ResultsUsing data profiled by Infinium HumanMethylation450 BeadChip array from 10 NTD cases and eight controls, ZIC4, CASP8, RAB32, RARA, and TRAF6 were identified to be the top five genes in NTD-related hypomethylated gene families. Among all identified genes, ZIC4 had the largest number of differently methylated CpG sites (n = 13) in the promoter region and 5′ UTR. Significantly decreased methylation in the ZIC4 promoter region and 5′ UTR was verified in an independent cohort of 80 cases and 32 controls (p < 0.001) utilizing the Sequenom EpiTYPER platform. Hypomethylation of ZIC4 was associated with a higher risk of NTDs [adjusted OR = 1.08; 95% confidence interval (CI): 1.03, 1.13] in a logistic regression model. Mean methylation levels in the promoter region and 5′ UTR of ZIC4 tended to be inversely associated with levels of high-molecular-weight PAHs in fetal liver among NTD fetuses (β [95% CI]: −0.045 [−0.091, 0.001], p = 0.054). Six and three CpG sites in the ZIC4 promoter region and 5′ UTR were inversely correlated with antioxidant indicators and protein oxidation markers (ρ: −0.45 to −0.75, p < 0.05) in fetal neural tissues, respectively. In a whole-embryo cultured mouse model, hypomethylation of the Zic4 promoter region and 5′ UTR and upregulation of Zic4 were observed, coupled with increased NTD rates after BaP exposure. The antioxidant N-acetyl-L-cysteine normalized the changes observed in the BaP exposure group.