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Hepatocellular carcinoma (HCC) has a dismal long-term outcome. We aimed to
construct a multi-gene model for prognosis prediction to inform HCC management.
The cancer-specific differentially expressed genes (DEGs) were identified using RNA-
seq data of paired tumor and normal tissue. A prognostic signature was built by
LASSO regression analysis. Gene set enrichment analysis (GSEA) was performed to
further understand the underlying molecular mechanisms. A 10-gene signature was
constructed to stratify the TCGA and ICGC cohorts into high- and low-risk groups where
prognosis was significantly worse in the high-risk group across cohorts (P < 0.001 for
all). The 10-gene signature outperformed all previously reported models for both C-index
and the AUCs for 1-, 3-, 5-year survival prediction (C-index, 0.84 vs 0.67 to 0.73; AUCs
for 1-, 3- and 5-year OS, 0.84 vs 0.68 to 0.79, 0.81 to 0.68 to 0.80, and 0.85 vs
0.67 to 0.78, respectively). Multivariate Cox regression analysis revealed risk group and
tumor stage to be independent predictors of survival in HCC. A nomogram incorporating
tumor stage and signature-based risk group showed better performance for 1- and 3-
year survival than for 5-year survival. GSEA revealed enrichment of pathways related
to cell cycle regulation among high-risk samples and metabolic processes in the low-
risk group. Our 10-gene model is robust for prognosis prediction and may help inform
clinical management of HCC.

Keywords: hepatocellular carcinoma, expression, prognosis, signature, risk stratification

INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most common cancer and the fourth leading
cause of cancer mortality worldwide (Bray et al., 2018). While the vast majority of HCC
patients are no longer eligible for curative therapy at the time of diagnosis, those who
have undergone curative resection or transplantation still face a 70% risk of recurrence in
5 years (Bruix et al., 2014; Mazzaferro et al., 2014; European Association for the Study
of the Liver. Electronic address: easloffice@easloffice.eu, and European Association for the
Study of the Liver, 2018). The dismal prognosis of HCC can be attributed to a number of
factors and there exists a demand for a model that can effectively identify patients at a high
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risk of recurrence/metastases so that clinical actions could be
taken proactively. Conventional prognostic models for HCC
mainly involve integration of clinicopathological factors such
as tumor size, number of lesions, microvascular invasion,
and cirrhosis, supplemented by serum levels of certain single
markers such as α−fetoprotein (AFP) and des−gamma
carboxy−prothrombin (DCP) (Marrero et al., 2009; Chan et al.,
2018). However, their specificity and sensitivity do not support
distinguishment of meaningful patterns of prognosis, especially
with the substantial heterogeneity of HCC.

With the advent of massively parallel sequencing, molecular
characterization has identified key driver pathways in HCC
and several schemes for subtyping HCC have been proposed
according to genomic, transcriptomic, microRNA (miRNA), and
proteomic profiles (Boyault et al., 2007; Hoshida et al., 2009;
Guichard et al., 2012; Schulze et al., 2015). Over the past decade,
gene signatures based on aberrant transcriptional profiles have
gained widespread attention for demonstrating great promise in
prognosis prediction for HCC. For example, Long et al. (2018)
established a four-gene signature that could effectively recognize
HCC patients at a high risk of death. Liu et al. (2018) on the
other hand, identified a four differentially methylated gene pairs
to predict recurrence. Several other reports also described mRNA
expression signatures comprising various numbers of genes using
similar approaches (Ke et al., 2018; Wang et al., 2018; Zheng
et al., 2018; Chen et al., 2019; Liu et al., 2019; Qiao et al., 2019;
Liu et al., 2020). However, research into molecular signatures for
prognosis prediction is still in its early stage. For example, there is
no consensus regarding the number and the identity of the genes
taken into account by the models reported so far. Most of them
displayed modest predictive capacity and were only validated
retrospectively. Therefore, a considerable amount of evidence is
required for this subfield to evolve and mature.

In this work, we developed a 10-gene prognostic signature
using LASSO Cox regression model which outperformed
previously reported HCC prognostic models and proposed
a nomogram combining tumor stage and signature-defined
risk group. Gene Set Enrichment Analysis (GSEA) was
performed to gain a better understanding of the underlying
mechanisms of our model.

MATERIALS AND METHODS

Data Collection
For the 331 HCC patients of The Cancer Genome Atlas (TCGA)
database, tumoral RNA-seq data were downloaded from the
Genomic Data Commons (GDC) data portal1 (TCGA) and
49 of the tumors also had mRNA expression data of paired
normal tissue samples. Clinical data and mutational data were
downloaded using the University of Santa Cruz (UCSC) Xena2

and cBioPortal3 platforms. For the 213-patient HCC cohort of the
Gene Expression Omnibus database (GEO), microarray data as

1https://portal.gdc.cancer.gov/
2https://xena.ucsc.edu/
3http://cbioportal.org/

well as clinical data were downloaded with an accession number
of GSE145204 and all of the tumors had mRNA expression data
of paired normal tissue samples (Roessler et al., 2010). For the
LIRI-JP cohort containing 240 HCC patients, RNA-seq data and
clinical data were downloaded from the International Cancer
Genome Consortium (ICGC) portal5. All data were downloaded
from the public databases hence it was not required to obtain
additional ethical approval for our study.

Identification of Genes Differentially
Expressed Between the Tumor and
Normal Tissue Samples
The raw count data of the 49 paired tumor and normal
samples of the TCGA cohort were normalized using
the Trimmed Mean of M-values (TMM) method and
comparative analysis was conducted using the paired
t-test to identify differentially expressed genes (DEGs)
(Robinson and Oshlack, 2010). Any gene with a false
discovery rate (FDR) of <0.05 and a |log2FoldChange|
higher than a cutoff as determined using the formula:
mean[abs(log2FoldChange)] + 2 × sd[abs(log2FoldChange)],
was regarded as a candidate DEG. Data of the GSE14520 cohort
were analyzed in a similar fashion. Genes that were consistently
up-regulated or down-regulated in tumor tissue in both cohorts
were confirmed as DEGs.

Development of the 10-Gene Signature
The 331-patient TCGA cohort was used as a discovery cohort to
develop a gene signature for prognosis prediction. Only patients
with an overall survival (OS) longer than one month were
included for survival analyses. Univariate Cox regression analysis
was performed to identify DEGs that are significantly associated
with survival (as defined by a P value of <0.05). LASSO Cox
regression analysis was subsequently conducted to select a panel
of genes that are related with OS in HCC patients using the
glmnet R package (Friedman et al., 2010). In order to select the
optimal lambda parameters and corresponding coefficients in
LASSO Cox regression, we performed 200 iterations of 10-fold
cross-validation with binomial deviance minimization criteria on
the discovery cohort. The parameters lambda via 1-SE (standard
error) criteria was selected to screen for the optimal gene set. To
determine the optimal gene composition, best subsets regression
was adopted for gene selection (Farkas and Heberger, 2005).
Finally, a 10-gene signature for predicting prognosis in TCGA
discovery cohort was constructed where risk score could be
calculated using the following formula:

Risk Score (RS) =
n∑
i

(
Exp∗i Coefi

)
where n is the number of prognostic genes, Expi is the
expression level of the gene, and Coefi is the estimated regression
coefficient of the gene.

4https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse14520
5https://dcc.icgc.org/projects/LIRI-JP
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FIGURE 1 | A flow chart showing the development and validation of the 10-gene signature.

Validation of the 10-Gene Signature
In order to validate the predictive capacity of the signature,
the TCGA discovery cohort was divided into a training dataset
and a validation dataset using the createDataPartition function
in the caret R package. The 240 HCC patients from the
ICGC database served as a separate validation cohort. Briefly,
risk score was calculated for each patient. The surv_cutpoint
function in survminer R package was introduced to determine
the optimal cut-off value for dissecting the population into
a high-risk subset versus a low-risk subset, according to
the correlation between expression levels of the signature
genes and patients’ OSs in the training dataset. Kaplan–
Meier (KM) survival curves combined with a log-rank test
were used to test the differences in prognosis between high-
and low-risk groups using the survival R package. Time-
dependent receiver operating characteristic (ROC) analysis and
Concordance index (C-index) were adopted to evaluate the

performance of the prognostic signature for predicting 1-, 3-, and
5-year survival.

Identification of Independent Prognostic
Markers
To identify independent prognostic markers, the 10-gene
signature may predict prognosis and other clinicopathological
factors such as age, gender, race, body mass index (BMI), AFP,
residual tumor, tumor mutational burden (TMB), tumor grade,
TNM stage, and vascular tumor invasion were subjected to
univariate and multivariate Cox regression analyses.

Construction and Assessment of a
Predictive Nomogram
All independent prognostic factors as revealed by multivariate
analyses were combined to derive a nomogram for predicting
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TABLE 1 | Patient characteristics in the TCGA training and validation datasets.

Characteristics Train (N = 199) Test (N = 132) P-value

Age (IQR) 58.96 (51− 69) 60.33 (54− 68) 0.346

Gender (%) 0.526

Male 139 (69.8) 87 (65.9)

Female 60 (30.2) 45 (34.1)

Race (%) 0.978

Asian 89 (44.7) 58 (43.9)

Not Asian 110 (55.3) 74 (56.1)

AFP (%) 0.482

≥400 34 (22.1) 26 (26.8)

<400 165 (77.9) 106 (73.2)

BMI (%) 0.898

≥25 88 (48.6) 59 (47.2)

<25 111 (51.4) 73 (52.8)

Inflammation (%) 0.653

66 (33.2) 49 (37.1)

Mild 52 (26.1) 38 (28.8)

None 70 (35.2) 40 (30.3)

Severe 11 (5.5) 5 (3.8)

Tumor_grade (%) 0.613

3 (1.5) 2 (1.5)

G1 26 (13.1) 25 (18.9)

G2 98 (49.2) 56 (42.4)

G3 65 (32.7) 45 (34.1)

G4 7 (3.5) 4 (3.0)

Tumor_stage (%) 0.129

Not reported 8 (4.0) 13 (9.8)

Stage i 91 (45.7) 64 (48.5)

Stage ii 46 (23.1) 27 (20.5)

Stage iii 53 (26.6) 26 (19.7)

Stage iv 1 (0.5) 2 (1.5)

Residual_tumor (%) 0.845

5 (2.5) 2 (1.5)

R0 175 (87.9) 120 (90.9)

R1 8 (4.0) 5 (3.8)

R2 1 (0.5) 0 (0.0)

RX 10 (5.0) 5 (3.8)

Vascular_tumor_invasion (%) 0.404

27 (13.6) 26 (19.7)

Macro 11 () 5 (3.8)

Micro 52 (26.1) 29 (22.0)

None 109 (54.8) 72 (54.5)

TMB [mean (SD)] 5.91 (4.83) 7.70 (13.38) 0.099

the probability of 1-, 3-, and 5-year survival of HCC. The
performance of the nomogram was evaluated using Harrell’s
concordance index (C-index) and calibration curves. Decision
curve analysis (DCA) was employed to compare the reliability of
the nomogram with that of tumor stage or risk group alone.

Gene Set Enrichment Analysis
Gene set enrichment analysis was performed on the high-risk
and low-risk subgroups of the TCGA discovery cohort using
GSEA v.3.0. Molecular Signatures Database v.7.0 was searched

FIGURE 2 | Time dependent ROC analyses and Kaplan–Meier analysis of the
10-gene signature in predicting 1-, 3-, and 5-year survival in (A) the training
set, (B) the validation set, (C) the TCGA discovery cohort, and (D) the ICGC
validation cohort.

to identify enriched pathways associated with survival in the
two risk groups, respectively. Gene sets with a P < 0.05 and a
FDR < 25% were considered significantly enriched.

Statistical Analyses
Statistical analyses were performed using R software v3.6.0 (R
Foundation for Statistical Computing, Vienna, Austria). If not
specified otherwise, tests were two-tailed, and a P-value of <0.05
was considered statistically significant.

RESULTS

DEG Identification
A flow chart illustrating the study process is presented in
Figure 1. All data were obtained from surgical tissue samples
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FIGURE 3 | Comparison of the 10-gene signature with eight previously reported signatures using time-dependent ROC analyses for predicting 1-year (A), 3-year
(B), and 5-year (C) survival.

and post-operative survival data were used for all subsequent
survival analyses. By analyzing the RNA-seq data of the 49
paired tumor and normal tissue samples of the TCGA cohort,
the expression of 12,301 genes were found to be significantly
altered (270 up-regulated and 12,031 down-regulated) in the
tumor tissue. Similarly, 235 genes were up-regulated and 10,008
were down-regulated in the tumor samples according to the
GSE14520 microarray dataset. By taking the intersection of the
two datasets, 5,970 genes (50 up-regulated and 5,920 down-
regulated) were confirmed as differentially expressed in tumor
tissue (Supplementary Figure S1A).

Development of the 10-Gene Signature
The 331 primary HCC tumors of the TCGA discovery cohort
were divided into a training set (N = 199) and an internal
validation set (N = 132). The baseline characteristics were
summarized in Table 1. Clinicopathological features were
in large balanced between the training and internal validation
populations. By inputting the 5,970 DEGs identified above, a total
of 987 genes were demonstrated to be significantly associated
with OS for the training set using univariate Cox regression
analysis. A LASSO Cox regression model was subsequently
utilized to select from the 987 candidates for genes highly
associated with survival as indicated by a P < 0.05 in univariate
analyses. Twenty-six genes were identified with the lambda was
0.1 and subsequently used to construct an all subset regression
model. Finally, ten genes, YBX1, TTC26, SLC41A3, RCBTB2,
PON1, MAPK7, INPP5B, CCDC134, C16orf71, and BMI1, were
identified to be associated with prognosis in HCC patients
using the regsubsets function in leaps R package. The LASSO
deviance profiles, the coefficient profile plots, and the best
subset regression model were shown in Supplementary Figures
S1B–D. A risk score for prognosis prediction is calculated as
follows: risk score =

(
0.921∗ExprYBX1

)
+
(
0.149∗ExprTTC26

)
+(

0.732∗ExprSLC41A3
)
+
(
− 0.631∗ExprRCBTB2

)
+
(
− 0.227∗Ex

prPON1
)
+
(
0.539∗ExprMAPK7

)
+
(
1.28∗ExprINPP5B

)
+
(
0.645∗

ExprCCDC134
)
+
(
−0.478∗ExprC16orf71

)
+
(
0.861∗ExprBMI1

)
,

where Expr stands for the expression level of each gene. Using
the training set’s survival data and the surv_cutpoint function of
the survminer R package, a risk score of 0.969 was defined as the
optimal cut-off value to dissect the population into a high-risk

group (N = 100) and a low-risk group (N = 99), and this cut-off
value was used for all subsequent stratification.

Validation of the 10-Gene Signature
The prognostic capacity of the 10-gene signature was validated in
the training set, the internal validation set, as well as the entire
TCGA discovery cohort, where the high-risk group included
100, 66, and 165 patients, respectively, as defined by the cut-
off value of 0.969. As demonstrated by the time-dependent
ROC curves, the area under the curves (AUCs) for 1-year,
3-year, and 5-year OS were 0.869, 0.851, and 0.869 for the
training set, 0.810, 0.730, and 0.719 for the internal validation
set, and 0.838, 0.798, and 0.837 for the entire discovery cohort,
respectively. Patients in the high-risk groups in the three datasets
also displayed significantly worse OSs than the low-risk groups
(P < 0.001 for the training set, P = 0.0016 for the internal
validation set, and P < 0.001 for the entire TCGA discovery
cohort) (Figures 2A–C and Supplementary Figures S2A–C).
Additionally, a 240-patient ICGC cohort was used as an external
validation set, where 118 patients were regarded as high-risk
using the same cut-off risk score. Likewise, the AUCs for the
1-year, 3-year, and 5-year OS were 0.704, 0.774, and 0.741
and the high-risk group’s prognosis was significantly worse
than that of the low-risk group (P < 0.001) (Figure 2D and
Supplementary Figure S2D). Sub-group analysis showed that the
10-gene signature remained a robust prognosis predictor across
subgroups stratified according to disease stage in the discovery
cohort (Supplementary Figure S3).

Since several multi-gene signatures have been previously
proposed for predicting HCC prognosis, their performance was
evaluated in parallel to that of our 10-gene signature using time-
dependent ROC curves and C-indexes. The 10-gene signature
unequivocally outperformed the other eight models in terms of
both C-index and the AUCs for 1-, 3-, 5-year OS prediction
(Figure 3 and Supplementary Table S1).

Identification of Independent Prognostic
Markers
Univariate and multivariate Cox regression analyses were
conducted on the TCGA discovery and the ICGC validation
cohorts to evaluate the 10-gene signature-defined risk group
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TABLE 2 | Univariate and multivariate Cox regression to identify independent prognosis predictor in both the TCGA discovery and the ICGC validation cohorts.

Characteristics TCGA discovery cohort ICGC validation cohort

Number of patients Univariate mode Multivariate model Number of patients Univariate mode Multivariate model

HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value HR (95% CI) P-value

Age (≥60 vs <60) 331 1.16 (0.81–1.66) 4.20E-01

Gender (Male vs
Female)

331 0.80 (0.55–1.15) 2.30E-01 240 0.49 (0.26–0.91) 2.30E-02 0.4 (0.17–0.96) 4.00E-02

BMI (≥25 vs <25) 306 0.81 (0.55–1.19) 2.90E-01 240 0.87 (0.42–1.81) 7.10E-01

AFP (≥400 vs
<400)

251 1.11 (0.67–1.84) 7.00E-01

Inflammation (Mild/
Severe vs None)

216 1.28 (0.78–2.12) 3.30E-01

Residual (R1/2 vs
R0)

309 1.89 (0.95–3.74) 6.80E-02

TMB (TMB-H vs
TMB-L)

303 1.53 (0.94–2.50) 8.70E-02

Tumor grade (G3/4
vs G1/2)

326 1.02 (0.70–1.49) 9.00E-01 240 4.55 (2.01–10.27) 2.70E-04 2.71 (1.17–6.29) 2.10E-02

Tumor stage (III/IV
vs I/II)

310 2.66 (1.81–3.90) 5.70E-07 2.03 (1.38–3.00) 3.60E-04 181 2.33 (1.28–4.27) 5.90E-03 2.36 (1.06–5.25) 3.60E-02

Vascular tumor
invasion
(Macro/Micro vs
None)

278 1.52 (0.99–2.33) 5.70E-02

Risk (Low vs High) 331 0.22 (0.15–0.34) 9.00E-13 0.23 (0.14–0.36) 2.80E-10 240 0.24 (0.12–0.49) 6.60E-05 0.21 (0.08–0.56) 1.70E-03

The bold values were less than 0.05.
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FIGURE 4 | Nomogram construction and validation. (A) A nomogram predicting survival probability at 1-, 3- and 5-year after surgery for HCC patients;
(B) Calibration curves for the nomogram; (C) DCA curves showing the comparison between the nomogram and tumor stage or risk group alone for predicting 1-, 3-
and 5-year overall survival in HCC.

TABLE 3 | Significantly enriched hallmarks in the TCGA discovery cohort by GSEA.

Name Size ES NES NOM p-value FDR q-value

HALLMARK_BILE_ACID_METABOLISM 64 0.7341 1.6979 0.00E+00 2.43E-01

HALLMARK_XENOBIOTIC_METABOLISM 122 0.6983 1.6664 1.16E-02 2.16E-01

HALLMARK_COAGULATION 67 0.6688 1.6558 5.93E-03 1.74E-01

HALLMARK_ADIPOGENESIS 92 0.5219 1.6412 3.44E-02 1.55E-01

HALLMARK_PEROXISOME 59 0.5467 1.6125 3.77E-02 1.39E-01

HALLMARK_G2M_CHECKPOINT 86 −0.7808 −1.7797 1.98E-03 9.04E-02

HALLMARK_MITOTIC_SPINDLE 83 −0.6006 −1.7329 1.17E-02 7.50E-02

HALLMARK_E2F_TARGETS 98 −0.7616 −1.7034 7.98E-03 6.82E-02

HALLMARK_DNA_REPAIR 69 −0.4284 −1.5759 4.82E-02 1.25E-01

as well as clinicopathological variables such as age, gender,
BMI, AFP, inflammation, residual tumor, vascular tumor
invasion, tumor grade, tumor stage, and TMB as independent
prognosis predictors. Both risk group and tumor stage were
observed to be independent prognostic factors for the discovery
cohort (risk group, HR: 0.23; 95% CI: 0.14–0.36; P < 0.001;
tumor stage, HR: 2.03; 95% CI: 1.38–3.00; P < 0.001)
and the ICGC cohort (risk group, HR: 0.21; 95% CI:
0.08–0.56; P < 0.001; tumor stage, HR: 2.36; 95% CI:

1.06–5.25; P = 0.036). Details are provided in Table 2 and
Supplementary Figure S4.

Construction and Assessment of a
Predictive Nomogram
As tumor stage and the 10-gene signature were demonstrated
to be independent prognostic factors for HCC, a nomogram
incorporating tumor stage and risk group was built to predict
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FIGURE 5 | GSEA on the TCGA cohort to explore mechanisms underlying the 10-gene signature. (A) Five representative hallmarks in the low–risk patients; (B) Four
representative hallmarks in the high–risk patients.

1-year, 3-year, and 5-year OS (Figure 4A). Calibration plots
showed that the nomogram was better at predicting short-term
survival (1- and 3-year) rather than long-term survival (5-year),
as indicated by agreement between the predicted survival and
actual survival (Figure 4B). The C-index of the nomogram
(0.732, 95% CI: 0.686–0.778) was higher than that of either tumor
stage (0.610, 95% CI: 0.559–0.660) or risk group (0.692, 95% CI:
0.652–0.732) alone. According to DCA curves, the nomogram
also offered the highest net benefit among the three factors
examined (tumor stage, risk group, and nomogram) (Figure 4C).

Gene Set Enrichment Analyses
In order to unravel the molecular mechanism underlying the
10-gene signature, GSEA analysis was conducted on the TCGA
discovery cohort. As shown in Table 3 and Figure 5, the G2M
checkpoint (P = 0.002, FDR = 0.090), mitotic spindle (P = 0.012,
FDR = 0.075), E2F targets (P = 0.008, FDR = 0.068), and DNA
repair (P = 0.048, FDR = 0.125) pathways/terms were significantly
enriched in the tumors of the high-risk group as defined by
the 10−gene signature. In the low-risk group, the significantly
enriched pathways were mainly related to various metabolic
processes (including bile acid and xenobiotic metabolism),
coagulation, adipogenesis, and peroxisome function.

DISCUSSION

Hepatocellular carcinoma (HCC) represents a major health threat
worldwide, especially in East Asia. Even after curative resection,
the long-term outcomes for HCC patients remain dismal.
Developing a prognostic model has thus gained increasing
attention. In this study, a 10-gene signature for HCC prognosis
prediction was generated and validated using the mRNA
expression data from three publicly accessible HCC cohorts.
Of the 10 genes, only BMI1 was positively associated with
survival, while the others were all negative prognostic markers.
According to risk scores calculated based on the expression

profiles of the signature genes, we were able to effectively classify
patients into high-risk and low-risk groups, where the low-
risk subset exhibited a significantly more favorable prognosis
pattern than the high-risk group. This 10-gene signature also
proved to be an independent prognosis factor for HCC survival.
A nomogram combining both tumor stage and risk group was
proposed, which proved to be a better predictor than tumor
stage or risk group alone. Additionally, it was noteworthy that
patients in the low-risk group were more closely associated with
alterations in metabolic pathways, while the high-risk group
were more enriched in cell proliferation-related pathways such
as G2M checkpoint.

YBX1 is a widely known oncogene implicated in multiple
malignancies (Xu et al., 2017). Accumulating evidence has shown
that aberrant YBX1 expression is closely associated with tumor
progression, drug resistance, metastasis and poor prognosis in
cancers (Imada et al., 2013; Davies et al., 2014; Kosnopfel
et al., 2014; Wu et al., 2015). In HCC, the expression of
YBX1 is activated by lncRNAs, which in turns regulates the
PIK3CA pathway (Zhao et al., 2017). The TTC26 gene encodes
an intraflagellar transport protein, which transports motility-
related proteins into flagella (Ishikawa et al., 2014). Wang
et al. (2018) built a six-gene signature, of which TTC26 was
also a positive prognostic gene. However, the exact role of
TTC26 in HCC remains unclear. SLC41A3 (Solute Carrier Family
41 Member 3) encodes a protein with cation transmembrane
transporter activity that may contribute to Mg2+ transportation
(de Baaij et al., 2016). THPA (The Human Protein Altas) database
showed that HCC patients had the lowest expression level of
SLC41A3 across different cancer types, and high-expression
group had significantly worse survival. Nevertheless, the role of
SLC41A3 in HCC remains largely undefined. RCBTB2 (regulator
of chromosome condensation and BTB domain containing
protein 2) also known as CHC1L, has been proposed as a
tumor suppressor gene in prostate cancer (Latil et al., 2002).
An earlier study evaluated the relationship between RCBTB2
expression and carcinogenesis of multiple myeloma, and a low
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expression of RCBTB2 is linked to pathogenesis and progression
of multiple myeloma (Legartova et al., 2010). However, RCBTB2
gene has not never been reported in association with HCC
to date. PON1 is a member of the paraoxonase family, and
it is an antioxidant defensive factor that is relevant for the
pathogenesis of several inflammatory diseases (Mackness and
Mackness, 2015; Borovkova et al., 2017). A growing body of
evidence has suggested that PON1 could serve as an important
clinical indicator of cancer progression for a number of cancers
such as lung cancer and breast cancer (Bobin-Dubigeon et al.,
2015; Aldonza et al., 2017). Data in THPA database showed
that the expression of PON1 in HCC is significantly higher
than that in other tumors, and its down-regulated expression
has been implicated to be a poor indicator for survival in
patients with HCC (Yu et al., 2018). MAPK7 (mitogen-activated
protein kinase 7) encodes extracellular-regulated protein kinase
5 (ERK5). Zen et al. (2009) suggested that MAPK7 is a probable
target of 17p11 amplification and that the ERK5 protein product
of MAPK7 gene promotes the growth of HCC cells by regulating
mitotic entry. INPP5B (inositol polyphosphate-5-phosphatase B)
encodes an inositol polyphosphate-5-phosphatase and regulates
calcium signaling by inactivating inositol phosphates. OCRL1 is
a homologue of INPP5B, shared the same domain structure and
substrate specificity (Lowe, 2005). As yet it is not clear whether
INPP5B is related to HCC. MAPK cascades are critical signaling
pathways involved in regulation of cellular processes such as
growth, proliferation, differentiation, migration, invasion, and
apoptosis (Dhillon et al., 2007). Previous studies showed that
CCDC134 (coiled coil domain containing 134) acts as an inhibitor
of Erk1/2 and JNK/SAPK pathways and its silencing promotes
cell migration and invasion in cancers such as gastric cancer
(Liang et al., 2005; Zhong et al., 2013). However, no such evidence
has been found in HCC. BMI1 is recognized as one of the most
commonly activated oncogenes in various tumor types, including
prostate, colorectal and lung cancers (Kim et al., 2004; Vrzalikova
et al., 2008; Ganaie et al., 2018). The over-expression of BMI1
correlates with therapy failure in breast, prostate, lung cancer and
HCC patients (Glinsky, 2007; Vrzalikova et al., 2008; Wang et al.,
2008). Recent studies demonstrated that increased expression of
BMI1 resulted in therapy failure and indicated poor prognosis of
HCC (Wang et al., 2008; Ruan et al., 2013).

While constructed on cohorts mainly comprising Caucasian
HCC patients, our 10-gene signature was also shown to be a
reliable predictor of prognosis among Asian patients in the ICGC
cohort and the cut-off risk score for differentiating patient’s
risk of death, as trained using the TCGA cohort, could be
directly applied to other populations. Compared to several
existing multi-gene models, our signature also demonstrated
better performance in distinguishing patients at high risk. This
might be partly attributed to the fact that in our study, both
model construction and validation were carried out using RNA-
seq data (although microarray data of the GEO database served
as a supplementary source to confirm DEGs identification in the
beginning), while most of the other signatures were developed
and validated using data generated on different platforms, RNA-
seq for development and microarray for validation or vice
versa. Another explanation could be that our DEGs selection

was strictly based on paired tumor and normal tissue samples
obtained from the same patients, which was obviously not
the case in most other studies. However, our study do have
some limitations. First, this was a retrospective analysis based
on public datasets, therefore should be viewed as hypothesis
generating rather than conclusive. Second, the validity of our
signature could potentially be challenged by the heterogeneity
of HCC due to sampling bias. Therefore, the 10-gene signature
may warrant further prospective validation and the correlation
between expression levels of these genes at protein level and
patients’ prognosis is also worth exploring.

CONCLUSION

Collectively, we established a robust 10-gene signature and a
nomogram to predict OS of HCC patients, which may help
recognize high-risk patients potentially benefiting from more
aggressive treatment.
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