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The small modifier protein, ubiquitin, holds a special place in eukaryotic biology because
of its myriad post-translational effects that control normal cellular processes and are
implicated in various diseases. By being covalently conjugated onto other proteins,
ubiquitin changes their interaction landscape - fostering new interactions as well as
inhibiting others - and ultimately deciding the fate of its substrates and controlling
pathways that span most cell physiology. Ubiquitin can be attached onto other proteins
as a monomer or as a poly-ubiquitin chain of diverse structural topologies. Among the
types of poly-ubiquitin species generated are ones detached from another substrate
- comprising solely ubiquitin as their constituent - referred to as unanchored, or free
chains. Considered to be toxic byproducts, these species have recently emerged to
have specific physiological functions in immune pathways and during cell stress. Free
chains also do not appear to be detrimental to multi-cellular organisms; they can be
active members of the ubiquitination process, rather than corollary species awaiting
disassembly into mono-ubiquitin. Here, we summarize past and recent studies on
unanchored ubiquitin chains, paying special attention to their emerging roles as second
messengers in several signaling pathways. These investigations paint complex and
flexible outcomes for free ubiquitin chains, and present a revised model of unanchored
poly-ubiquitin biology that is in need of additional investigation.

Keywords: poly-ubiquitin, cell stress, deubiquitinase, immune system, NF-κB, proteasome, ligase, protein quality
control

Abbreviations: CARD, caspase activation and recruitment domain; DUB, deubiquitinating enzyme; E1, Ub activating
enzyme; E2, Ub conjugating enzyme; E3, Ub ligase enzyme; HDAC6, histone deacetylase 6; HECT, Homologous to the
E6AP Carboxyl Terminus; HIV-1, human immunodeficiency virus 1; IAV, Influenza A virus; IFN, interferon; IFN-I, type
I interferon; IKK, IkB kinase; IL-1R, IL-1 receptor; IRAK-1, IL-1R-associated kinase 1; IRF3, interferon regulatory factor 3;
IRF7, interferon regulatory factor 7; ISG, interferon-stimulated genes; ISGF3, interferon-stimulated gene factor 3; JAK1,
Janus kinase 1; JAMM, JAB1/MPN/MOV34 metalloenzyme; MAVS, mitochondrial activator of virus signaling; MEFs,
mouse embryonic fibroblasts; MINDY, motif interacting with Ub-containing novel DUBs family; NEMO, NF-kB essential
modulator; OTU, ovarian tumor protease; RBR, RING-Between-RING; RING, Really Interesting New Gene; RLR, RIG-I-like
receptor; STAT1, signal transducer and activator of transcription 1; TAB1, TAK1-binding protein 1; TAB2, TAK1-binding
protein 2; TAK1, transforming growth factor b-activated kinase 1; TBK1, TANK-binding kinase 1; TLR, Toll like receptor;
TNFR, tumor necrosis factor receptor; TRAF6, TNFR-associated factor 6; TYK2, Tyrosine kinase 2; Ub, ubiquitin; UBAN, Ub
binding in ABIN and NEMO; UCH, Ub C-terminal hydrolase; USP, Ub-specific protease; ZnF-UBP, zinc-finger Ub-binding
domain; ZUFSPs, zinc-finger with UFM1-specific peptidase domain proteins.
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AN INTRODUCTION TO UBIQUITIN, ITS
PROCESSING, AND UNANCHORED
CHAINS

Few proteins hold as central a place in eukaryotic cellular biology
as the highly conserved, 76-residue protein, ubiquitin (Ub).
Through a chemical reaction that enables its tethering onto
essentially any other protein, Ub provides exceptionally flexible
control over processes from cell division to cell death, from
gene transcription to protein degradation, by dictating protein
interaction, function, and turnover (Komander and Rape, 2012;
Swatek and Komander, 2016; Oh et al., 2018). It is not surprising
that, because of its elemental importance in eukaryotes, Ub and
the pathways that it regulates are linked to various diseases.

Ub’s modulatory properties commonly begin with the
process of “ubiquitination,” which refers to the ATP-dependent
conjugation of a Ub molecule onto a substrate protein via an
isopeptide bond between the C-terminal carboxylic group of a
Ub and the ε-amine of a lysine residue within the substrate. The
cellular machinery that brings about this conjugation consists
of three main components: a Ub-activating enzyme (E1), a Ub-
conjugating enzyme (E2), and a Ub ligase (E3). A protein that has
accepted a single Ub molecule is said to be mono-ubiquitinated;
additional ubiquitination can result in a multi-ubiquitinated
protein decorated with individual Ub molecules (Figure 1A).
Following a mono-ubiquitination event, the conjugated Ub
can also be ubiquitinated itself, forming a polymeric chain
(Figures 1A,B). Each Ub harbors seven lysine residues (Lys6, 11,
27, 29, 33, 48, and 63) that themselves serve as Ub acceptor sites,
spread over the surface of the protein and oriented in distinct
directions. In addition, an eighth ubiquitination site exists at the
N-terminal methionine (Met1) (Komander and Rape, 2012).

Poly-Ub chains are characterized by the Lys or Met residue
used for chain elongation and can be composed of homogenous
linkages (e.g., a tri-Ub chain with only Lys48 linkages; Figure 1B);
multiple linkage types within a continuous chain (Figure 1C); or
branched chains, where a Ub chain attached to a second string
of poly-Ub leads to topology that resembles branches on a tree
(Figure 1D). Linkage type also determines the conformation
and flexibility of the chain – while Met1- and Lys63-linked
chains adopt open conformations with more space between
Ub molecules, Lys6-, Lys11-, and Lys48-linked poly-Ub are
more compact, according to structural studies (Tenno et al.,
2004; Varadan et al., 2004). The Lys48- and Lys63-linked chains
diagrammed in Figure 1B illustrate the basic difference between
compact and open conformations.

The shape of a Ub chain affects its binding partners, as
some proteins are attracted by the pockets created by specific
linkage types (Hicke et al., 2005; Dikic et al., 2009). This
binding landscape gains even greater complexity through mixed-
linkage and branched chains and through additional post-
translational modifications to Ub, including phosphorylation
(Yau and Rape, 2016; Song and Luo, 2019). Two poly-Ub chains
that contain the same linkage types can behave in unique ways,
depending on the arrangement of those linkages, the chains’
proximity to post-translational modifiers that act upon them,
and the accessibility to Ub-binding proteins that bind specific

chain types to direct them to signaling pathways or organelles
(Oh et al., 2018).

The composition of a poly-Ub chain and the context of
its attachment to a substrate can trigger different outcomes
in the cell. (Table 1 summarizes functions of poly-Ub chains
of each linkage type and enzymes reported to construct, edit,
or dismantle them.) Some Ub chains target proteins to the
26S proteasome for degradation, where the poly-Ub chain is
removed to be recycled whereas the protein conjugated to it
is unfolded and degraded. Lys48-linked chains are the most
abundant linkage with this role, although Lys11-, Lys29-, and
in some cases Lys63-linked chains, have also been implicated
in this functional degradation pathway (Thrower et al., 2000;
Bremm and Komander, 2011; Besche et al., 2014). Branched
Lys11/Lys48-linked Ub chains have also emerged as an enhanced
degradation signal vital to both cell-cycle regulation and in the
quality control of aggregation-prone proteins (Meyer and Rape,
2014; Yau et al., 2017). Lys48/Lys63-linked, branched chains are
another degradation signal that associates with the proteasome
(Ohtake et al., 2018).

In addition to proteasomal degradation, mono-Ub and Lys63-
linked chains target plasma membrane proteins to lysosomes
for degradation (Mukhopadhyay and Riezman, 2007; Chen
et al., 2019; Gomez-Diaz and Ikeda, 2019). One type of
lysosomal degradation, macro-autophagy (hereafter referred to
as autophagy), is induced by cellular stress and is marked
by the formation of cytoplasmic, double-membrane vesicles
that envelop damaging cellular components, including protein
aggregates and damaged organelles. These autophagic vesicles,
called autophagosomes, fuse with lysosomes to degrade and
recycle their contents. Autophagy involves Ub at several steps.
For example, autophagy-inducing factors are regulated by
ubiquitination; Lys63 poly-Ub promotes their stability and
induces autophagy (Nazio et al., 2013; Xia et al., 2013),
while Lys48 poly-Ub targets them to the proteasome and
inhibits autophagy (Xia et al., 2014; Xu et al., 2014). Similar
ubiquitination events control the genesis and maturation of
autophagosomes by promoting the degradation, stabilization,
or interactions of various autophagy factors (Joachim et al.,
2017; Feng et al., 2019; Gu et al., 2019; Scrivo et al., 2019).
Mitophagy, the selective autophagy of damaged mitochondria,
is dependent on the E3 Parkin’s Lys6, Lys11, Lys48, and
Lys63-linked poly-ubiquitination of the mitochondrial outer
membrane (Harper et al., 2018). Although ubiquitination is most
commonly associated with the proteasome, its importance to
other degradative pathways is also well-established.

Outside of degradation, ubiquitination coordinates the
recruitment of various proteins to participate in signaling
pathways, alters protein localization by attracting trafficking
factors, and even regulates the conformation and activity of
the substrate itself (Komander and Rape, 2012; Swatek and
Komander, 2016; Oh et al., 2018; Clague et al., 2019). These non-
degradation pathway functions are typically, but not exclusively,
associated with mono-Ub, Met1-, and Lys63-linked chains
(Table 1). Furthermore, chains can induce non-degradative
regulation of protein activity indirectly. Met1-, mixed Lys11/
Lys63-, Lys63-, and Lys48-linked chains can regulate pathway
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FIGURE 1 | The ubiquitination process. (A) Outline of the ubiquitination process. (B–D) Different types of ubiquitin chains. Details are provided in the main text.

signaling through inhibitor degradation, allosteric activation
as a result of structural reordering, or the recruitment of
activating enzymes (Komander and Rape, 2012; Swatek and
Komander, 2016; Oh et al., 2018; Clague et al., 2019; Table 1).
These various topologies and the nearly limitless types of Ub
conjugation that can occur are responsible for the many processes
controlled by Ub and the numerous diseases linked to it,
from malignancies to neurological diseases and afflictions of
the immune system.

Decades of research have been dedicated to the study
of ubiquitination, yet it often seems that we have only
begun to understand its countless functions in the cell and
the players that direct Ub’s roles. What specifies which
proteins are ubiquitinated, and with what type of chain?
Determinants of substrate specificity include the E2 and
E3 enzymes involved (Table 1). A ubiquitination event
is initiated when the E1 activating enzyme hydrolyzes
ATP and forms a thioester bond with Ub. The Ub is
then passed to an E2 conjugase through a transthiolation
reaction. An E3 ligase then facilitates the formation of
an isopeptide bond between Ub and a lysine in its target
protein. How this final step happens depends on the
type of E3 involved.

Ub ligases are classified into three families based on
constituent domains and Ub transfer mechanisms: RING, HECT,
and RBR. RING (Really Interesting New Gene) E3s, the most
abundant type, serve as scaffolds to enable the direct transfer
of Ub from the E2 to the target protein. HECT (Homologous
to the E6AP Carboxyl Terminus) E3s transfer Ub in two steps:
a transthiolation event moves the Ub molecule from the E2 to

the E3, before passing it to the substrate. RBR (RING-Between-
RING) E3s also work in distinct steps: a RING domain recruits a
Ub-charged E2, a RING-like domain forms a thioester bond with
the Ub, and the Ub is subsequently transferred to the substrate.
While the human genome contains only two E1 Ub-activating
enzymes, there are ∼40 E2 conjugases and more than 600 E3
ligases that can contribute to substrate and linkage specificity.
HECT and RBR E3s each determine the types of Ub linkages
they create, while RING E3s depend on their cooperating E2 to
impart that specificity (Christensen and Klevit, 2009; Komander
and Rape, 2012).

Once a Ub chain has been formed on a substrate,
it can be removed or edited by deubiquitinating enzymes
(DUBs). Humans have ∼100 DUBs, some of which have
preferences for chain type, length, and location, while others
are promiscuous in those regards (Table 1). DUBs are divided
into seven sub-families: Ub-specific proteases (USPs), Ub
C-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs),
Machado-Joseph disease proteases (MJDs), JAB1/MPN/MOV34
metalloenzymes (JAMMs), motif interacting with Ub-containing
novel DUB family (MINDYs), and zinc-finger with UFM1-
specific peptidase domain proteins (ZUFSPs). USPs, UCHs,
OTUs, MJDs, MINDYs, and ZUFSPs are cysteine proteases,
whereas JAMMs are zinc metalloproteases (Clague et al., 2012,
2019; Abdul Rehman et al., 2016; Kwasna et al., 2018).

The significance of DUBs is evident from the beginning
of a Ub molecule’s existence, as Ub genes are transcribed as
peptide-linked tandem repeats (UBB and UBC gene products)
or as ribosomal fusion proteins (UBA52 and RPS7A gene
products) that require processing by DUBs before they can be
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TABLE 1 | Summary of cellular processes associated with specific types of Ub linkages, and some of the E2s, E3s, and DUBs associated with them. (List not exhaustive; additional enzymes covered in main text.)

Reported cellular processes Abundance E2s and E3s reported DUBs reported

Bold: linkage-specific Bold:
linkage-specific

Lys6 Mitochondrial homeostasis
• Mitophagy delayed in cells with mutant Lys6 Ub

(Cunningham et al., 2015; Ordureau et al., 2015)
• Involved with mitochondrial homeostasis (Durcan

et al., 2014; Ordureau et al., 2014, 2015;
Cunningham et al., 2015)

• Observed on ubiquitinated mitochondrial
membrane proteins after mitochondrial
depolarization (Ordureau et al., 2014)
DNA damage response

• Regulates DNA damage response with the E3
BRCA1/BARD1 (Wu-Baer et al., 2003; Morris and
Solomon, 2004; Nishikawa et al., 2004)

• Does not increase with protease inhibition (Kim
et al., 2011; Wagner et al., 2011)

• Increases upon UV-based genotoxic stress (Elia
et al., 2015)

• Increases in response to mitochondrial
depolarization (Ordureau et al., 2014)

E2
• No specific E2s reported

E3
• Bacterial HECT-like E3 (Lin et al., 2011)
• N1eL (Hospenthal et al., 2013)
• BRCA1/BARD1 (Wu-Baer et al., 2003; Morris and

Solomon, 2004; Nishikawa et al., 2004)
• Parkin (Durcan et al., 2014; Ordureau et al., 2014;

Cunningham et al., 2015)

• USP30 (localized to
mitochondria) (Bingol
et al., 2014;
Cunningham et al.,
2015; Liang et al.,
2015)

Lys11 Cell cycle regulation
• Triggers proteasomal degradation of cell cycle

regulators during mitosis (Jin et al., 2008;
Williamson et al., 2009; Matsumoto et al., 2010;
Bremm and Komander, 2011; Wickliffe et al., 2011;
Castańeda et al., 2013; Meyer and Rape, 2014)
Proteasomal degradation

• Homotypic Lys11-linked chains are typically poor
substrates for the proteasome (Matsumoto et al.,
2010; Bremm and Komander, 2011; Wickliffe et al.,
2011; Castańeda et al., 2013; Meyer and Rape,
2014; Grice et al., 2015)

• The E2 UBE2S and E3 APC/C construct branched
chains comprising Lys11 that are strong
proteasomal degradation signals, as well as
heterotypic Lys11/Lys48-linked chains (Meyer and
Rape, 2014; Grice et al., 2015; Min et al., 2015)
Other

• Implicated in cell-cycle-independent processes:
• Hif1(alpha) transcription factor

(Bremm et al., 2014); ERAD (Xu et al., 2009b);
innate immune response (Qin et al., 2014);
cellular adaptation to hypoxia
(Bremm et al., 2010; Moniz et al., 2015)

• Increases in response to proteasome inhibition (Xu
et al., 2009b; Kim et al., 2011)

• Increases in response to mitochondrial
depolarization (Ordureau et al., 2014)

• Preferentially produced during mitosis and G1 in
cells (Xu et al., 2009a; Matsumoto et al., 2010;
Meyer and Rape, 2014)

E2
• Ube2S (Baboshina and Haas, 1996; Jin et al., 2008;

Garnett et al., 2009; Williamson et al., 2009; Wu et al.,
2010; Wickliffe et al., 2011; Min et al., 2015)

• Ube2C/UbcH10 (Kirkpatrick et al., 2006; Jin et al., 2008;
Bosanac et al., 2011)
E3

• APC/C (Baboshina and Haas, 1996; Jin et al., 2008;
Garnett et al., 2009; Williamson et al., 2009; Wu et al.,
2010; Min et al., 2015)

• Parkin (Sarraf et al., 2013; Durcan et al., 2014; Ordureau
et al., 2014; Cunningham et al., 2015)

• UBR5 (Yau and Rape, 2016)
• AREL1 (Kristariyanto et al., 2015b; Michel et al., 2015;

Swatek and Komander, 2016)

• OTUD7B (Mevissen
et al., 2013)

• Cezanne2/OTUD7A
(Mevissen et al., 2013)

• USP30 (Cunningham
et al., 2015)

(Continued)

Frontiers
in

C
elland

D
evelopm

entalB
iology

|w
w

w
.frontiersin.org

4
O

ctober
2020

|Volum
e

8
|A

rticle
582361

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-582361
O

ctober29,2020
Tim

e:10:16
#

5

B
lountetal.

N
ew

Insights
Into

U
nanchored

P
oly-U

biquitin

TABLE 1 | Continued

Reported cellular processes Abundance E2s and E3s reported DUBs reported

Bold: linkage-specific Bold:
linkage-specific

Lys27 DNA damage response
• The E3 ligase RNF168 promotes ubiquitination of

histone 2A, the major form of ubiquitination on
chromatin following DNA damage (Gatti et al., 2015)

• Serves as scaffolding to recruit DNA damage
response mediators (Liu et al., 2014a; Gatti et al.,
2015)

• Lack of Lys27-linked chains prevents activation of
DNA damage response (Gatti et al., 2015)
Immune response

• Associated with the host immune response in
response to microbial DNA (Ishikawa et al., 2009;
Wang et al., 2014b)

• Lys27-linked poly-Ub of STING acts as a scaffold
for the recruitment and activation of the kinase
TBK1 (Ishikawa et al., 2009; Wang et al., 2014b).
This association triggers a cascade that leads the
activation of transcription factor IRF-3 and induction
of type-1 interferons and pro-inflammatory
cytokines (Ishikawa et al., 2009; Wang et al.,
2014b)

• The major Ub chain type on chromatin following
DNA damage (Gatti et al., 2015)

E2
• No specific E2s reported

E3
• Parkin (Doss-Pepe et al., 2005; Geisler et al., 2010)
• AMFR (Ishikawa et al., 2009; Wang et al., 2014b)
• RNF168 (Gatti et al., 2015)
• HACE1 (Liu et al., 2014b; Palicharla and Maddika, 2015)

• None reported

Lys29 Proteasomal degradation
• Associates with the 26S proteasome and

contributes to substrate turnover in the
Ub-fusion-degradation pathway (Johnson et al.,
1995; Koegl et al., 1999; You and Pickart, 2001;
Besche et al., 2014)
Repression of Wnt/β-catenin signaling

• Lys29-linked poly-Ub of Axin disrupts its interaction
with co-receptors and represses Wnt/β signaling
(Fei et al., 2013)

• Increases upon inhibition of the proteasome (Kim
et al., 2011)

E2
• None reported

E3
• KIAA10/UBE3C (You and Pickart, 2001; Wang and Pickart,

2005; Wang et al., 2006; Kristariyanto et al., 2015a; Michel
et al., 2015)

• UBR5 (Yau and Rape, 2016)
• UFD4 (Tsuchiya et al., 2013)

• TRABID (Swatek and
Komander, 2016)

Lys33 Post-Golgi membrane trafficking
• Implicated in regulating traffic through the

post-Golgi network (Yuan et al., 2014)
Other

• Associated with negative regulation of T-cell antigen
receptor (Huang et al., 2010)

• Associated with negative regulation of
AMPK-related protein kinases (Al-Hakim et al.,
2008)

• Increases upon UV-based genotoxic stress (Elia
et al., 2015)

E2
• None reported

E3
• CUL3 (Yuan et al., 2014)
• AREL1 (Kristariyanto et al., 2015b; Michel et al., 2015;

Swatek and Komander, 2016)

• TRABID (Swatek and
Komander, 2016)
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TABLE 1 | Continued

Reported cellular processes Abundance E2s and E3s reported DUBs reported

Bold: linkage-specific Bold:
linkage-specific

Lys48 Proteasomal degradation
• Targets proteins to the 26S proteasome for degradation (Chau

et al., 1989; Hershko and Ciechanover, 1998; Thrower et al., 2000;
Lu et al., 2015)
Other

• Involved with Wnt signaling propagation (Tauriello and Maurice,
2010)

• Indirectly regulates protein activity by signaling the degradation of
various inhibitors (Winston et al., 1999; Margottin-Goguet et al.,
2003)

• Can impair protein interactions without triggering degradation (Flick
et al., 2006)

• Role in innate immune response signaling (Rajsbaum et al., 2014;
Hage and Rajsbaum, 2019)

• Predominant linkage type in cells, often
>50% of all linkages (Xu et al., 2009b;
Dammer et al., 2011; Kim et al., 2011;
Wagner et al., 2011; Ziv et al., 2011)

• Levels increase upon proteasome inhibition
(Xu et al., 2009b)

• Increases in response to mitochondrial
depolarization (Ordureau et al., 2014)

E2
• Ube2K (Petroski and Deshaies, 2005; Christensen et al., 2007;

Kim et al., 2007; Rodrigo-Brenni et al., 2010; Rajsbaum et al.,
2014)

• Ube2G2 (Li et al., 2007)
• Ubc1 (Petroski and Deshaies, 2005; Christensen et al., 2007;

Rodrigo-Brenni et al., 2010)
• Ube2R1/Cdc34 (Petroski and Deshaies, 2005; Li et al., 2007;

Rodrigo-Brenni et al., 2010; Sadowski et al., 2010)
• Ube2D (Wang and Pickart, 2005; Kim and Huibregtse, 2009)

E3
• BRCA1/BARD1 (Christensen et al., 2007; Kim et al., 2007)
• SCF (Petroski and Deshaies, 2005)
• AMFR (Chen et al., 2006; Li et al., 2007)
• E6AP (Scheffner et al., 1993; Wang and Pickart, 2005; Kim and

Huibregtse, 2009)
• KIAA10/UBE3C (Sloper-Mould et al., 2001)
• Bacterial HECT-like E3 (Lin et al., 2011)
• Parkin (Doss-Pepe et al., 2005; Geisler et al., 2010)
• N1eL (Hospenthal et al., 2013)
• AREL1 (Michel et al., 2015)
• UFD2 (Saeki et al., 2004)
• TRIM6 (Rajsbaum et al., 2014)

• OTUB1 (Swatek
and Komander,
2016)

• USP5/IsoT
(Reyes-Turcu et al.,
2008)

Lys63 Scaffolding to facilitate protein interactions
• Acts as an interaction point for the formation and activation of

various complexes and pathways:
• Activation of NF-κB transcription factor (Deng et al., 2000;

Wang et al., 2001; Xia et al., 2009; Xu et al., 2009a)
• DNA repair (Spence et al., 1995; Hoege et al., 2002;

Sobhian et al., 2007; Doil et al., 2009; Huang et al., 2009;
Stewart et al., 2009; Al-Hakim et al., 2010)

• Innate immune responses (Gack et al., 2007)
• Mitophagy (Cunningham et al., 2015; Ordureau et al., 2015)
• Protein sorting (Lauwers et al., 2009; Huang et al., 2013)
• Assembly of protein complexes that drive mRNA splicing and

translation (Spence et al., 2000; Bellare et al., 2008;
Song et al., 2010; Silva et al., 2015)

• Propagation of Wnt signaling (Tauriello and Maurice, 2010)
Lysosomal degradation

• Targets substrate to the lysosome for degradation (Mukhopadhyay
and Riezman, 2007; Raiborg and Stenmark, 2009; Ren and Hurley,
2010)

• Serves as an interaction point for adaptor molecules of
autophagosomes and substrates en route to lysosomal
degradation (Kirkin et al., 2009)

• Second most abundant chain type, after
Lys48 (Chen and Sun, 2009)

• Levels increase in response to mitochondrial
depolarization (Ordureau et al., 2014)

E2
• Ube2N/Uev1a/Ubc13 (Zhang et al., 2005; Eddins et al., 2006;

Christensen et al., 2007; Kim et al., 2007; Xia et al., 2009)
• Ube2D (Kim and Huibregtse, 2009; Maspero et al., 2011)

E3
• BRCA1/BARD1 (Christensen et al., 2007; Kim et al., 2007)
• CHIP (Zhang et al., 2005)
• TRIM5 (Pertel et al., 2011)
• TRIM21 (McEwan et al., 2013)
• TRIM25 (Zeng et al., 2010)
• RSP5/Nedd4 (Richly et al., 2005; Kim and Huibregtse, 2009;

Maspero et al., 2011)
• TRAF6 (Cao et al., 1996; Deng et al., 2000; Xia et al., 2009)
• Parkin (Doss-Pepe et al., 2005; Geisler et al., 2010;

Cunningham et al., 2015)

• CYLD (Zeng et al.,
2010; Sato et al.,
2015)

• AMSH (Swatek and
Komander, 2016)

• POH1 (Hao et al.,
2013)

(Continued)

Frontiers
in

C
elland

D
evelopm

entalB
iology

|w
w

w
.frontiersin.org

6
O

ctober
2020

|Volum
e

8
|A

rticle
582361

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-582361
O

ctober29,2020
Tim

e:10:16
#

7

B
lountetal.

N
ew

Insights
Into

U
nanchored

P
oly-U

biquitin

TABLE 1 | Continued

Reported cellular processes Abundance E2s and E3s reported DUBs reported

Bold: linkage-specific Bold: linkage-specific

Met1 NF-κB signaling
• Modifies the IKK complex subunit NEMO in order to

allosterically activate IKK in the NF-κB pathway
(Rahighi et al., 2009; Tokunaga et al., 2009;
Gerlach et al., 2011; Ikeda et al., 2011; Tokunaga
et al., 2011; Damgaard et al., 2012)
Other

• Cytokine signaling
• Regulation of interferon production (Inn et al., 2011)
• Control of Wnt signaling during blood vessel

formation (Rivkin et al., 2013)

• Rapidly synthesized in response to activation of
inflammatory signaling cascades (Tokunaga and
Iwai, 2009; Gerlach et al., 2011; Ikeda et al., 2011;
Tokunaga et al., 2011)

E2
• Ube2K (Tokunaga and Iwai, 2009; Tokunaga et al., 2009;

Ikeda et al., 2011; Tokunaga et al., 2011)
E3

• LUBAC (Kirisako et al., 2006; Rahighi et al., 2009;
Tokunaga and Iwai, 2009; Tokunaga et al., 2009; Gerlach
et al., 2011; Ikeda et al., 2011; Tokunaga et al., 2011)

CYLD (Sato et al., 2015)
• OTULIN (Swatek and

Komander, 2016)

Mono-Ub Mediates protein interaction
• Can impair protein interactions:

• Mono-Ub of Smad4 blocks its association with
Smad2 (Dupont et al., 2009)

• Blocks interactions of adaptor proteins to
cargo in EGFR signaling (Polo et al., 2002;
Hoeller et al., 2006, 2007)

• Recruits enzymes to specific cellular locations in
response to DNA damage (Hoege et al., 2002;
Bienko et al., 2005, 2010; Nijman et al., 2005;
Huang et al., 2006; Moldovan et al., 2007;
Moldovan and D’Andrea, 2009; Freudenthal et al.,
2010; Huang and D’Andrea, 2010; Joo et al.,
2011):

• PCNA, FANCD2, and FANCI are all
mono-Ub-d and also involved in DNA repair
pathways (Hoege et al., 2002;
Bienko et al., 2005, 2010; Nijman et al., 2005;
Huang et al., 2006; Moldovan et al., 2007;
Moldovan and D’Andrea, 2009;
Freudenthal et al., 2010;
Huang and D’Andrea, 2010; Joo et al., 2011)

Lysosomal degradation
• Targets substrates to the lysosome for degradation

(Mukhopadhyay and Riezman, 2007)

• Reduced in response to proteasome inhibition,
most likely in favor of polyubiquitin chain formation
(Kaiser et al., 2011)

• Levels vary among tissue, cell, and model types. It
is the most abundant, conjugated form of ubiquitin
and may rival levels of free mono-ubiquitin (Kaiser
et al., 2011)

E2
• Ube2D (Wang et al., 2004; Bentley et al., 2011)
• UbcH5 (Wang et al., 2004; Bentley et al., 2011)
• Ube2A (Hoege et al., 2002; Hwang et al., 2010; Hibbert

et al., 2011)
• Ube2W (Machida et al., 2006; Christensen et al., 2007; Alpi

et al., 2008; Scaglione et al., 2011)
• Ube2T (Machida et al., 2006; Alpi et al., 2008)

E3
• BMI1-RING1 (Wang et al., 2004; Bentley et al., 2011)
• Rad18 (Hoege et al., 2002; Hwang et al., 2010; Hibbert

et al., 2011)
• FANCL (Machida et al., 2006; Alpi et al., 2008)
• BRCA1/BARD1 (Christensen et al., 2007; Scaglione et al.,

2011)
• CHIP (Christensen et al., 2007; Scaglione et al., 2011)
• Parkin (Chew et al., 2011)
• CUL3 (Jin et al., 2012; Werner et al., 2015)

• None reported
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used as mono-Ub for substrate ubiquitination (Clague et al.,
2012; Komander and Rape, 2012). DUBs also serve as negative
regulators of Ub signaling; for example, a protein with a Lys48-
linked tetra-Ub chain attached as a proteasomal targeting signal
can be spared of degradation by a DUB that removes that chain
(Clague et al., 2013, 2019). The 26S proteasome itself contains
and is closely associated with DUBs that recognize Ub chains
and remove them from degradation-bound proteins to be reused
for novel ubiquitination events (Komander et al., 2009; Liu et al.,
2015; Clague et al., 2019). Finally, DUBs participate in poly-Ub
editing to change the length or composition of the chain, thus
modifying the substrate protein’s fate or participation in specific
pathways (Komander et al., 2009; Clague et al., 2013, 2019).
Some DUBs partner with E3 ligases to attach new Ub molecules,
and there is even a DUB that has E3 activity itself, the NF-κB
modulator, A20 (Wertz et al., 2004).

DUBs can disassemble chains one molecule at a time [e.g.,
UCH37 (Lam et al., 1997)], or they can remove the entire chain
at once (Figure 1A, bottom left), resulting in unanchored, or
free, poly-Ub that is not attached to a substrate protein. An
example of the latter type of DUBs, USP14, removes en bloc
poly-Ub chains from multi-poly-ubiquitinated cyclin B (a cell
cycle regulator) until only one chain remains attached, reducing
cyclin B’s interaction with the proteasome and thus effectively
inhibiting its degradation in vitro (Lee et al., 2016). Another
DUB, the proteasome resident POH1, is a zinc-dependent
metalloprotease that cleaves poly-Ub from substrates, saving
the chain from degradation, and yielding unanchored poly-Ub
(Yao and Cohen, 2002).

Unanchored Ub chains make their first appearance in the
cell at the time of Ub gene transcription, as human UBB and
UBC encode three and nine tandem repeat Ub, respectively.
Transcription of these genes results in linear, unanchored poly-
Ub that is processed by DUBs that have zinc-finger Ub binding
domains (Znf-UBPs) that specifically recognize the chains’ free
C-termini, including USP3, USP4, and USP16 (Clague et al.,
2019). In mammals, UBB and UBC transcription is upregulated
during cellular stress, when increased signaling requires an ample
supply of Ub (Fornace et al., 1989). Unanchored poly-Ub can
also be assembled anew by specialized E2/E3 pairs in vitro and
in cells. This type of production is observed when the E3 TRIM6
and the E2 UbE2K generate unanchored, Lys48-linked Ub chains
that activate an interferon (IFN) signaling component (Rajsbaum
et al., 2014). Moreover, as mentioned above, en bloc removal of
a Ub chain from a substrate, or cleavage of a poly-Ub branch
from a branched chain, in total or in part, also yields unanchored
poly-Ub.

The study of free poly-Ub is relatively new, and we have
only begun to understand their complicated nature. They are
commonly thought of as potentially toxic competitors at the
proteasome, and their rapid disassembly is thought to be essential
to cellular health and Ub homeostasis. However, untethered
Ub chains are also directly implicated in specific pathways,
including NF-κB-related processes; thus, their presence in the
cell is clearly important. Yeast and in vitro studies suggested that
unanchored poly-Ub inhibit normal proteasomal function and
are toxic, whereas Drosophila studies more recently indicated that
they are tolerated in an intact, multi-cellular organism. For the

remainder of this review, we examine the details and complexities
of unanchored Ub chains.

CASES OF TOXICITY FROM
UNANCHORED UBIQUITIN CHAINS

Much of our knowledge of unanchored poly-Ub arose from
research on the best-known DUB that processes it, Ub-
specific protease 5 (USP5). Mammalian USP5 (also known
as isopeptidase T) was first purified from reticulocytes in
1985 (Pickart and Rose, 1985) and later characterized as an
enzyme that preferentially disassembles poly-Ub species after
they are removed from ubiquitinated substrates at the 26S
proteasome (Hadari et al., 1992). USP5 specifically recognizes
the free C-terminal diglycine (GG) motif of untethered
poly-Ub and removes Ub monomers sequentially from
the chain’s proximal end (Wilkinson et al., 1995). Kinetic
assays revealed that Ub, itself, can modulate USP5 activity
in vitro: low Ub concentrations activate USP5, whereas
partial inhibition is observed at higher Ub concentrations
(Stein et al., 1995).

USP5 contains four Ub-binding domains that cooperate
to recognize and process multiple types of unanchored poly-
Ub, with a preference for Lys48-linked chains (Reyes-Turcu
et al., 2008). Its ZnF-UBP domain governs USP5’s specificity
for untethered chains, with a specialized pocket that recognizes
the unencumbered C-terminus of the proximal Ub (Reyes-Turcu
et al., 2006). In the fruit fly, Drosophila melanogaster, USP5
knockdown or null mutation is developmentally lethal (Tsou
et al., 2012; Wang et al., 2014a; Kovacs et al., 2015; Ristic et al.,
2016). One proposed purpose for USP5 is to maintain a pool
of available mono-Ub by cleaving untethered poly-Ub; when
USP5 cannot perform this function, the cell would then lack the
building blocks necessary for normal ubiquitination. However,
toxicity from RNAi knockdown of USP5 in the fruit fly was
not alleviated by over-expression of mono-Ub (Ristic et al.,
2016); thus, toxicity arising from reduced or absent activity of
USP5 cannot be explained solely by a disruption of mono-Ub
supply, and may involve dysregulation of specific ubiquitinated
substrates (García-Caballero et al., 2014, 2016).

When Ub is properly folded, several hydrophobic amino acid
residues converge to form a hydrophobic surface that serves as
the interaction site for many Ub-binding domains (Deveraux
et al., 1994; Beal et al., 1996, 1998). It is through this hydrophobic
patch that substrate-conjugated poly-Ub binds S5a, a subunit
of the regulatory compartment of the 26S proteasome, allowing
proteasome-resident and -associated DUBs to detach the chain
and enhance the degradation of the targeted protein (Deveraux
et al., 1994; Beal et al., 1996). Could unanchored Ub chains
directly cause toxicity by binding to the proteasome in lieu of
ubiquitinated substrates, interrupting normal proteolysis? Using
reconstituted reticulocyte proteasome complexes to study USP5
function in vitro, Hadari et al. (1992) determined that USP5
stimulates the proteolysis of poly-ubiquitinated substrates. If
unanchored Ub chains can outcompete ubiquitinated substrates
at the proteasome and hinder normal proteolysis, the authors
suggested that USP5 prevents this by quickly disassembling
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chains – as soon as they are removed from their substrates – thus
enhancing proteolysis by removing competition (Hadari et al.,
1992). In this study, the authors did not perform binding assays to
assess competition between unanchored chains and ubiquitinated
substrates at the proteasome, instead focusing on the effect of
USP5 on in vitro proteolysis and inferring a corresponding effect
from unprocessed poly-Ub.

In follow-up studies, Piotrowski et al. (1997) synthesized
Lys48-linked, untethered poly-Ub of various lengths (from Ub2

to Ub8) and examined their effects on in vitro proteasomal
function. The authors found that Ub chain length dictates the
magnitude of proteasomal inhibition and the chain’s affinity for
the proteasome: longer chains are more likely to bind and more
strongly inhibit the proteasome (Piotrowski et al., 1997). Later,
Thrower et al. (2000) identified Ub4 as the minimum signal for
efficient proteasomal degradation and showed that unanchored
chains compete with ubiquitinated substrates to bind to purified,
mammalian proteasomes, again in an in vitro setting.

In vivo studies in yeast support the notion that unanchored
poly-Ub can inhibit proteasomal activity. When Amerik et al.
(1997) deleted the UBP14 gene encoding the USP5 ortholog
in Saccharomyces cerevisiae cells, they observed accumulation
of unanchored Ub chains and inhibition of the Ub-dependent,
proteasomal degradation of MATα2, L-βgal, and Ub–P-βgal,
reporter proteins used to study Ub-dependent protein turnover.
Reasoning that free Ub chains may be the culprits hampering
proteasomal degradation, they expressed in wild-type yeast cells
a Ub mutant lacking the C-terminal diglycine residues required
for Ub’s conjugation onto other proteins and its recognition by
UBP14. This mutant (Ub1GG) can be ubiquitinated, allowing
for the creation of unanchored, UBP14-resistant poly-Ub with
the mutant Ub molecule at the end (Amerik et al., 1997).
(Similar mutants that lack an intact C-terminal “GG” motif are
used in studies described below; although the precise amino
acid mutations vary, the effect is the same, and all such
mutants are referred to as “Ub1GG” throughout this review.)
Yeast cells expressing Ub1GG mutants suffer growth defects,
sensitivity to environmental stressors, and a reduction in overall
protein degradation (Ecker et al., 1987; Hodgins et al., 1992).
The presence of unanchored, Ub1GG chains coincided with
reduced proteolysis of MATα2 and Ub–P-βgal, again indicating
proteasomal dysfunction in vivo, in a single cellular organism
(Amerik et al., 1997).

Moving beyond purified proteasomes and yeast studies, Dayal
et al. (2009) linked USP5 to unanchored chain disassembly in
a mammalian cellular system. From a screen of DUBs affecting
the activity of the tumor suppressor, p53 in cultured, ARN8
human melanoma cells, the authors found that knockdown of
USP5 stabilizes and activates p53. They also observed by Western
blotting an increase in low molecular weight Ub species that
migrate at the same molecular weight as purified, free Lys48-
linked chains, and concluded that these are unanchored Ub
species induced by USP5 suppression. Expression of Ub1GG
recapitulated the effects of USP5 knockdown in ARN8 cells,
leading to increased p53 activity. USP5 siRNA or Ub1GG
expression also caused increased ubiquitination of p53. Since
this increased ubiquitination, which could be a degradation
signal, counter-intuitively coincides with slowed p53 turnover,

the authors argued that the effects of USP5 suppression on p53
activity are mediated by the accumulation of unanchored Ub
chains that outcompete ubiquitinated p53 at the proteasome
and extend its half-life (Dayal et al., 2009); the study did not
directly examine whether p53 ubiquitination is consistent with
a degradation signal, or whether its binding to the proteasome is
impaired in the presence of mutant Ub.

Ultimately, various studies (Hadari et al., 1992; Amerik et al.,
1997; Piotrowski et al., 1997; Thrower et al., 2000; Dayal et al.,
2009) on unanchored poly-Ub pointed toward a toxic effect,
often linked to inhibition of the proteasome and the buildup of
proteins that were destined to be degraded. We note that these
investigations were performed using in vitro systems, a single-
cell organism, or cultured mammalian cells; there remains a
potential for free Ub chains to behave differently in cells in vivo
and in multicellular organisms. Ub itself is highly conserved
and enzymes that dictate its use, editing, and recycling are
also conserved at several levels. But, there is also a significant
expansion in the number and types of Ub-related proteins
and enzymes with evolutionary progression, leaving open the
possibility that free Ub chains may have different roles and be
regulated differently among species.

UNANCHORED CHAINS AND THEIR
PHYSIOLOGICAL ROLES IN IMMUNITY

Beyond their potential for toxicity, untethered Ub chains have
been implicated as participants in specific cellular pathways,
which we discuss below. Their inclusion in these pathways is
evidence that free poly-Ub species are not exclusively toxic, but
that they also have important physiological roles in regulating
immune pathways that guard against invading pathogens and
control inflammatory responses (Figures 2–5).

TAK1 and IKK Activation
Just as USP5 studies uncovered the potential for untethered
poly-Ub to inhibit the proteasome in some systems, much of
our knowledge of the normal functions of free Ub chains came
to us originally from investigations into Ubc13/Uev1a, an E2
complex that generates unanchored poly-Ub (Xu et al., 2008).
Ubc13/Uev1a is important for innate immunity, as it is required
for intracellular NF-κB signaling that originates with interleukin-
1 receptors (IL-1Rs) and Toll-like receptors (TLRs) (Deng et al.,
2000; Wang et al., 2001).

IL-1 cytokines in humans, including IL-1β, are small,
proinflammatory proteins that bind IL-1Rs on the cell’s surface
(Figure 2). IL-1β binding to IL-1R causes the receptor to form
a complex that includes IL-1R-associated kinase 1 (IRAK-1) and
the E3 ligase (tumor necrosis factor receptor) TNFR-associated
factor 6 (TRAF6). IRAK-1 and TRAF6 dissociate from IL-1R,
and TRAF6 joins transforming growth factor β-activated kinase
1 (TAK1), TAK1-binding protein 1 (TAB1) and TAB2 in a
new complex in the cytoplasm. Activated TAK1 phosphorylates
another cytoplasmic complex, the IκB kinase (IKK) complex,
consisting of two catalytic subunits (IKKα and IKKβ) and a
regulatory subunit (IKKγ/NF-κB essential modulator, known as
NEMO). The IKK complex then phosphorylates IκBα, resulting
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FIGURE 2 | Unanchored poly-ubiquitin in IL-1R signaling. Multiple types of unanchored chains play a role in innate immunity and the NF-κB signaling pathway
against bacteria and fungi. In one NF-κB pathway, cytokines – including IL-1β – bind the IL-1 receptor on the cell surface, setting off a cascade that results in the
activation and nuclear translocation of NF-κB transcription factors. Additional details are provided in the main text.

in its proteasomal degradation and the nuclear translocation
of the freed NF-κB proteins (Figure 2; Chen and Chen, 2013;
Courtois and Fauvarque, 2018).

Xia et al. (2009) were the first to ascribe a physiological
function to unanchored poly-Ub by directly implicating
unanchored, Lys63-linked Ub chains in the activation of TAK1 –
and, by extension, in the activation of a canonical NF-κB
pathway. At the time, it was known that Ubc13/Uev1a is required
for TAK1 to phosphorylate the IKK complex (Deng et al., 2000;
Wang et al., 2001), but the mechanism was unclear. The authors
reconstituted TAK1 activation using purified components
and found that unanchored, Lys63-linked poly-Ub generated
by Ubc13/Uev1a and TRAF6 triggered the phosphorylation
and activation of TAK1 in vitro (Xia et al., 2009). Moving to
cultured cells, the authors used IL-1β to stimulate HEK-293
cells that stably express IL-1R (termed stable IL-1R cells) and
immunoprecipitated the TAK1 complex using TAB2 antibody.
The kinase complex co-immunoprecipitated with endogenous,
USP5-sensitive (suggesting unanchored) poly-Ub, which they
then purified for in vitro experiments. The presence of these
poly-Ub species activated TAK1 in vitro by binding TAB2
at its Npl14 zinc-finger Ub-binding domain, inducing TAK1
phosphorylation. Furthermore, USP5-sensitive poly-Ub species
generated by Ubc13/Uev1a and Ubc5, which can make various
Ub chain types, beyond Lys63-linked species, activated the IKK

complex via NEMO’s Ub-binding domain. The authors proposed
a model by which unanchored, Lys63-linked chains bind
TAB2 and draw together two TAK1 complexes that mutually
phosphorylate and activate one another, while other types of
untethered chains bind and activate NEMO in the IKK complex
(Figure 2).

What type of poly-Ub activates NEMO has been a complicated
question to address. NEMO contains a Ub-binding domain,
the Ub binding in ABIN and NEMO (UBAN) domain,
that is required for NF-κB activation in mouse embryonic
fibroblasts (MEFs) (Rahighi et al., 2009). UBAN can interact
with both anchored and unanchored Ub chains, and although
it preferentially binds linear poly-Ub with as few as two Ub,
longer chains with different linkage types also bind NEMO
in vitro and in cultured cells (Laplantine et al., 2009; Rahighi
et al., 2009; Dynek et al., 2010; Kensche et al., 2012). In
stable, IL-1R HEK-293T cells, IL-1β treatment stimulates the
production of Lys63-linked poly-Ub decorated with Met1-linked
poly-Ub, i.e., branched chains (Emmerich et al., 2013). NEMO
can bind these heterotypic chains, based on immunoprecipitation
experiments, but it was unclear whether any of the associated
poly-Ub species were unanchored. Other in vitro studies showed
that covalent, Met1-linked di-ubiquitination of NEMO activates
the IKK complex more potently than unanchored, Met1-linked
Ub2, but longer poly-Ub chains were not tested. Spectroscopy
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studies suggested that NEMO’s interactions with other proteins
are mediated by long, linear poly-Ub chains: binding of Met1-
linked Ub10 induces a conformational change in NEMO that
promotes its association with IKKβ and IκBα in vitro (Catici
et al., 2015). It seems that Ub-dependent NEMO activity can be
mediated by both substrate-conjugated and untethered poly-Ub,
and the magnitude of the effect may depend on chain length,
linkage composition, and the type of interaction or bond.

Untethered Ub chains have also been linked to the negative
regulation of NF-κB through their interaction with A20, a dual
function enzyme with an N-terminal OTU DUB domain and
seven ZnF domains, and with E3 activity at its C-terminus (Wertz
et al., 2004). A20 suppresses NF-κB activity in the TNFR and
TLR pathways by editing poly-Ub attached to various mediators
and by disrupting the assembly of E2/E3 Ub enzyme complexes
(Wertz et al., 2004; Shembade et al., 2010). Skaug et al. (2011)
discovered an additional, non-catalytic mechanism for A20
suppression of NF-κB activity that depends on unanchored Ub
chains. Through in vitro experiments including GST pulldowns,
Ub-binding assays, and cell-free IKK activation systems, the
authors showed that A20 can form a complex with NEMO and
long (six or more), untethered, Lys63-linked Ub chains, which
then prevents IKK activation. Formation of this complex in vitro
is aided by long, unanchored chains. Lys63-, Lys48-, and Met1-
linked Ub4 had no effect; long chains with linkage types other
than Lys63 were not tested. Overexpression and RNAi-based
studies using HeLa S100 cell extracts confirmed the formation
of an A20-NEMO complex, dependent on TRAF6, Ubc13, and
A20’s ZnF7 Ub-binding domain. The authors concluded that
IL-1β binding to IL1R promotes the assembly of unanchored,
Lys63-linked Ub chains by TRAF6 and Ubc13/Uev1a, which then
recruit the TAK1 and IKK complexes via Ub-binding domains
in TAB2 and NEMO. If A20 is present, it outcompetes TAB2 for
poly-Ub binding, and poly-Ub becomes the scaffold in a complex
with A20 and NEMO. Formation of this complex inhibits IKK
phosphorylation by TAK1, thereby blocking NF-κB signaling
(Figure 2).

The studies summarized above (Rahighi et al., 2009; Xia
et al., 2009; Skaug et al., 2011; Catici et al., 2015) provide
strong evidence that unanchored poly-Ub species contribute to
mammalian innate immune responses to bacteria and fungi by
modulating at least two steps within NF-κB pathways: (1) the
activation of the IKK complex (via TAK1) to phosphorylate IκB
and free NF-κB transcription factors, and (2) the termination of
TNFR- and TLR-regulated NF-κB signaling by A20 (Figure 2).
Collectively, they underscore important roles for free poly-Ub in
normal eukaryotic cell physiology.

RIG-I and IFN-I Pathway Activation
Innate immunity also protects organisms against viruses.
A complete virus particle, or a virion, consists of viral DNA
or RNA surrounded by a protein shell called a capsid. After
entering a host cell, the virion’s capsid is removed and the
genetic material is released into the cytosol. Host cell organelles
replicate the viral genome and assemble new virions that are
released into the extracellular space to infect new cells. Viruses
provoke specific immune responses in their hosts, sometimes
relying on NF-κB pathways. Human immunodeficiency virus 1

(HIV-1), which causes AIDS, activates NF-κB signaling through
TRIM5, an E3 ligase. Interaction with the HIV-1 capsid stimulates
TRIM5 to synthesize free Lys63-linked chains that activate TAK1,
increasing NF-κB activity to fight the infection (Pertel et al.,
2011). Another E3, TRIM21, also produces unanchored Lys63-
linked poly-Ub to activate TAK1 in the presence of antibody-
bound pathogens in the cytosol (McEwan et al., 2013).

In a separate immune pathway, RIG-I-like receptors (RLRs)
detect viral RNA in the cytosol of an infected cell and initiate a
signaling cascade that culminates in the production of antiviral
molecules including IFNs (Figure 3). Transcription factors
involved in this antiviral response include NF-κBs, interferon
regulatory factor 3 (IRF3), and IRF7. In contrast to NF-κB
proteins, which are activated by the degradation of their inhibitor
IκBα, IRF3 and IRF7 are activated by direct phosphorylation
by the non-canonical IKKs, IKKε and TANK-binding kinase 1
(TBK1), which causes the transcription factors to dimerize and
translocate to the nucleus (Paz et al., 2006; Loo and Gale, 2011).

RIG-I is an RLR expressed at low levels in the cytoplasm of
most human cells. When RIG-I detects double-stranded viral
RNA, an ATP-dependent dimerization and conformation change
is triggered, exposing two tandem, N-terminal caspase activation
and recruitment domains (CARDs). These CARDs interact with
a CARD on the N-terminus of the signaling adaptor protein
mitochondrial activator of virus signaling (MAVS), which in
turn activates IKKε and TBK1 to phosphorylate IRF3 and IRF7
(Figure 3; Paz et al., 2006; Loo and Gale, 2011).

To study Ub-dependent mechanisms involved in RIG-I
signaling, Zeng et al. (2010) developed a cell-free model of viral
infection that combines purified RIG-I protein, mitochondrial
and cytosolic extracts, RNA, and ubiquitination enzymes, using
IRF3 dimerization as a reporter for RIG-I and MAVS activity.
Viral or engineered RNA was used to activate RIG-I in cytosolic
extracts, which stimulates MAVS in mitochondrial extracts to
promote the dimerization of IRF3. The authors determined that
Lys63-linked, unanchored Ub chains are potent, direct activators
of RIG-I in vitro, binding its tandem CARD domains after
RIG-1 detects viral RNA (Figure 3). The authors also verified
the presence of this Ub chain type in a human cell line by
devising a method to immunoprecipitate endogenous, free poly-
Ub from HEK-293T cells using recombinant RIG-I N-terminus
[GST-RIG-I(N)]. Some poly-Ub species that bind GST-RIG-
I(N) formed β-mercaptoethanol-sensitive thioester bonds with
E1 Ub-activating enzyme, indicating a free C-terminus, and were
sensitive to both USP5 and the Lys63-specific DUB, CYLD,
leading the authors to identify them as unanchored, Lys63-linked
chains. The endogenous poly-Ub isolated by this method potently
activated IRF3 dimerization in the cell-free system, and their
expression was induced by viral infection of HEK-293T cells.
TRIM25 is at least partially responsible for producing these Ub
chains, as siRNA targeting this E3 ligase diminished Lys63-linked,
free poly-Ub levels in HEK-293T cells; conversely, CYLD siRNA
led to higher levels, indicating a negative regulatory role for the
DUB.

In later studies, Jiang et al. (2012) expanded on these
findings by using the reconstituted RIG-I activation assay
introduced above to demonstrate that non-covalent binding
of free, Lys63-linked Ub chains to RIG-I’s CARD domains

Frontiers in Cell and Developmental Biology | www.frontiersin.org 11 October 2020 | Volume 8 | Article 582361

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-08-582361 October 29, 2020 Time: 10:16 # 12

Blount et al. New Insights Into Unanchored Poly-Ubiquitin

FIGURE 3 | Unanchored poly-ubiquitin in RLR signaling. Unanchored ubiquitin chains play a role in the cellular response to viral RNA via RIG-1 and IFN-I-dependent
pathways. RIG-I-like receptors (left portion) detect cytosolic viral RNA and initiate a signaling cascade that triggers the production of antiviral molecules such as
interferons (IFNs; right portion) that themselves can initiate additional transcriptional responses to viral presence. Detailed information on these pathways is provided
in the main text.

promotes its oligomerization (Figure 3). Sedimentation velocity
analytical ultracentrifugation indicated that RIG-I specifically
forms tetramers in complex with four unanchored poly-Ub; the
4:4 ratio remained constant with all Ub chain lengths tested, from
Ub3 to Ub6. RIG-I formed high molecular weight complexes
in response to viral infection in HEK-293T cells and MEFs,
but not in Ubc13 knockout MEFs, or in RIG-I knockout MEFs
expressing RIG-I that cannot bind Ub, leading the authors to
conclude that RIG-I oligomerization depends on binding to
Lys63-linked poly-Ub generated by Ubc13. When RIG-I was
isolated from both types of knockout MEFs to use in in vitro
IRF3 dimerization assays, only the higher molecular weight RIG-I
aggregates were active, suggesting that Lys63-linked poly-Ub-
dependent oligomerization of RIG-I is necessary for its activity.
Another RLR with a CARD domain, melanoma differentiation-
associated protein 5, behaves similarly to RIG-I in vitro, with
Lys63-linked Ub6 inducing its oligomerization and enhancing its
activation of IRF3 in dimerization assays.

Hou et al. (2011) also used the cell-free RIG-I activation
system to elucidate MAVS activation. Performing biochemical
assays using isolated, crude mitochondrial extracts from
virus-infected or uninfected HEK-293T cells, they determined
that activated MAVS forms large, prion-like fibrils that induce

IRF3 dimerization. MAVS aggregation was induced by RIG-I in
the presence of RNA and Lys63-linked, free Ub4. Based on these
in vitro studies and the previous work from Zeng et al., the
authors constructed a model for MAVS activation in the viral
response that is dependent on binding of unanchored, Lys63-
linked poly-Ub to the CARD domains of RIG-I to trigger MAVS
aggregation on the mitochondrial membrane (Figure 3; Hou
et al., 2011). Crystal structure studies examining covalent and
non-covalent binding between RIG-I and poly-Ub revealed that
Lys63-linked free Ub2 binds RIG-I CARD tetramers, stabilizing
them as a scaffold to recruit and activate MAVS to form fibrils
in vitro (Peisley et al., 2014). Covalent poly-ubiquitination of
RIG-I by TRIM25 also induced MAVS aggregation in vitro,
indicating a potential for multiple Ub-dependent mechanisms to
activate this important antiviral pathway. As mentioned above,
TRIM25 is a Lys63-specific E3 that also produces at least some
of the free poly-Ub chains that activate RIG-I in cultured
human cells (Zeng et al., 2010). In vitro, the RING domain
of TRIM25 partners with distinct E2s like Ubc13/Uev1a or
Ubc5 to produce unanchored or substrate-conjugated Ub chains,
respectively (Sanchez et al., 2016).

Another TRIM E3, TRIM6, is also involved in viral immunity
through RIG-I signaling (Rajsbaum et al., 2014). As mentioned
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above, IFN IRF3’s phosphorylation and activation are mediated
by IKKε (Figure 3). Co-immunoprecipitation experiments using
HEK-293T cells and primary human monocyte-derived dendritic
cells showed an interaction between TRIM6 and IKKε, and
knockdown of TRIM6 depleted IFN-mediated antiviral activity in
human lung epithelial A549 cells (Rajsbaum et al., 2014). In vitro,
IKKε interacted with free, Lys48-linked poly-Ub synthesized
by TRIM6 and the E2, UBE2K, and USP5-sensitive poly-Ub
interacted non-covalently with IKKε in HEK-293T cells, based
on co-immunoprecipitation studies. By confocal microscopy,
TRIM6 and IKKε co-localize with Ub-rich, cytoplasmic puncta
in HeLa cells, and the formation of these puncta was disrupted
by the introduction of USP5, which the authors interpreted
to indicate the presence of free poly-Ub in the observed
foci (Rajsbaum et al., 2014). In vitro phosphorylation assays
revealed that untethered, Lys48-linked chains comprising 2 to
16 Ub moieties induce IKKε autophosphorylation, causing IKKε

oligomerization and IRF3 activation.
IKKε also contributes to the production of IFN-stimulated

genes (ISGs) normally controlled by the JAK-STAT pathway. To
activate this pathway, type I IFNs (IFN-I) bind heterodimeric
interferon-α/β receptors (IFNARs) on the cell surface, and Janus
kinase 1 (JAK1) and Tyrosine kinase 2 (TYK2) phosphorylate
signal transducer and activator of transcription 1 (STAT1).
Phosphorylated STAT1 forms the IFN-stimulated gene factor 3
(ISGF3) complex with STAT2 and IRF9, which translocates to
the nucleus to induce transcription of ISGs (Hage and Rajsbaum,
2019). In vitro, IKKε activated by Lys48-linked unanchored poly-
Ub directly phosphorylates STAT1 to promote ISGF3 complex
formation and increase ISG production (Rajsbaum et al., 2014).
Taken together, these studies (Zeng et al., 2010; Hou et al., 2011;
Jiang et al., 2012; Rajsbaum et al., 2014; Hage and Rajsbaum,
2019) highlight the importance of two types of unanchored
poly-Ub in innate immune pathways (Figure 3).

The participation of free poly-Ub in various immune
responses is evidence that these chains have direct, physiological
effects that are not limited to the proteasomal toxicity previously
seen in yeast and in vitro systems (Figures 2, 3). As the pool of
research on unanchored Ub chains has grown, there is increasing
evidence that chain length and the type of linkage within the
chain dictates its specific role in immune signaling [e.g., Lys63-
linked chains interact with RIG-I, while Lys48-linked chains
activate IKKε (Zeng et al., 2010; Jiang et al., 2012; Rajsbaum et al.,
2014)]. The roles of other linkage types remain to be studied in
immune signaling and in other physiological processes; thus, it is
quite possible that distinct species of free poly-Ub have yet-to-be
discovered cellular functions.

OTHER PHYSIOLOGICAL ROLES OF
UNANCHORED UBIQUITIN CHAINS

Other potential regulatory roles for free poly-Ub species have
emerged, beyond their involvement in immune pathways. Braten
et al. (2012) expressed a Ub1GG mutant in yeast and performed
a gene deletion screen to determine which E2s and E3s
are responsible for constructing Ub1GG-terminal chains. By
exposing these yeast strains to stressors, they observed that

free Ub chains are upregulated during certain types of stress,
including heat shock, DNA damage, and oxidative stress, and
that the yeast E3, UFD4 generates unanchored chains under basal
conditions, while another E3, HUL5 is responsible for most of
the ones generated in response to a DNA alkylation agent (Braten
et al., 2012). This study did not determine a physiological role for
the free chains generated, but their stress-induced upregulation
and the identification of two E3s responsible for them is notable
and warrants further examination in this model organism and
beyond.

Heat shock also induces the reversible formation of
cytoplasmic stress granules, which are small, dense aggregations
of proteins and mRNA. In cultured HeLa cells, USP5 is recruited
to heat shock-induced stress granules, and its knockdown
prevents their disassembly, leading Xie et al. (2018) to investigate
the potential involvement of unanchored poly-Ub in this process.
Heat shocking cells expressing Ub1GG led to the formation of
stress granules at the same rate as cells expressing wild-type Ub,
but more than twice as many Ub1GG-expressing cells did not
clear the newly formed granules (Xie et al., 2018). The authors
concluded that untethered poly-Ub interferes with the process of
disassembling stress granules; the specifics of this action remain
to be determined.

Some cell stressors, including heat shock, can overwhelm
or disrupt the proteasome, leading to a buildup of misfolded
proteins in the cytosol. When the proteasome cannot meet
demand, these proteins form Ub-rich aggregates, which are then
amassed into larger inclusions called aggresomes. Aggresomes
may be cytoprotective, as they prevent interactions with
potentially toxic, misfolded proteins, and they can be eventually
cleared via autophagy (Rodriguez-Gonzalez et al., 2008). Ouyang
et al. (2012) linked aggresome formation to unanchored poly-
Ub associated with misfolded, aggregated proteins. In vitro
binding assays revealed a direct interaction between the free
C-termini of these Ub species and the ZnF-UBP domain of
histone deacetylase 6 (HDAC6), which uses the dynein motor
complex to transport aggregates to the microtubule organizing
center, where aggresomes are formed (Ouyang et al., 2012).
Interestingly, proteasomes associate with aggresomes, despite
their inability to degrade misfolded protein aggregates within
them (Wigley et al., 1999). Based on aggresome clearance
assays and immunoprecipitation experiments in cultured HEK-
293T cells, unanchored Lys63-linked Ub chains created by en
bloc cleavage by the proteasomal DUB, POH1 bind to and
activate HDAC6, promoting clearance of aggresomes (Hao et al.,
2013). In human lung carcinoma cells, the chaperone Hsp90
facilitates the remodeling of aggresome-associated proteasomes,
freeing POH1 to efficiently release Lys63-linked unanchored Ub
chains that activate HDAC6 and promote autophagic clearance
(Nanduri et al., 2015).

Another fascinating aspect of free Ub chains is their
counterintuitive contribution to the survival and propagation of
viruses within a host organism. Viruses often inhibit immune
signaling or exploit normal cellular processes to increase
infection, sometimes by directly manipulating unanchored poly-
Ub signaling (Hage and Rajsbaum, 2019). Nipah virus, a zoonotic
virus that can be fatal in humans, has a matrix protein that
antagonizes the RIG-I and IFN-I immune pathways by inhibiting
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the E3 ligase TRIM6’s production of Lys48-linked unanchored
chains; consequently, IKKε is not activated to phosphorylate
IRF3 and STAT1, reducing IFN and ISG production (Bharaj
et al., 2016). Influenza A viruses (IAVs) use untethered poly-
Ub to promote viral uncoating: mimicking misfolded protein
aggregates, IAV capsids containing free poly-Ub species recruit
HDAC6. Together with cytoskeletal motor proteins, HDAC6
processes the capsid as an aggresome, disassembling it and
releasing the viral DNA (Banerjee et al., 2014).

Thus far, not many physiological functions have been ascribed
to unanchored poly-Ub; but, it is important to note that
they indeed have innate roles and do not appear to simply
be byproducts of chain assembly and disassembly. Clearly,
additional investigations are needed in intact organisms and in
specific cell types and tissues to explore and understand their
physiological implications. In the next section, we further explore
the idea of free Ub chain toxicity and utilization by discussing
outcomes from studies in an intact, multicellular organism, the
fruit fly.

REDUCED OR ABSENT TOXICITY FROM
UNANCHORED POLY-UBIQUITIN IN
Drosophila melanogaster

The involvement of free poly-Ub in several cellular pathways
casts them in a new, more complex light. Given that several
types of unanchored chains are now well-characterized as second
messengers in immune pathways, it is important to understand
their regulation. How do cells maintain optimal levels of the
specific types of free poly-Ub they need? When free poly-Ub
levels are elevated in an intact organism, is there associated
proteasomal inhibition, and furthermore, is that inhibition toxic?
What additional signaling roles might there be for untethered
Ub chains? In an effort to better understand the physiological
functions, regulation, and potential toxicity of unanchored
chains, our laboratory conducted a series of studies to determine
their impact in an intact, multi-cellular organism. Our collective
results provide additional nuance to the emerging understanding
of the diversity of unanchored poly-Ub species and their narrow
potential for toxicity.

We began our investigations by designing two types of
unanchored poly-Ub transgenes to express in D. melanogaster.
Both types of chains consist of six Ub in tandem and lack internal
“GG” motifs that are necessary for isopeptide bond formation
and disassembly (Komander et al., 2009; Komander and Rape,
2012; Blount et al., 2018; Clague et al., 2019). Whereas one
type of chain also lacks a terminal “GG,” and thus cannot be
conjugated onto other proteins (referred to as Ub6-Stop), the
other chain type contains a “GG” motif at its end to allow for
protein conjugation (referred to as Ub6-GG; Figure 4). Their
expression was enabled by the binary, Gal4-UAS system, which
allows for tissue-specific as well as timed expression through
specific “drivers” and compounds delivered in fly media (Brand
and Perrimon, 1993; Brand et al., 1994; Osterwalder et al., 2001;
Roman et al., 2001).

Biochemical analyses of the Drosophila lines generated with
these transgenic free Ub chains showed robust expression and
ample modification by endogenous Ub, effectively creating
branched Ub chains with various linkage combinations (Blount
et al., 2018). When expressed in all cells, Ub6 did not impact
Drosophila development or adult fly longevity under both normal
and heat-stressed conditions. Specific expression in several
tissues had moderate effects on longevity, with glial and neuronal
expression reducing fly lifespan by a few days (Blount et al., 2018).
Overall, longevity results indicated that unanchored chains are
not necessarily toxic.

Because of studies indicating an inhibitory role for
unanchored poly-Ub at the proteasome in vitro and in yeast,
proteasomal activity was assessed in flies expressing, or not,
Ub6-Stop in all cells. Expression of Ub6-Stop (which cannot itself
be conjugated onto other proteins and thus remains unanchored)
did not affect protein levels of proteasomal components, nor did
it hinder the turnover of known proteasomal substrates (Blount
et al., 2018), suggesting that these linear Ub species do not affect
proteasomal function in the manners observed with certain free
chains in vitro and in yeast. Genetic and biochemical studies
indicated that Ub6-Stop is itself degraded by the proteasome,
highlighting this mechanism as a key regulator of the stability of
linear, unanchored poly-Ub in the fly.

Generally, ubiquitination is considered to occur via serial
addition of mono-Ub onto an extending chain or substrate.
Intriguingly, the conjugation-capable Ub6-GG could be attached
as a single unit onto other proteins in flies and in cultured, HEK-
293 mammalian cells (Blount et al., 2018). These results suggest
that Ub recycling need not only occur at the level of a monomer;
in fact, a whole chain might be removed from one substrate and
attached onto another en bloc. While the notion of en bloc transfer
of an intact chain, without its disassembly into mono-Ub, has
been purported before and has been observed in vitro (Bamezai
et al., 1989; Chen and Pickart, 1990; Li et al., 2007; Masuda et al.,
2012), insofar as we know it had not been shown before in a cell or
intact animal. These findings led to the possibility of free poly-Ub
regulation beyond their disassembly into mono-Ub: they can be
degraded by the proteasome, or become conjugated onto other
proteins whole-sale, painting a wider tableau of possibilities for
unanchored chain regulation in the cell.

Because of the surprising finding that untethered, linear poly-
Ub species are not toxic in flies (Blount et al., 2018), we wondered
whether Drosophilae mount a response toward these chains. We
examined changes at the transcriptional level through RNA-
seq, using flies expressing everywhere Ub6-Stop, Ub6-GG, or
no transgene with the same genetic background. The presence
of each type of Ub6 chain led to significant changes in the
expression of approximately 90 fly genes, but with no clear,
coordinated cellular response to indicate the induction of any
particular pathways (Blount et al., 2019). Only 30% of the altered
Drosophila transcripts observed have assigned gene names, and
27% of the genes had no predicted function, opening up the
potential for the future identification and characterization of
proteins that interact with untethered poly-Ub. It appears that
the expression of unanchored poly-Ub in Drosophila translates
to minimal transcriptomic or organismal response, judging by
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FIGURE 4 | Summary of findings from transgenic, unanchored poly-ubiquitin in Drosophila. Overview of the composition, processing, and physiological effects of
unanchored ubiquitin chains used in Drosophila melanogaster. Red arrows: worsening of phenotypes and outcomes as free poly-ubiquitin is mutated to become
resistant to its own ubiquitination. Green arrows: improvement of phenotypes and outcomes as ubiquitination-resistant, free poly-ubiquitin is further modified to
inactivate its Ile44 hydrophobic patch. Yellow circles: endogenous ubiquitin proteins.

the low number of altered transcripts and a lack of specificity
for Ub-related pathways in those transcripts that were altered
(Blount et al., 2019).

The lack of notable toxicity from linear hexa-Ub chains
in Drosophila does not dovetail with earlier studies that
strongly indicated that unanchored chains toxically inhibit the
proteasome in yeast (Hadari et al., 1992; Amerik et al., 1997;
Piotrowski et al., 1997; Thrower et al., 2000), leading us to
wonder how unique characteristics of unanchored poly-Ub
species control their effects. As previously mentioned, Ub6-
Stop is ubiquitinated in flies, introducing endogenous Ub that
could potentially change the way these chains are handled
(Blount et al., 2018). To assess the influence of endogenous
ubiquitination on the toxicity of unanchored chains, we mutated
all lysine residues in Ub6-Stop to alanine, creating Ub6-Stop-
K0, a ubiquitination-resistant, linear hexa-Ub chain that cannot
be cleaved by DUBs or conjugated onto a substrate (Figure 4).
Mirroring the longevity assays we used to characterize Ub6,
we observed that Ub6-Stop-K0 is significantly more toxic than
its ubiquitination-prone counterpart: its expression markedly
reduces fly lifespan or is developmentally lethal, depending

on expression pattern (Blount et al., 2020). Compared to the
ubiquitination-prone Ub6, turnover of Ub6-Stop-K0 is slowed
but not halted, indicating that ubiquitination aids in the turnover
of linear Ub6, but is not essential to its eventual clearance
(Blount et al., 2020).

To explain the enhanced toxicity of ubiquitination-resistant
Ub6, we turned to the previously described studies linking
unanchored poly-Ub to NF-κB pathways (Xia et al., 2009; Rahighi
et al., 2009; Zeng et al., 2010; Hou et al., 2011; Skaug et al.,
2011; Jiang et al., 2012; Rajsbaum et al., 2014; Catici et al., 2015),
reasoning that Ub6-Stop-K0 could increase NF-κB signaling
(Zhou et al., 2005; Valanne et al., 2011; Chen and Chen, 2013;
Myllymaki et al., 2014; Courtois and Fauvarque, 2018). In RNAi
studies, knockdown of NF-κB components extends the lifespan of
Ub6-Stop-K0 flies, although not to the extent of controls (Blount
et al., 2020). RT-qPCR revealed that Ub6-Stop-K0 expression
causes an increase in mRNA levels of several of these NF-κB
components (Blount et al., 2020). Based on these results, we
concluded that ubiquitination-resistant, linear Ub chains induce
aberrant NF-κB signaling, accounting for at least some of its
toxicity in flies.
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The studies described in section “Unanchored Chains and
Their Physiological Roles in Immunity” show direct interaction
between unanchored Ub chains and several Ub-binding proteins
that specifically recognize Ub’s Ile44-centered hydrophobic patch,
including TAB2 and NEMO (Beal et al., 1996, 1998; Sloper-
Mould et al., 2001; Dikic et al., 2009; Komander and Rape,
2012). We thus examined the hydrophobic patch’s role in NF-κB-
mediated toxicity from Ub6-Stop-K0, mutating Ile44 to alanine
in each Ub moiety to create the binding-deficient mutant Ub6-
Stop-K0-Ile44a (Figure 4). These mutations reversed most of
the toxicity as well as aberrant NF-κB signaling in flies and also
in cultured, HEK-293T cells (Blount et al., 2020). These results
indicated a role for free, linear, ubiquitination-resistant chains
in NF-κB signaling that depends on an intact Ile44 hydrophobic
patch; without Ile44, ubiquitination-resistant Ub6 likely is unable
to interact with Ub-binding NF-κB components, prohibiting
much of its toxicity in vivo.

Taken together, these studies (Blount et al., 2018, 2019,
2020) add yet more complexity to the general understanding of
unanchored poly-Ub. Clearly, free Ub chains are not always toxic.
In flies, linear hexa-Ub chains are well tolerated, as long as they
can be ubiquitinated or conjugated onto other proteins. Due to

the current unavailability of genetic techniques to stably express
in the fly chains of different topologies and linkages, we were
restricted to using linear, head-to-tail chains. However, it bears
highlighting that these linear chains are quickly and abundantly
decorated with endogenous Ub, and are thus transformed into a
pool of free Ub species that comprises linear as well as branched
chains consisting of M1, K27, K48, and K63 linkages (Blount
et al., 2018). Consequently, the findings summarized in this
section pertain to various types of free poly-Ub in vivo and, with
the above caveats in mind, may be extrapolated to apply more
widely to other types of chains. Additionally, the fact that all
of these Ub6 mutants are based on the same backbone – Met1-
linked hexa-Ub – but behave differently in Drosophila is evidence
of the complicated nature of unanchored poly-Ub in vivo.

PERSPECTIVES

The studies described in this review provide a complex picture of
unanchored poly-Ub handling and function. It is now apparent
that the previous understanding of these chains – that they
only exist briefly before being disassembled by DUBs to prevent
toxicity and allow mono-Ub recycling – is only part of the

FIGURE 5 | Proposed model of unanchored ubiquitin chain use and control. The current model presents one primary mechanism of handling free chains, their
disassembly. Based on increasing evidence, we propose additional outcomes. Free chains can be degraded by the proteasome without inhibiting it, either as they
are, or with additional ubiquitination by endogenous ubiquitin (yellow circles). Another mechanism may be achieved through en bloc conjugation onto other
substrates. Unanchored ubiquitin chains may also associate with ubiquitin-binding proteins in a “reserve” pool for later use in any of the other suggested routes of
management (dotted lines). Untethered poly-ubiquitin species also participate in normal immune signaling and response to cellular stress. Lack of control of free
chains could lead to adverse outcomes, such as when unanchored poly-ubiquitin that cannot themselves become ubiquitinated activate NF-κB signaling. These
possibilities are probably fluidly connected to enable free chain designation among different roles and regulatory routes. We did not depict these intersections in an
effort of simplifying the diagram. Additional regulatory mechanisms and functions likely exist.
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picture. These members of the Ub family have clear physiological
roles and seem to be controlled in ways that have not garnered
much attention so far. It appears that untethered Ub chains are
regulated through various mechanisms. Not all of the possibilities
we present next need to exist and operate at the same time in
each cell. They may be cell type- and cell condition-dependent.
Also, evolutionary differences may place more weight on some
such pathways compared to others.

We propose the following routes of unanchored poly-Ub
control and recycling (Figure 5). The first and in all likelihood
major route of regulation and recycling remains the disassembly
of free chains into mono-Ub so that they can be reused to
modify other proteins. A second route may be that of unanchored
poly-Ub degradation, either as they are or through additional
decoration by endogenous Ub. A third mechanism of free
poly-Ub use and control may be their en bloc conjugation
onto another substrate, essentially removing them from the
unanchored population. Additionally, free chains may associate
with Ub-binding proteins in a type of “reserve” pool until they
can be re-utilized, which may function in conjunction with the
other proposed routes of unanchored chain management. In
an example of the latter route – and under special conditions
where they may not be able to be dispensed of or controlled in
other ways – free Ub chains can interact with NF-κB signaling
components, causing abnormal signaling and toxicity. Free poly-
Ub is clearly involved in normal immune signaling, and also
appears to be involved with stress granule clearance. What we
present is not an exhaustive tableau of potential outcomes; further
studies will likely lead to the discovery of additional functions and
cellular responses.

It may seem that more recent studies revealing unanchored
Ub’s physiological roles and lack of toxicity contradict earlier
studies that characterized free poly-Ub as harmful, but the
seeming discordance only highlights the importance of Ub chain
type and context. Some of the previous in vitro and yeast
studies that suggested proteasomal inhibition by untethered poly-
Ub focused on Lys48-linked chains (Piotrowski et al., 1997;
Thrower et al., 2000; Dayal et al., 2009), while the Ub6 chains
expressed in Drosophila are head-to-tail (Blount et al., 2018,
2019). In principle, it makes sense that unanchored chains that
resemble poly-Ub attached to proteasome-targeted proteins –
which are often Lys48-linked – could outcompete proteasomal
substrates in a manner not observed with linear chains that
are not traditionally associated with proteasomal degradation
(Piotrowski et al., 1997; Thrower et al., 2000; Komander and
Rape, 2012). This out-competition most likely depends on chain
abundance compared to endogenous substrates. [We should note
here that in the fly linear chains that could become ubiquitinated,
including with Lys48 linkages, did not impact proteasome activity
and both ubiquitination-capable and -resistant free Ub6 were
turned over in the fly, with the latter being a little delayed
in the earlier stages of its degradation (Blount et al., 2018,
2020).] Proximity to the proteasome is likely key: in vitro
proteasome assays allow close association between Ub chains
and the proteasome, with few proteins present to interfere,
while Ub6 expression in transgenic flies does not guarantee
such proximity. It is also clear that free poly-Ub toxicity is
dependent on post-translational modification of the chain and

its interactions with other proteins. Linear Ub6 species did not
become particularly toxic until they could no longer be used or
modified, at which point they were highly toxic in a manner
dependent on their ability to interact with other proteins’ Ub-
binding domains. Future studies need to take into account
post-translational modifications and interactions that affect free
poly-Ub function and processing.

It also stands to reason that there could be evolutionary
differences between single-cell organisms like yeast, in which
free poly-Ub is toxic, and higher order organisms that may have
evolved compensatory mechanisms or pathways that utilize these
chains. One function for untethered Ub chains that may be
conserved between yeast and mammals involves stress granules:
in cultured HeLa cells, free poly-Ub interferes with the clearance
of stress granules (Xie et al., 2018). Yeast also form stress granules
(Wheeler et al., 2017), and they produce free poly-Ub species
in response to stressors like heat shock and DNA alkylation
(Braten et al., 2012), but an interplay between stress granules and
unanchored Ub chains has not been reported in yeast. In contrast
to the conservation of stress granules, we described several studies
linking unanchored Ub chains to signaling pathways that are not
present in yeast (Srinivasan et al., 2010). Unanchored Ub chains
can both positively and negatively regulate NF-κB pathways and
viral response in multi-cellular organisms (Xia et al., 2009; Zeng
et al., 2010; Hou et al., 2011; Skaug et al., 2011; Jiang et al.,
2012; Emmerich et al., 2013; Peisley et al., 2014; Rajsbaum et al.,
2014; Catici et al., 2015), but yeast do not have bona fide NF-κB
pathways. Continued studies will be essential to the discovery of
additional physiological functions for free poly-Ub that may not
be present in single-cell organisms.

CONCLUSIONS AND FUTURE
DIRECTIONS

Exciting research opportunities await unanchored Ub chain
biology. Different species of free poly-Ub have unique effects; it
will be important to distinguish the type of chain responsible for
specific actions within cells, and under what circumstances these
actions take place. Markers that recognize unanchored poly-Ub
with specific linkage types could be developed to aid in the
identification of chain types that are upregulated during certain
stress responses, or in the mapping of the cellular distribution
of different, untethered poly-Ub species. Since poly-Ub can be
transferred en bloc to substrates in vivo, it will be interesting
to investigate whether there are situations in which cells may
prefer to use pre-formed chains for ubiquitination – e.g., perhaps
the increased demand to replenish ATP during exercise (Baker
et al., 2010) promotes the use of pre-formed chains as an
ATP-preserving method of poly-ubiquitination. Proteomic-based
studies alongside genetic and biochemical investigations will be
needed to identify E2s and E3s that can transfer Ub chains en
bloc, and they can provide additional clues about pathways that
involve free chains by identifying signaling proteins that bind or
interact with them.

The collection of studies summarized here highlights
that unanchored poly-Ub species are multi-faceted entities.
These prior investigations necessitate further examinations to
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comprehensively understand the consequences of their presence
in the cell and, by extension, to better understand the intricacies
of Ub biology and its roles in normal physiology and in disease.
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