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The induction and consequences of regulated cell death (RCD) are accompanied
by changes in gene and protein expression, biochemical pathways, as well as cell
morphology and size. Such RCDs have a significant impact on development, tissue
homeostasis, and the occurrence and progression of disease. Among different forms of
RCD, ferroptosis appears to be the main cause of tissue damage driven by iron overload
and lipid peroxidation. In fact, the dysfunctional ferroptotic response is implicated
in a variety of pathological conditions and diseases, such as neurodegenerative
diseases, tissue ischemia-reperfusion injury, tumorigenesis, infections, and immune
diseases. Ferroptotic response can be fine-tuned through various oxidative stress
and antioxidant defense pathways, coupling with metabolism, gene transcription,
and protein degradation machinery. Accordingly, a series of ferroptosis inducers or
inhibitors targeting redox- or iron metabolism-related proteins or signal transduction
have been developed. Although this kind of RCD has recently attracted great interest in
basic and clinical research, detecting and monitoring a ferroptotic response still faces
challenges. In this mini-review, we not only summarize the latest knowledge about the
characteristics of ferroptosis in vitro and in vivo, but also discuss the specificity and
limitations of current biomarkers of ferroptosis.
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INTRODUCTION

Cell death is a basic biological process that regulates cell fate, tissue regeneration, and the body’s
immune response. Accidental cell death (ACD) and regulated cell death (RCD) are two major
subcategories of cell death (Galluzzi et al., 2018). Unlike ACD, which is an uncontrolled rapid
process, RCD usually utilizes clear molecular machinery involving multiple genes or proteins, and
can be intervened on at multiple levels, especially using drugs or small molecular compounds (Tang
et al., 2019). According to the publication record in PubMed,1 apoptosis, necroptosis, pyroptosis,
and ferroptosis may be the most studied forms of RCD, involved in multiple pathological conditions
and diseases. In some cases, several rare RCDs [e.g., alkaliptosis (Song et al., 2018b) and oxeiptosis
(Holze et al., 2018)] have also been observed in cell cultures or mouse models, although their
physiological or pathological significance remains largely unknown.

1https://pubmed.ncbi.nlm.nih.gov/
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Ferroptosis is a non-apoptotic and oxidative damage-related
RCD (Dixon et al., 2012), mainly driven by iron accumulation,
lipid peroxidation, and subsequent plasma membrane rupture
(Tang and Kroemer, 2020). The process of ferroptosis is
further controlled through a variety of molecular signaling
achieved using epigenetic, transcription, and post-translational
mechanisms (Chen et al., 2020b). After treatment with reagents
or suffering environmental stresses, an increase in ferroptotic cell
death can be observed in experimental models by activating the
intrinsic or extrinsic pathways, which is discussed in depth in
recent reviews (Chen et al., 2020b; Tang et al., 2020). Notably,
two small molecular compounds, namely erastin (Dixon et al.,
2012) and RSL3 (Yang et al., 2014), are the most commonly
used reagents for triggering ferroptosis to study its molecular
mechanisms. Excessive or deficient ferroptotic response also
occurs in tissue samples of human diseases (Ashraf et al.,
2020), which highlight the potential of pathological relevance
of ferroptosis (Stockwell et al., 2017). In this min-review,
we used some examples and their corresponding regulatory
mechanisms to focus on the characteristics and biomarkers of
ferroptosis (Figure 1).

MORPHOLOGICAL HALLMARKS OF
FERROPTOSIS

What we call morphological features usually refers to cell
changes observed through light or electron microscopy, and
does not involve staining of special protein markers. Ferroptosis
is generally a type of regulated necrosis, which is devoid
of the morphological characteristics of apoptosis (e.g., cell
shrinkage and plasma membrane blistering; Conrad et al., 2016).
In contrast, necrotic morphology, such as cell enlargement
and plasma membrane rupture, are commonly observed in
most ferroptotic cells (Conrad et al., 2016). Consequently,
the activation of cell membrane repair pathways, such as
endosomal sorting complex required for transport-III (ESCRT-
III) machinery, prevents ferroptotic cell death (Dai et al.,
2020c). Electron microscopy shows that ferroptotic cells
represent a vast change in mitochondrial ultrastructure, such as
reduction in mitochondrial volume, increase in mitochondrial
membrane density, and disappearance of mitochondrial cristae
(Yagoda et al., 2007; Dixon et al., 2012). Since elevated
autophagy promotes ferroptosis (Liu J. et al., 2020), autophagy-
related ultrastructures (e.g., double-membrane autophagosomes
and various lysosome-related vesicles) are often observed in
ferroptotic cells or tissues (Friedmann Angeli et al., 2014).
Although activators of ferroptosis lead to oxidative damage in
DNA (Song et al., 2016), the nucleus of ferroptotic cells seem
to be normal and lack chromatin concentration (Yagoda et al.,
2007), which is a morphological marker of apoptotic cells. As a
type of inflammatory RCD, immune cell infiltration is observed
in tissues affected by the ferroptotic damage. For example, acute
pancreatitis is a sterile inflammatory disease caused by the
death of acinar cells. Ferroptotic acinar death contributes to
experimental pancreatitis in mice, especially in cases of impaired
circadian rhythms (Liu et al., 2020b). This ferroptosis-related

pancreatitis is associated with pancreatic histological damage and
leukocyte infiltration that can be detected using hematoxylin and
eosin stain (Liu et al., 2020b). In general, the necrotic morphology
caused by ferroptosis has been observed in vitro or in tissues,
but it is difficult to distinguish ferroptosis from other types of
regulated necrosis based on these changes alone.

BIOCHEMICAL HALLMARKS OF
FERROPTOSIS

Accumulation of Cellular Iron
Since the initial study defined ferroptosis as an iron-dependent
RCD, iron accumulation-mediated biochemical events (e.g.,
elevated Fenton reaction or activated iron-containing enzymes)
seem to be a biochemical sign of ferroptosis (Chen et al.,
2020c). Iron is an essential trace element, distributed in various
subcellular organelles (e.g., mitochondria and lysosomes). The
level of intracellular or mitochondrial ferrous iron (Fe2+) is
increased in ferroptotic cells or tissues, which can be monitored
by a biochemical assay kit (Yuan et al., 2016a), Prussian blue
staining (Lu et al., 2020), or probes [e.g., FerroFarRed (Homma
et al., 2020) or Phen Green SK (Song et al., 2018a)]. In
contrast, iron chelators (e.g., deferoxamine) limit ferroptosis
in vitro (Dixon et al., 2012) or in vivo (Lu et al., 2020). The
level of iron in cells is controlled by a complex network that
involves the absorption, storage, utilization, and outflow of iron
(Chen et al., 2020c). As expected, certain molecular regulators
related to iron homeostasis control ferroptosis sensitivity. For
example, iron uptake mediated by transferrin (TF; Gao et al.,
2015), lactotransferrin (LTF; Wang et al., 2020), and transferrin
receptor (TFRC; Gao et al., 2015), as well as nuclear receptor
coactivator 4 (NCOA4)-dependent ferritin degradation (Hou
et al., 2016) facilities ferroptotic cell death. It is worth noting
that TFRC is considered as a biomarker of ferroptosis in cell
cultures or tissues, and an anti-TFRC antibody (called 3F3-FMA)
especially plays a role in indicating ferroptotic death or damage
(Feng et al., 2020).

In contrast, heat shock protein family B small member
1 (HSPB1/HSP25/HSP27; Sun et al., 2015) or prominin-
2 (PROM2; Brown et al., 2019) diminishes ferroptosis by
preventing cytoskeleton-mediated iron uptake or promoting
ferritin export to extracellular space, respectively. Moreover,
iron chaperones, such as poly(RC) binding protein 1 (PCBP1),
reduce ferroptosis sensitivity in hepatocytes (Protchenko et al.,
2020). Whether different iron metabolism regulators play
an equivalent role in ferroptosis is still inconclusive. More
importantly, given the numerous types of iron-dependent
enzymes present in different subcellular organelles, the process
of enzyme coordination and their regulation of ferroptosis
remain unclear.

Induction of Lipid Peroxidation
Lipid peroxidation plays a central role in mediating ferroptosis
(Yang and Stockwell, 2016). In particular, the oxidation
of polyunsaturated fatty acids (PUFAs) by reactive oxygen
species (ROS) to produce lipid hydroperoxides is the most
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FIGURE 1 | Hallmarks of ferroptosis. Ferroptosis is a type of iron-dependent regulated cell death mainly caused by unrestricted lipid peroxidation and subsequent
membrane damage. Ferroptotic cell death may show some morphological and biochemical characteristics as well as common changes in gene and protein levels.
AA-COA, arachidonoyl-coenzyme A; ACSL4, acyl-CoA synthetase long-chain family member 4; ALOX, lipoxygenases; ARNTL, aryl hydrocarbon receptor nuclear
translocator like; BH4, tetrahydrobiopterin; CHAC1, ChaC glutathione specific gamma-glutamylcyclotransferase 1; COQ10, Coenzyme Q10; ESCRT-III, endosomal
sorting complex required for transport-III; GPX4, glutathione peroxidase 4; GSH, glutathione; HMGB1, high mobility group box 1; NFE2L2, nuclear factor erythroid
2-like 2; NOX, NADPH oxidases; POR, cytochrome P450 oxidoreductase; PTGS2, prostaglandin-endoperoxide synthase 2; PUFA, polyunsaturated fatty acids;
SLC7A11, solute carrier family 7 member 11; TFRC, transferrin receptor; VDAC2/3, voltage dependent anion channel 2/3.

important hallmark of ferroptosis (Kuang et al., 2020). In
addition to iron-triggered ROS production by the Fenton
reaction, mitochondria- or NADPH oxidase (NOX)-mediated
ROS production (Dixon et al., 2012; Gao et al., 2015; Xie
et al., 2017; Yang W. H. et al., 2019) also play a cell type-
dependent role in initiating lipid peroxidation. The key enzymes
of lipid peroxidation that causes ferroptosis are the isoforms of
arachidonate lipoxygenase (ALOX), including ALOX5, ALOX12,
ALOX15, ALOX15B, and ALOXE3 in humans (Yang et al.,
2016; Wenzel et al., 2017; Chu et al., 2019; Li et al., 2020).
Alternatively, cytochrome P450 oxidoreductase (POR) may
mediate lipid peroxidation in an ALOX-independent manner
(Zou et al., 2020).

The production of PUFA for subsequent lipid peroxidation
requires the activation of several upstream lipid synthesis
and metabolism pathways, especially acyl-CoA synthetase
long-chain family member 4 (ACSL4)-mediated conversion
of arachidonic acid (AA) to AA-CoA (Yuan et al., 2016b;
Doll et al., 2017; Kagan et al., 2017). Critically, the up-
regulation of ACSL4 expression, but not the expression of
other ACSL members, is a biomarker indicative of ferroptosis
sensitivity (Yuan et al., 2016b). While acyl-CoA synthetase
long-chain family member 3 (ACSL3) is not a biomarker
of ferroptosis, ACSL3-mediated monounsaturated fatty acids
(MUFAs) production limits oxidative PUFA-mediated ferroptosis
in certain cancer cells (Magtanong et al., 2019), indicating
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that ACSL4- or ACSL3-dependent fatty acid metabolism plays
opposite roles in ferroptosis.

Several assays can be used to detect and quantitate the extent
of lipid peroxidation of ferroptotic cells in vitro and in vivo.
First, C11 BODIPY 581/591 (Dixon et al., 2012) and LiperFluo
(Kagan et al., 2017) are lipid-soluble fluorescent probes, which
are widely used to monitor lipid peroxidation in cell cultures
by microscope, plate reader, or flow cytometry. Functionally,
LiperFluo is better than C11-BODIPY in indicating lipid
peroxidation during ferroptosis, because it directly interacts with
(phosphate) lipid hydroperoxide (Kagan et al., 2017). Second,
liquid chromatography with tandem mass spectrometry (LC-
MS/MS) analysis may be used to analyze changes in lipid profile,
quantitative lipid peroxide species (PUFA-OOH and PL-OOH)
or identification of oxidative proteins in the process of ferroptosis
(Kagan et al., 2017). Third, through biochemical, enzyme-
linked immunosorbent assay (ELISA) or staining methods,
the detection of the final product of lipid peroxidation [e.g.,
malonyl dialdehyde (MDA; Ye et al., 2020) and 4-hydroxynon-
enal (4-HNE; Shintoku et al., 2017)] or oxidative DNA
damage biomarkers [e.g., phosphorylated H2A.X variant histone
(γH2AX; Song et al., 2016) and 8-hydroxydeoxyguanosine (8-
OH-dG; Zhang et al., 2019; Dai et al., 2020b)] has been applied in
various samples in vitro or in vivo. However, the specificity and
sensitivity of each measurement are different, which may affect
the interpretation of the results.

Loss of Antioxidant Defense
In support of the role of lipid peroxidation in ferroptosis,
the classic ferroptosis inducers, such as erastin (Dixon et al.,
2012) and RSL3 (Yang et al., 2014), are indeed inhibitors of
the antioxidant system. The three antioxidant defense systems
[referred to as glutathione (GSH; Dixon et al., 2012), coenzyme
Q10 (CoQ10; Bersuker et al., 2019; Doll et al., 2019), or
tetrahydrobiopterin (BH4) system (Kraft et al., 2020; Soula et al.,
2020)] can work together or separately to limit ferroptotic
death mediated by oxidative damage. The GSH system is
the main pathway limiting ferroptosis. The inhibition of the
upstream regulator system xc− (an amino acid antiporter) or
the downstream effector glutathione peroxidase 4 (GPX4) of
GSH by drugs or small molecule compounds is recognized as
the classic external or internal pathway of ferroptosis (Tang
and Kroemer, 2020). In addition to blocking the system xc−
activity on the cell membrane, erastin is also a potential
activator of mitochondrial voltage dependent anion channel 2/3
(VDAC2/3) (Yagoda et al., 2007), highlighting the participation of
mitochondria dysfunction in erastin-induced ferroptosis. GPX4-
independent anti-ferroptosis pathway relies on the production
of CoQ10 (Bersuker et al., 2019; Doll et al., 2019) or BH4
(Kraft et al., 2020; Soula et al., 2020), which is further
regulated by apoptosis inducing factor mitochondria associated
2 (AIFM2/FSP1) or GTP cyclohydrolase 1 (GCH1), respectively.
Interestingly, AIFM2 was previously thought to be a pro-
apoptotic protein in mitochondria (Wu et al., 2002). In contrast,
the translocation of AIFM2 from the mitochondria to the
membrane converts this pro-apoptotic activity into an anti-
ferroptotic effect (Bersuker et al., 2019; Doll et al., 2019).

The location and function switch of AIFM2 from apoptosis
to ferroptosis depends on its post-translational modification,
such as myristoylation (Bersuker et al., 2019; Doll et al., 2019).
Other studies have shown that the anti-ferroptotic effect of
AIFM2 may depend on its function of promoting membrane
repair, rather than the production of reduced CoQ10 (Dai
et al., 2020d). Since GSH, CoQ10, and BH4 are broad-
spectrum antioxidants, these studies have also raised questions
about the specific molecular mechanisms of ferroptosis. Indeed,
conditional depletion of GPX4 in mice not only mediates
ferroptosis (Friedmann Angeli et al., 2014), but also triggers
apoptosis (Ran et al., 2003), necroptosis (Canli et al., 2016), or
pyroptosis (Kang et al., 2018). Therefore, testing the levels of
these antioxidants alone may not be enough to indicate changes
in ferroptosis levels.

GENETIC HALLMARKS OF
FERROPTOSIS

Upregulation of PTGS2 Gene
The well-known function of prostaglandin-endoperoxide
synthase 2 (PTGS2/COX2) is to metabolize AA into
prostaglandins. PTGS2 is the most upregulated gene among
83 oxidative stress-associated genes in BJeLR cells following
treatment with erastin or RSL3 (Yang et al., 2014). The up-
regulation of PTGS2 mRNA is used as a pharmacodynamic
marker of ferroptotic tissues in mice exposed to erastin or RSL3
(Yang et al., 2014; Sun et al., 2015). Although it is a widely used
biomarker of ferroptosis in vitro or in vivo, PTGS2 inhibitor
(e.g., indomethacin) fails to affect ferroptotic cell death (Yang
et al., 2014), indicating it is not a contributor of ferroptosis. In
contradiction, MIR212-mediated the downregulation of PTGS2
mRNA prevents ferroptotic neuronal death in a traumatic
brain injury mouse model (Xiao et al., 2019), suggesting a
cell type-dependent role of PTGS2 in ferroptosis. Further
mechanism studies suggest that the up-regulation of PTGS2
gene expression in ferroptosis requires lipid peroxidation,
because antioxidant vitamin E or toxic 4-HNE can inhibit
or induce PTGS2 expression in cancer cells or macrophages,
respectively (Kumagai et al., 2004; Yang et al., 2014). The great
challenge of PTGS2 as a biomarker of ferroptosis is that the
up-regulation of PTGS2 is observed under various inflammatory
conditions (FitzGerald, 2003), at least some of which are
non-ferroptotic conditions.

Upregulation of CHAC1 Gene
ChaC glutathione specific gamma-glutamylcyclotransferase 1
(CHAC1/BOTCH) has γ-glutamyl cyclotransferase activity and
reduces intracellular GSH levels by digesting glutathione into 5-
oxoproline and cysteinylglycine dipeptide (Kumar et al., 2012).
RNA sequencing studies show that CHAC1 is the most up-
regulated gene after treatment with systemic xc− inhibitors (e.g.,
erastin and sorafenib) in vitro (Dixon et al., 2014). Later, the
upregulation of CHAC1 mRNA is confirmed in tissues from
mice treated with certain ferroptosis inducers (e.g., erastin and
artesunate; Xie et al., 2017; Wang N. et al., 2019). However,
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CHAC1 is not a biomarker of ferroptosis caused by the GPX4
inhibitor RSL3 or the GSH synthesis inhibitor buthionine
sulphoximine (Dixon et al., 2014). Further functional studies
have shown that CHAC1-mediated GSH degradation acts as a
promoter of ferroptosis induced by erastin or artesunate, which is
downstream of the activation of the endoplasmic reticulum (ER)
stress pathway [especially the eukaryotic translation initiation
factor 2 alpha (EIF2A)-activating transcription factor 4 (ATF4)
pathways] (Mungrue et al., 2009; Dixon et al., 2014; Wang
N. et al., 2019). Therefore, the upregulation of CHAC1 gene
expression provides a selective pharmacodynamic marker for
ferroptosis induced by system xc− inhibitors.

Activation of NFE2L2 Targeted Genes
The nuclear factor erythroid 2-like 2 (NFE2L2/NRF2) is a key
transcription factor for cell survival during oxidative stress by
activating the expression of detoxification and antioxidant genes.
While the activation of the NFE2L2 pathway relies on the
inhibition of the kelch like ECH associated protein 1 (KEAP1)-
mediated degradation by ubiquitin-proteasome system (UPS)
pathway, the excessive up-regulation of the NFE2L2 target
gene may reflect the increase in oxidative damage during the
activation of ferroptosis. This notion was first described in
sorafenib-induced ferroptosis in hepatocellular carcinoma cells
identifying metallothionein 1 G (MT1G) as a new NFE2L2-
target gene responsible for ferroptosis resistance (Sun et al.,
2016a,b). Increasing evidence points out that NFE2L2 plays
a critical role in protecting damage under various ferroptotic
conditions in vitro or in vivo. Many NFE2L2 targeted genes
are upregulated in ferroptosis and these genes are involved in
iron metabolism [e.g., ferritin heavy chain 1 (FTH1; Sun et al.,
2016b; Shin et al., 2018), solute carrier family 40 member 1
(SLC40A1; Chang et al., 2018; Shin et al., 2018), heme oxygenase
1 (HMOX1; Sun et al., 2016b; Chang et al., 2018; Shin et al.,
2018; Fang et al., 2019), and MT1G (Sun et al., 2016a)], GSH
metabolism [e.g., solute carrier family 7 member 11 (SLC7A11;
Chen et al., 2017), cystathionine beta-synthase (CBS; Liu N. et al.,
2020), CHAC1 (Gagliardi et al., 2019), and ATP binding cassette
subfamily C member 1 (ABCC1/MRP1; Cao et al., 2019)], and
detoxification or antioxidant responses [e.g., NAD(P)H quinone
dehydrogenase 1 (NQO1; Sun et al., 2016b; Telorack et al.,
2016; Shin et al., 2018), thioredoxin reductase 1 (TXNRD1; Shin
et al., 2018; Takahashi et al., 2020), aldo-keto reductase family 1
member C1/2/3 (AKR1C1/2/3; Gagliardi et al., 2019)]. However,
it is difficult to distinguish the role of NFE2L2 in ferroptotic-
and non-ferroptotic RCD if only relying on the detection of the
expression of NFE2L2 target gene.

PROTEIN HALLMARKS OF
FERROPTOSIS

Protein Upregulation
Genes are used to guide protein synthesis. Thus, the proteins
corresponding to the genes mentioned above can theoretically
be used to evaluate the sensitivity to ferroptosis. Western blot
analysis of ACSL4, TFRC, PTGS2, or CHAC1 protein expression

and immunohistochemical or immunofluorescence analysis of
their signal or location distribution has been used to monitor
ferroptotic response in vitro and/or in vivo. Since excessive
autophagy promotes ferroptosis, the detection of the protein
conversion of microtubule associated protein 1 light chain 3
(MAP1LC3)-I to MAP1LC3-II may reflect the degree of damage
caused by ferroptosis activators (Zhou et al., 2020). Combining
the use of various lysosomal inhibitors (e.g., chloroquine) to
analyze changes in autophagic flux through various protein
probes (e.g., RFP-GFP-LC3B or GFP-LC3-RFP-LC31G) is also
a commonly used detection method in vitro (Sun et al., 2018;
Li et al., 2020).

Protein Degradation
In addition to control by gene transcription, the intracellular
level of protein is affected by protein degradation. Both
UPS and autophagy pathway participate in the regulation
of ferroptosis sensitivity in a context-dependent manner. In
particular, autophagic degradation of anti-ferroptotic protein
appears to be a good indicator of ferroptosis sensitivity. This type
of autophagy-dependent ferroptosis was first described in erastin-
induced ferritin degradation in mouse embryonic fibroblasts
and pancreatic ductal adenocarcinoma (PDAC) cells (Hou et al.,
2016). Ferritinophagy, namely autophagic degradation of ferritin,
is mediated by the cargo receptor NCOA4 (Gao et al., 2016;
Hou et al., 2016), which may be a useful marker for this
process. The degradation of GPX4 protein can also be observed
in ferroptosis-sensitive cells in response to various reagents,
such as erastin (Zhu et al., 2017; Wu et al., 2019), RSL3
(Liu et al., 2020a), FIN56 (Shimada et al., 2016), and PdPT
(Yang L. et al., 2020). The ER molecular chaperone heat shock
protein family A (hsp70) member 5 (HSPA5) prevents GPX4
degradation in PDAC cells by the protein-protein interaction
(Zhu et al., 2017). In contrast, heat shock protein 90 (HSP90)-
dependent chaperone-mediated autophagy (CMA) promotes
GPX4 degradation in neuronal cells or breast cancer cells (Wu
et al., 2019). In addition to autophagy, UPS also mediates
GPX4 degradation, but the mechanism remains unclear (Yang
L. et al., 2020). Clockophagy, a type of selective autophagy for
the degradation of clock circadian regulator aryl hydrocarbon
receptor nuclear translocator like protein 1 (ARNTL/BMAL1)
through sequestosome 1 (SQSTM1/p62), promotes ferroptosis
by inhibiting hypoxia inducible factor 1 subunit alpha (HIF1A)-
dependent lipid uptake and storage (Yang M. et al., 2019). On the
contrary, UPS-mediated degradation of VDAC2/3 may limit the
anticancer activity of erastin in melanoma cells (Yang Y. et al.,
2020). These findings indicate that protein degradation pathways
play a dual role in determining the sensitivity of ferroptosis,
relying on its degrading substrates.

Protein Release
The immune characteristics of cell death are not only factors
affecting the occurrence and development of inflammatory
diseases, but also involved in the regulation of tumor immunity
(Galluzzi et al., 2020). This process usually depends on the
release of damage associated molecular patterns (DAMPs)
and subsequent activation of DAMP receptors. DAMPs are
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endogenous molecules, including protein and non-protein
subgroups (Tang et al., 2012). High mobility group box 1
(HMGB1) is a typical nuclear DAMP (Kang et al., 2014),
which triggers an immune response during various types
of RCD, including ferroptosis (Wen et al., 2019). Advanced
glycosylation end-product specific receptor (AGER/RAGE) has
been recognized as a receptor for HMGB1, responsible for
the inflammatory response caused by ferroptotic cell death in
macrophages (Wen et al., 2019). Another protein-related DAMP
marker involved in ferroptosis includes mutated KRAS protein
(KRASG12D) (Dai et al., 2020a). The release of KRASG12D

by ferroptotic cancer cells is then taken up by macrophages
through its receptor AGER (Dai et al., 2020a). This cell–
cell communication results in M2 macrophage polarization
and subsequent tumor formation in xenograft models (Dai
et al., 2020a). Conversely, ferroptotic cell death may promote
anti-tumor immunity by activating cytotoxic T cell responses
(Wang W. et al., 2019), although the key DAMP mediator of
this process is unidentified. There are still many uncertainties
in the interaction of protein and non-protein (e.g., oxidative
lipid or host DNA) DAMPs in shaping ferroptosis-associated
inflammation and immune response, including their receptors
and target immune cells.

FERROPTOSIS IN DISEASES

Ferroptosis is implicated in many pathological conditions of iron
overload, including cancer (Chen et al., 2020a; Conrad et al.,
2020; Tang et al., 2020). On the one hand, ferroptosis caused by
small molecule compounds can inhibit tumor growth in mouse
models. For example, in a genetically engineered mouse model
of pancreatic cancer, pancreatic tumors treated with cyst(e)inase
show a ferroptotic morphological phenotype, with mitochondrial
defects and extensive lipid droplet formation (Badgley et al.,
2020), which may act as a source of PUFA for lipid peroxidation
(Bai et al., 2019). Immunohistochemical staining of 4-HNE
further indicates that the level of lipid peroxidation in pancreatic
tumors is increased (Badgley et al., 2020). On the other hand,
DAMP released by ferroptotic cells can promote tumor growth

by maintaining an immunosuppressive microenvironment. For
example, conditional depletion of pancreatic Gpx4 or a high-
iron diet triggers the release of mutant KRASG12D protein or
nuclear DNA, thereby inducing the tumor-promoting effects
of macrophages (Dai et al., 2020a,b). The expression level
of KRASG12D in macrophages is negatively correlated with
the survival of pancreatic cancer patients (Dai et al., 2020a).
Therefore, these findings suggest that the simultaneous detection
of intracellular and extracellular markers may help diagnose and
treat diseases related to ferroptotic damage.

CONCLUSION AND PERSPECTIVES

In the past several years, we have witnessed the rapid
development of ferroptosis research. This trend provides more
opportunities to think deeply about the differences in the
molecular mechanisms of RCD. A key unresolved question
is how ferroptotic response causes cell death. Although the
onset and intermediate signals and processes of ferroptosis have
been described, the executioner of ferroptosis is still unknown.
Unfortunately, the biomarkers of ferroptosis discussed in this
review also present in other types of RCD or pathological
conditions. A more precise understanding of specific biomarkers
and contributors of ferroptosis (not non-ferroptotic deaths)
may provide new opportunities for designing treatments for
iron overload-related diseases. A combination of multiple
biomarkers may help detect ferroptotic cell death in time. The
challenge remains how to transform basic research findings
into clinical applications. Solving these challenges requires
further understanding of the molecular mechanisms and signal
transduction of ferroptosis, as well as the use of new technologies
to discover specific biomarkers.
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