T2c 63 (28.6%) 97 (37.7%)

T3a 71 (32.3%) 80 (31.1%)

T3b 73 (33.2%) 56 (21.8%)

T4 6 (2.7%) 3 (1.2%)

NA 1 (0.4%) 2 (0.8%)

Pathological N, n (%) 0.289b

N0 151 (68.6%) 178 (69.3%)

N1 41 (18.6%) 37 (14.4%)

NA 28 (12.8%) 42 (16.3%)

Diagnostic CT or MRI, n (%)

No evidence of extraprostatic
extension

95 (43.2%) 101 (39.3%) 0.135c

Equivocal 5 (2.3%) 1 (0.4%)

Extraprostatic extension localized 10 (4.5%) 12 (4.7%)

Extraprostatic extension 7 (3.2%) 2 (0.8%)

NA 103 (46.8%) 141 (54.8%)

Outcome, n (%)

DFS 35 (8.3%) 18 (7.0%) 0.002b

Disease free 185 (91.7%) 239 (93.0%)

P values were calculated by the Mann–Whitney U test (a), Chi-square test (b), or
Fisher’s exact test (c). PCa, prostate cancer; PSA, prostate-specific antigen; DFS,
disease-free survival; IQR, interquartile range; NA, not analyzed.
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with the top 10 mutation frequencies were displayed in a
waterfall plot. According to the results of the waterfall plot, the
difference between the mRNA levels of mutant and wild-type

Speckle-type POZ Protein (SPOP) was evaluated. Then, the
mRNA levels of SPOP in different subtypes were compared by
Wilcoxon’s test.

FIGURE 1 | Identification of two DNA-methylation-based subtypes. (A) The consensus matrix obtained when k = 2. Consistency values range from 0 to 1, 0 means
never clustering together (white), one means always clustering together (dark blue). (B) The CDF curve under different values of k. The value of k represents the
number of clusters during the consensus cluster. When the optimal k value is reached, the area under the CDF curve will not significantly increase with the increase
of k value. (C) Relative change in area under CDF curve under different values of k. (D) Differences between the statuses of DNA methylation of the two subtypes.
(E) PCA showed that patients in the different subtypes were significantly different from each other. (F) Survival curves for patients in the different subtypes (PCa,
prostate cancer; CDF, cumulative distribution function; PCA, principal components analysis. And p < 0.05 was defined as statistically significant).
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Differences in Copy Number Alterations,
TMPRSS2–ERG Fusion, and Androgen
Receptor Scores Between Subtypes
To explore the difference in CNAs between subtypes, genes with
significant differences in copy number between subtypes were
identified by chi-squared tests. Among these genes, RND3 was
differentially expressed between the subtypes, as determined by
a Wilcoxon test. The type and frequency of CNAs in RND3
were explored. Furthermore, the relationship between CNA
types and mRNA expression levels of RND3 were evaluated by
the Wilcoxon test.

Data from The Tumor Fusion Gene Data Portal database
(https://www.tumorfusions.org/) were used to analyze the
difference in TMPRSS2–ERG fusion gene expression between the
subtypes (Yoshihara et al., 2015). Finally, the androgen receptor
(AR) score in each subtype was compared by the Wilcoxon test.
AR scores were obtained from the cBioPortal database (Cancer
Genome Atlas Research Network, 2015).

Immune Cells in the Tumor
Microenvironment in Each Subtype
RNA-seq data in TPM format were uploaded to CIBERSORTx6

(Newman et al., 2019) to evaluate the infiltration of 22 types of
immune cells in the tumor microenvironment. The abundances

6https://cibersortx.stanford.edu/

of these immune cells were compared between subtypes using a
violin plot and the Wilcoxon test. Furthermore, survival curves
were generated for these cells. The p-values for the survival
analysis were calculated by a Cox regression and log-rank test
using the survival R package (Therneau and Lumley, 2014).

Functional Enrichment Analysis of
Subtypes
Fold change values for gene expression differences between
the subtypes were used as the ranks in a gene set enrichment
analysis (GSEA). To obtain fold changes, HTSeq-Counts were
analyzed using the DESeq2 R package (Love et al., 2014). The
hallmark gene set downloaded from the Molecular Signatures
Database9 v7.17 was used as the reference gene list in the
GSEA (Subramanian et al., 2005; Liberzon et al., 2011). Finally,
the GSEA was completed using the clusterProfiler R package
(Yu et al., 2012).

Furthermore, expression levels of genes that were crucial for
PCa were compared between the subtypes by Wilcoxon tests.

Weighted Correlation Network Analysis
of Subtypes
A weighted correlation network analysis (WGCNA)
could be used find phenotype-associated gene modules

7https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

FIGURE 2 | Differences of simple nucleotide variations between Methylation_H and Methylation_L subtypes. (A) The map of waterfall for the Methylation_H subtype.
(B) The map of waterfall for the Methylation_L subtype. (C) In the Methylation_H subtype, SPOP transcription level of patients with SPOP mutation was significantly
lower than that of patients with SPOP wild-type. (D) In the Methylation_L subtype, there was no significant difference in SPOP transcription between the mutant and
the wild-type patients. (E) The differences in the transcription levels of SPOP between the Methylation_H and Methylation_L subtypes (PCa, prostate cancer; SPOP,
speckle-type poz protein. And p < 0.05 was defined as statistically significant).
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(Langfelder and Horvath, 2008; Li et al., 2019). Therefore,
TPM values from RNA-seq data were used as the input for
a WGCNA. Eight was the soft power threshold to construct
a network that simultaneously satisfied a scale-free topology
and high connectivity. Pearson correlation coefficients for the
relationships between phenotypes and gene modules were
determined. The phenotypes included PSA (prostate-specific
antigen), Gleason score, and the subtypes. The gene module most
closely associated with the high-risk phenotypes was identified.
Differentially expressed genes (DEGs) between PCa and normal
prostate tissues in the selected gene module were identified. The
conditions for DEGs were logarithmic fold changes (| LFCs|) > 1
and p < 0.05. Then, survival-associated genes were screened
from the DEGs by Cox regression and log-rank tests. Finally,
genes for LASSO were filtered out.

Identification of a Risk Signature in the
Training Set
Before training, 477 patients were randomly divided into a
training set and internal validation set using the caret R package

(Kuhn, 2008). Information for patients in the training set is
provided in Supplementary Table 1 and information for the
internal validation set is provided in Supplementary Table 2.
LASSO regression was used to construct a single signature for
predicting prognosis with high performance (Svane et al., 2018).
LASSO regression was applied to the training set; during the
selection of genes, the C-index after 10-fold cross-validation
reflected the effect of different screening strategies. Genes with
the maximal C-index values were selected for the prognostic
signature using the glmnet R package (Engebretsen and Bohlin,
2019) with the following parameter settings: family = Cox,
type.measure = C, parallel = TRUE, with default settings for other
parameters. Furthermore, the difference in the risk score between
subtypes identified and the relationship between the risk score
and survival were evaluated. Comparisons were performed using
the Wilcoxon test.

Predictive Accuracy of the Signature
First, time-dependent receiver operating characteristic (tdROC)
curves were used to evaluate the predictive accuracy of the

FIGURE 3 | Copy number alterations, TMPRSS2-ERG fusion, and AR scores in each subtype. (A) RND3 had a lower expression level in Methylation_H subtype.
(B) The frequency of CNA in RND3 in Methylation_H subtype was significantly higher than that in Methylation_L subtype. (C) The expression level of RND3 was
significantly correlated with its CNA, and the expression level of RND3 was decreased with single deletion. (D) Patients in the Methylation_H subtype had a lower
frequency of TMPRSS2-ERG fusion. (E) Patients in the Methylation_H subtype had higher AR scores (CAN, copy number alteration; RND3, rho family gtpase 3; AR,
androgen receptor. And p < 0.05 was defined as statistically significant).
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signature in the training set, internal validation set, and
external validation sets (DKFZ2018, GSE70769, GSE116918,
and MSKCC2010) using the timeROC R package (Blanche and
Blanche, 2013). Then, a survival analysis by Cox regression and
the log-rank test was performed using these datasets. Survival
curves were plotted using the Kaplan–Meier method and the
survminer R package (Kassambara et al., 2017).

Univariate and multivariate Cox regression analyses were used
to explore whether the risk score is an independent predictor of
prognosis. Finally, the clinical diagnostic value of the signature
was compared with that of clinical features (Gleason score
and PSA) by a decision curve analysis (DCA) (Van Calster
et al., 2018). DCA is used to compare prediction models that
incorporate clinical outcomes; it requires only the dataset on
which the models are tested and can be applied to models with
either continuous or dichotomous results (Zhang et al., 2020a).

Statistical Analysis
R 3.6.3 was used for all statistical analyses. Values of p< 0.05 were
defined as statistically significant. In the survival analysis, the
survival outcome was defined as DFS or biochemical recurrence-
free survival (BCR) based on clinical records.

RESULTS

Identification of Two DNA
Methylation-Based Subtypes
The cumulative distribution function (CDF) and relative change
in the area under the CDF curve are shown in Figures 1A,B,
respectively. According to Monti et al. (2003), the optimal k
value is determined by a number of factors. One of the criteria

FIGURE 4 | Immune infiltration in each subtype. (A) The violin diagram about infiltration degree of 22 kinds of immune cells between Methylation_H and
Methylation_L subtypes. (B) Survival curves for different levels of Macrophages M1 cells. (C) Survival curves for different levels of Macrophages M2 cells (And
p < 0.05 was defined as statistically significant).
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is that when the optimal k value is reached, the area under the
CDF curve will not increase significantly with increases in k.
Therefore we first assumed that the optimal value in this study
was set to k = 5, indicating that the cohort could be divided
into up to five subtypes. However, one cluster consisted of only a
single patient when k = 4 or 5. Additionally, the cluster-consensus
value for each cluster was not large enough under k = 4 or 5
(Supplementary Figure 1). Therefore, we focused on k = 2 or

3. For k = 3, patients in C1 showed a worse prognosis, and
patients in C2 and C3 did not show an obvious difference in
prognosis (Figure 1C). For k = 2, patients in Methylation_H
had worse a prognosis than that of patients in Methylation_L
(Figure 1D). Furthermore, the Methylation_H subtype and C1
subtype included the same patients and the Methylation_L
subtype consisted of patients in the C2 and C3 subtypes. Groups
for different k values are shown in Supplementary Table 3.

FIGURE 5 | GSEA for these two subtypes. (A) Top ten enrichment terms (The enrichment terms were ranked in the descending order of NES).
(B) HALLMARK_E2F_TARGETS. (C) HALLMARK_G2M_CHECKPOINT. (D) HALLMARK_MYC_TARGETS_V1. (E) HALLMARK_MYC_TARGETS_V2.
(F) HALLMARK_MTORC1_SIGNALING (NES, normalized enrichment scores. And p < 0.05 was defined as statistically significant).
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Ultimately, we identified two subtypes with a difference in
prognosis. The consensus matrix is displayed in the form of a
heatmap in Figure 1E and the consensus clustering analysis is
summarized in Supplementary Figure 1. A principal component
analysis revealed clear separation between the Methylation_H
subtype and the Methylation_L subtype (Figure 1F). As shown
in Figure 1G, these two subtypes had different levels of DNA
methylation at CpG sites. We defined the hypermethylated
subtype as Methylation_H and the hypo methylated subtype
as Methylation_L. As shown in Table 3, age, PSA, Gleason score,
residual tumor status, pathological T, and clinical outcome of
patients between Methylation_H and Methylation_L subtypes are
different significantly.

Single Nucleotide Variations in
Methylation_H and Methylation_L
Single nucleotide variations in genes with the top 10 mutation
frequencies in these two subtypes are shown in Figures 2A,B.
We found that the frequency of single nucleotide variations in
SPOP was higher in the Methylation_H subtype than in the
Methylation_L subtype. SPOP is one of the most frequently
mutated genes in primary PCa. Based on the tumor-suppressive
role of SPOP in PCa and the results of loss-of-function assays,
SPOP mutations are expected to include the invasion and
proliferation of PCa cells (Barbieri et al., 2012; An et al.,
2014). Furthermore, within the Methylation_H subtype, mRNA
expression levels of SPOP in patients with mutations were
significantly lower than those in patients with wild-type SPOP
(Figure 2C). However, this pattern was not observed in the
Methylation_L subtype (Figure 2D). Finally, we found that the
mRNA expression level of SPOP in the Methylation_H subtype
was significantly lower than that in the Methylation_L subtype
(Figure 2E). These results supported the risk characteristics
of Methylation_H.

Copy Number Alterations of RND3,
TMPRSS2–ERG Fusion, and Androgen
Receptor Scores Between the
Methylation_H and Methylation_L
Subtypes
We identified a group of genes with a significant difference in
copy number between subtypes. Among these genes, RND3, also
called RhoE, is a tumor suppressor that is downregulated early
in the development of PCa (Bektic et al., 2005). Interestingly, the
expression of RND3 was significantly lower in the Methylation_H
subtype than that in the Methylation_L subtype (Figure 3A).
For RND3, the type of CNA and the frequency of CNAs are
summarized in Figure 3B. In 477 patients, a single-copy deletion
was the only CNA detected in RND3. This deletion was more
frequent in the Methylation_H subtype. Additionally, RND3
was significantly down-regulated in cases with the single-copy
deletion (Figure 3C).

The frequency of the TMPRSS2–ERG fusion was significantly
lower in the Methylation_H subtype than in the Methylation_L
subtype (Figure 3D). Some studies have revealed that the
TMPRSS2–ERG fusion is related to the invasiveness of PCa and
a higher Gleason score (Perner et al., 2006; Mehra et al., 2007;
Rajput et al., 2007; Cheville et al., 2008). However, other studies
have reported that the TMPRSS2–ERG fusion is not related
to prognosis in PCa (Yoshimoto et al., 2006; Tu et al., 2007;
Darnel et al., 2009). Furthermore, AR scores for patients in the
Methylation_H subtype were higher than those of patients in the
Methylation_L subtype (Figure 3E).

Immune Cells in the Tumor
Microenvironment in Each Subtype
In Figure 4A, the difference in the immune cell composition
in the tumor microenvironment of each subtype is displayed

FIGURE 6 | Differences of genes contributing to PCa between Methylation_H and Methylation_L subtypes. (A) The mRNA expression levels of AURKA. (B) The
mRNA expression levels of DLGAP5. (C) The mRNA expression levels of FOXD1. (D) The mRNA expression levels of KIF4A. (E) The mRNA expression levels of
MELK. (F) The mRNA expression levels of MYBL2. (G) The mRNA expression levels of SPAG5. (H) The mRNA expression levels of and TPX2 (PCa, prostate cancer.
And p < 0.05 was defined as statistically significant).
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FIGURE 7 | WGCNA to find the genes for the construction of the signature. (A) The relationship of soft threshold and TOM-based dissimilarity. (B) The relationship of
soft threshold and mean connectivity. (C) After the dynamic of cut and merged, a total of 15 gene modules were finally generated. (D) Heat map for the correlation of
gene modules and phenotypes. (E) The flow of selection of genes for the signature (WGCNA, weighted correlation network analysis; TOM, topological overlap
matrix; DEGs, differentially expressed genes; LASSO, least absolute shrinkage and selection operator. And p < 0.05 was defined as statistically significant).

in the form of a violin plot. Plasma cells and resting mast
cells were significantly less abundant in the Methylation_H
subtype and regulatory T cells (Tregs), M1 macrophages, and
M2 macrophages were significantly more abundant in the
Methylation_H subtype than in the Methylation_L subtype.
Among these immune cells, greater M1 and M2 macrophage
infiltration in the tumor microenvironment was related to a
worse prognosis in PCa (Figures 4B,C).

Functional Enrichment Analysis of Each
Subtype
Based on a GSEA, we ranked enriched terms in descending
order of normalized enrichment scores. The top ten
enriched terms are displayed in the Figure 5A. Among these
terms, HALLMARK_E2F_TARGETS, HALLMARK_G2M_
CHECKPOINT, HALLMARK_MYC_TARGETS_V1,
HALLMARK_MYC_TARGETS_V2, and HALLMARK_
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MTORC1_SIGNALING were enriched in the Methylation_H
subtype (Figures 5B–F).

Furthermore, the mRNA expression levels of AURKA,
DLGAP5, FOXD1, KIF4A, MELK, MYBL2, SPAG5, and TPX2
were significantly higher in the Methylation_H subtype than
in the Methylation_L subtype (Figure 6). These genes have all
been reported to facilitate the development and progression
of PCa (Kuner et al., 2013; Zhang et al., 2016, 2020b;

Akamatsu et al., 2018; Hewit et al., 2018; Zou et al., 2018; Cao
et al., 2020; Li et al., 2020).

WGCNA for the Identification of a Key
Gene Module
Setting eight as the soft threshold, the independence of
the scale-free topology and the mean connectivity in each

FIGURE 8 | Build the signature by LASSO. (A) Cross validation based on C-index to determine the best choice of genes in the signature. (B) Genes in the different
signatures and their corresponding coefficients. (C–E) Patients of training set were arranged in the same ascending order of the risk score. (F–H) Patients of internal
validation set were arranged in the same ascending order of the risk score. (C,F) Patients were divided into different risk levels according to the median of the risk
scores in their respective data sets. (D,G) The relationship between the survival outcome and risk levels of patients. Low-risk patients were shown on the left side of
the dotted line and high-risk patients were shown on the right side. (E,H) Heat maps for the genes in the signature. (I) Differences in risk scores between the two
subtypes. (J) Patients with cancer-specific death or biochemical recurrence got higher risk scores in the training set. (K) Patients with cancer-specific death or
biochemical recurrence got higher risk scores in the internal validation set (LASSO, least absolute shrinkage and selection operator. And p < 0.05 was defined as
statistically significant).
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module were sufficient (Figures 7A,B). After the dynamic
cut and merge process, 15 gene modules were generated
(Figure 7C). Among these, the MEgreen module was
positively correlated with the PSA level, Gleason score, and
the Methylation_H subtype (Figure 7D) and was negatively
correlated with the Methylation_L subtype. Therefore,

genes in this module were related to the development
and progression of PCa. According to the flow diagram
in Figure 7E, we then screened out the DEGs between
PCa and normal prostate tissues in the MEgreen module.
Survival-associated DEGs were further identified for
LASSO regression.

FIGURE 9 | Verification of the effectiveness of the signature. (A–F) The ROC curve of 1-year follow-up time. (G–L) Kaplan–Meier curve for survival analysis. (A,G)
The results in the training set. (B,H) The results in the internal validation set. (C,I) The results in DKFZ2018. (D,J) The results in GSE70769. (E,K) The results in
GSE116918. (F,L) The results in MSKCC2010 (AUC, area under curve; DFS, disease-free survival; BCR, biochemical recurrence free survival. And p < 0.05 was
defined as statistically significant).
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Construction of the Gene-Based Risk
Signature
As shown in Figure 8A, when eight genes were included in the
signature, the C-index value was maximized. Accordingly, the
eight-gene signature had the best predictive value during the
training process. Figure 8B presents the coefficients for each gene
during the training process. Finally, an eight-gene signature for
predicting the risk score was constructed as follows:

Risk score = 0.210× expression of TMEM132A+ 0.339

× expression of CENPF+ 0.020× expression of

DEPDC1B+ 0.081× expression of TTK+ 0.258

×expression of CBX2+ 0.065× expression of

TOP2A− 0.388× expression of CDC25C− 0.038

×expression of PARM1

Patients in the training and internal validation set were arranged
in ascending order based on risk scores (Figures 8C,F). Setting
the median risk score as the threshold, the frequencies of
cancer-specific death or biochemical recurrence were higher in
high-risk patients than in low-risk patients in the training and
internal validation sets (Figures 8D,G). The expression modes
of eight genes in the signature are displayed in Figures 8E,H.
Furthermore, patients in the Methylation_H subtype had
significantly higher risk scores than patients in the Methylation_L
subtype (Figure 8I). Finally, we found that patients with cancer-
specific death or biochemical recurrence had higher risk scores in
the training set, internal validation set, and external validation
sets (DKFZ2018, GSE70769, GSE116918, and MSKCC2010)
(Figures 8G,K and Supplementary Figure 2).

Validation of the Signature
The areas under the curve of the tdROC (reflecting the
effectiveness of a classifier) for the training set, internal validation

FIGURE 10 | The clinical value of the signature. (A) The forest map for univariate COX regression. (B) The forest map for multivariate COX regression. (C,D) Decision
curve analyses suggested that the signature had good clinical benefits. (C) The model had higher net benefit and wider threshold probability range. The green line is
the net benefit of providing all patients with intervention, and the horizontal black line is the net benefit of providing no patients with intervention. (D) The net
reduction analyses demonstrated in how many patients an intervention could be avoided without missing any poor prognosis within the effective threshold probability
range in (C).
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set, and external validation sets (DKFZ2018, GSE70769,
GSE116918, and MSKCC2010) were 0.72, 0.66, 0.76, 0.76, 0.84,
and 0.74, respectively (Figures 9A–F). Furthermore, a survival
analysis revealed that a higher risk score was associated with a
worse prognosis. Similar results were observed for all data sets
evaluated (Figures 9G–L).

In univariate Cox regression analyses, six variables (subtype,
pathological N, pathological T, Gleason score, PSA, and risk
score) were associated with a worse prognosis (Figure 10A). In
a multivariate Cox regression, Gleason score and risk score were
identified as independent indicators for prognosis (Figure 10B).
Within a wider range of threshold probabilities, the clinical
net benefit was greater for the risk score than for the PSA
level or Gleason score (Figure 10C). Within this range of
threshold probabilities, the signature provides a more accurate
prediction, thereby reducing the number of patients with a worse
prognosis (Figure 10D).

DISCUSSION

We have recently described the advantages and necessity of multi-
omics approaches for studies of PCa (Zhang et al., 2020c). In this
study, we identified two subtypes with different DNA methylation
statuses and found that the Methylation_H subtype was related
to a worse prognosis. The subtypes were then comprehensively
compared with respect to the epigenome, genome, transcriptome,
disease status, immune cell infiltration, and function.

The mRNA levels of SPOP, which is the most frequently
mutated tumor-suppressor gene in primary PCa, were lower in
the Methylation_H subtype than in the Methylation_L subtype
(Barbieri et al., 2012; An et al., 2014). Additionally, the mutation
frequency in SPOP was higher in the Methylation_H subtype,
and SPOP expression was lower in mutants. Another tumor
suppressor that is downregulated early in the development of
PCa, RND3, was expressed at significantly lower levels in the
Methylation_H subtype than in the Methylation_H subtype
(Bektic et al., 2005). The single-copy deletion of RND3 was
more frequent in the Methylation_H subtype and this deletion
corresponded with the downregulation of RND3. AR scores,
which reflect disease progression, were also significantly higher in
the Methylation_H subtype than in the Methylation_L subtype.
M1 and M2 macrophages showed a greater degree of infiltration
in Methylation_H. The polarization of macrophages into the
M1 and M2 phenotypes plays a pivotal role in ovarian cancer
initiation, progression, and metastasis and provides targets for
macrophage-centered treatment in the cancer microenvironment
(Cheng et al., 2019). Consistent with these previous findings,
we found that increased levels of M1 and M2 macrophages
in the tumor microenvironment were related to a worse
prognosis in PCa.

In the Methylation_H subtype, E2F, MYC, mTORC1, and
G2M checkpoint were activated. E2F, MYC, and mTORC1 have
been shown to promote the development of PCa (Huang et al.,
2017; Zhang et al., 2017; Labbé et al., 2019). Furthermore, G2M
checkpoint activation is related to a reduced cancer sensitivity
to chemotherapy or radiation (Morgan, 2007). Furthermore,

the mRNA expression levels of AURKA, DLGAP5, FOXD1,
KIF4A, MELK, MYBL2, SPAG5, and TPX2 were significantly
higher in the Methylation_H subtype than in the Methylation_L
subtype. The gain of the AURKA oncogene is an important
genomic change related to treatment-related neuroendocrine
PCa (Akamatsu et al., 2018). Androgen-dependent PCa cells
need DLGAP5 to stabilize mitotic health and function, and
the knockdown of DLGAP5 improves the efficacy of docetaxel
(Hewit et al., 2018). The knockdown of FOXD1 and MYBL2
would inhibit the growth of androgen-independent PCa cells
(Li et al., 2020; Zhang et al., 2020b). KIF4A plays an significant
role in the progression of castration-resistant PCa and serves
as a key determinant of resistance to endocrine therapy (Cao
et al., 2020). MELK is associated with the cell survival rate
and BCR in PCa (Jurmeister et al., 2018). SPAG5 expression
is significantly associated with the clinical stage, lymph node
metastasis, Gleason score, and BCR (Zhang et al., 2016). The
knockdown of TPX2 increases chromosome mis-segregation and
suppresses tumor cell growth in PCa (Pan et al., 2017). These
genes driving the progression of PCa were all expressed more
highly in the Methylation_H subtype than in the Methylation_L
subtype, further supporting the high-risk characteristics of the
Methylation_H subtype.

The conserved differences uncovered the high-risk
characteristics of the Methylation_H subtype. We further
employed WGCNA, a common method in systems biology,
to identify a key gene module; this module was related to the
Gleason score, PSA, and Methylation_H subtype. Survival-
associated DEGs from this gene module were used to construct
an eight-gene signature for predicting risk. The effectiveness of
the signature was validated in TCGA and another four public
datasets (DKFZ2018, GSE70769, GSE116918, and MSKCC2010).
With respect to the clinical applications of these findings, we have
the following suggestions. Because RNA-seq data in TPM format
were used to train the signature, we suggest employing the same
data format of data in clinical applications. Considering batch
effects of measurement techniques, gene expression levels should
be measured by similar techniques, even though the signature
performed well in the validation data sets, in which genes were
profiled by array-based methods. Furthermore, the risk levels
were determined by the median risk score in the patient cohorts.
In the future, the study cohort should be further expanded to
obtain a more objective and stable threshold range.

Collectively, we identified two subtypes with different
methylation statuses at eight CpG sites and evaluated the high-
risk characteristics of the Methylation_H subtype based on
epigenomics, genomics, transcriptomics, disease status, immune
cell infiltration, and functional analyses. Finally, based on these
two novel subtypes, an eight-gene predictive signature was
constructed and validated using various public datasets.
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