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The yolk sac is the first observed site of hematopoiesis during mouse ontogeny. Primitive

erythroid cells are the most well-recognized cell lineages produced from this tissue. In

addition to primitive erythroid cells, several types of hematopoietic cells are present,

including multipotent hematopoietic progenitors. Yolk sac-derived blood cells constitute

a transient wave of embryonic and fetal hematopoiesis. However, recent studies have

demonstrated that some macrophage and B cell lineages derived from the early yolk

sac may persist to adulthood. This review discusses the cellular basis of mouse yolk sac

hematopoiesis and its contributions to embryonic and adult hematopoietic systems.

Keywords: yolk sac, blood cell development, embryonic hematopoiesis, fetal hematopoiesis, B-1 B cell,

macrophage

ANATOMY AND PHYLOGENY

The yolk sac tissue consists of two layers: a visceral endoderm layer derived from the primitive
endoderm (hypoblasts) and an extra-embryonic mesoderm layer derived from epiblast cells that
make an ingress through the primitive streak (Figure 1). In the early developmental stage, the
mouse embryo is U-shaped, with the neuroectoderm inside and the gut endoderm outside.
As development progresses, the turning of mouse embryos eventually reverses this topology
to the observed standard positioning of vertebrate embryos. This movement results in mouse
embryos being completely surrounded by the amnion and the yolk sac (Figure 1) (Kaufman
and Bard, 1999). This anatomically distinguishes the mouse yolk sac from those of other
vertebrates, including humans in which the yolk sac is attached to, but does not envelop, the
embryo.

The yolk sac is the first site of hematopoiesis in mammalian embryos. In phylogenetic
studies, yolk sac blood islands have been observed in some ray-finned fish species (Al-Adhami
and Kunz, 1976; Iuchi and Yamamoto, 1983); however, the zebrafish, a key ray-finned fish
laboratory model, produces blood cells not in the yolk sac but intra-embryonically in a site
known as the intermediate cell mass of Oellacher (Al-Adhami and Kunz, 1977). In some
amphibian embryos, especially those with large yolks, the bulk of the yolk is not incorporated
into the gut, and a yolk sac structure is formed. However, in amphibian embryos with small
amounts of yolk, the yolk is incorporated into the gut during early development, with no
formation of a yolk sac structure (Duellman and Trueb, 1994). In this type of amphibian
embryo, blood cells are initially formed ventrally, at sites known as ventral blood islands,
which are considered to be a counterpart of yolk sac hematopoiesis (Turpen et al., 1997).
As in mammals and some ray-finned fish species, avian embryos produce blood cells in the
yolk sac. There are few studies in the literature regarding non-avian reptilian embryonic
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FIGURE 1 | A schematic representation of mouse development from stages E5.5 to E9.5.

hematopoiesis; however, in the turtle, yolk sac blood islands are
known to be the first sites of hematopoiesis (Vasse and Beaupain,
1981).

PRIMITIVE ERYTHROPOIESIS

Hematopoiesis is observed in mouse embryos as early as
embryonic day 7.5 (E7.5) in the extra-embryonic mesoderm
layer of the yolk sac. Hematopoietic cells are observed as cell
aggregates, termed blood islands, until yolk sac vasculatures are
firmly formed. Primitive erythroid cells constitute the primary
cell lineage produced in yolk sac blood islands, and the yolk
sac is the exclusive site of primitive erythropoiesis. Primitive
erythroid cells have hemoglobin proteins different from those of
late fetal and adult erythroid lineage cells (definitive erythroid
cells) (Zon, 1995). In mice, primitive erythroid cells express
embryo-specific β globins (εy, βH1) and an α globin (ζ), but only
low levels of adult β globins (βmajor, βminor) and α globins (α1,
α2) (Whitelaw et al., 1990; Palis et al., 2010). These embryo-
specific globins have a higher affinity for oxygen than do adult
globins (Wells and Brittain, 1981), which presumably enhances
the maternal–embryonic gas exchange in the placenta. The
earliest movement of primitive erythroid cells into embryonic
circulation is observed when embryos possess 5 or 6 somite
pairs (E8), coinciding with heartbeat onset (Ji et al., 2003).
Initially, a nucleated form of primitive erythroid cells circulates
in the embryonic blood stream. Eventually, these primitive
erythroid cells enucleate between E12.5 and E16.5 (Kingsley
et al., 2004). Mouse embryos lacking primitive erythropoiesis do
not develop beyond E11.5 (Fujiwara et al., 1996; Tsang et al.,
1998). In contrast, mouse embryos lacking definitive (late fetal)
hematopoiesis have been known to survive to E15 (Mucenski
et al., 1991). Therefore, primitive erythroid cell-mediated oxygen
supply to embryonic tissues appears to be essential for mid-
gestational mouse embryos.

MEGAKARYOCYTE AND MACROPHAGE
LINEAGES

In addition to the large cell population of erythroid cells, cells
expressing megakaryocyte lineage markers have been observed
in the E9.5 yolk sac (Tober et al., 2007). Interestingly, diploid
cells form long extensions of cytoplasm, known as proplatelets,
in the E10.5 yolk sac for the release of platelets (Potts et al.,
2014). Platelets derived from these cells appear to be released
into the blood stream at approximately E11, and these yolk
sac-derived platelets are larger in size compared to adult bone
marrow-derived platelets (Tober et al., 2007). These yolk sac cells
are likely to be the initial source of platelets in mouse embryos
rather than the polyploid megakaryocytes that form later in the
fetal liver. Immature macrophages have also been observed in
the E9 yolk sac by morphological analysis, and it was reported
that these macrophages have a proliferative capability ex vivo
(Takahashi et al., 1989). Macrophage colony-forming capability
of the yolk sac has been observed as early as E7.0 in parallel with
the appearance of primitive erythroid colony-forming cells (Palis
et al., 1999). Furthermore, cells which highly express the CX3CR1
knock-in reporter, a monocyte/macrophage marker, have been
observed in the E10 yolk sac (Bertrand et al., 2005).

MULTIPOTENT HEMATOPOIETIC
PROGENITOR CELLS

The ability of yolk sac cells to generate blood cell lineages is not
restricted to primitive erythroid cells, platelets, andmacrophages.
Earlier studies using in vitro colony formation assays have
revealed the presence of definitive (late fetal and adult)
erythroid progenitors, granulocyte/macrophage progenitors, and
common progenitors for erythro-myeloid lineages in the yolk
sac, especially after E9 (Palis et al., 1999; Ferkowicz et al.,
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2003). These yolk sac progenitors are referred to as erythroid–
myeloid progenitors (EMPs). Lymphoid lineage potentials
are hallmarks of multipotent hematopoietic progenitor cells.
Although lymphoid lineage potentials generally cannot be
examined in colony assays, with the exception of B cell lineage-
committed progenitors that form small colonies in the presence
of IL-7 (Hayashi et al., 1990; Yamane et al., 2001), co-culturing
with stromal cell lines or transplantation into mice has revealed
the presence of lymphoid lineage potentials in the yolk sac.

Co-culturing with stromal cell lines has shown that the early
yolk sac cells at E7.5–E8.5 are not sufficiently potent to give rise
to lymphocytes (Yokota et al., 2006). Flow cytometry analysis
at E8.5 has revealed only a small number of cells positive for
CD45, a non-erythroid pan-blood cell marker (Yamane et al.,
2013). In contrast, yolk sac cells isolated at ∼ E9.5, when the
CD45+ cell population is increased, displayed a high potency to
generate T and B cells (Yamane et al., 2009). Weissman et al.
(1978) demonstrated that E8 and E9 yolk sac cells transplanted
in utero into the yolk sac cavities of same-aged hosts gave rise
to T cells. E9.5 yolk sac-derived T progenitors gave rise to both
αβ and γδ T cell lineages in an unbiased manner (Yamane et al.,
2009; Yoshimoto et al., 2012). This is in contrast to yolk sac-
derived B progenitors, which preferentially differentiate into the
B-1 B cell lineage (discussed below). However, it is unknown if
the yolk sac-derived T cell progenitors have non-biased Vγ gene
usage. This intriguing question remains unanswered because T
cells have different Vγ gene usage patterns in different tissues,
and some γδ T cell subsets are solely derived from the fetal stage
(Havran and Allison, 1988; Ikuta et al., 1990; Haas et al., 2012).

Hematopoietic cells in E9.5 yolk sacs express very few, if
any, IL-7 receptors, which are expressed by lymphoid-restricted
progenitors (Böiers et al., 2013). Additionally, E9 and E10 yolk
sacs have only minimal Rag-1 reporter expression compared
to fetal liver hematopoietic cells (Yokota et al., 2006; Böiers
et al., 2013). Therefore, it is likely that the yolk sac is not
the primary site of lymphoid differentiation. Rather, the yolk
sacs bear multipotent hematopoietic cells with lymphoid lineage
potentials. Cells with the CD45+KithighAA4.1+ phenotype in the
E9.5 yolk sac, which account for approximately 5% of CD45+

yolk sac cells and show differentiation potency for multilineage
cells, including erythroid–myeloid and lymphoid lineage cells,
can explain the lymphoid potentials of the yolk sac (Yamane
et al., 2009; Ito et al., 2013). Similarly, a recent report showed
that exclusion of CD11a-positive cells may further enrich the
multipotent hematopoietic progenitor fraction with lymphoid
potentials in the E9.5 yolk sac (Inlay et al., 2014).

HEMATOPOIETIC STEM CELLS

Despite the presence of multipotent cells, early yolk sac
hematopoietic cells (up to E9.5) lack hematopoietic stem cell
(HSC) long-term repopulation activity (Yamane et al., 2013).
Embryonic portions, as well as the extra-embryonic yolk sac,
lack HSC activity in the early developmental stages (Cumano
et al., 1996; Arora et al., 2014). HSCs with long-term repopulation
ability appear at E10.5–11.5 in multiple locations, including the

para-aortic region (Medvinsky and Dzierzak, 1996), vitelline
and umbilical arteries (de Bruijn et al., 2000), yolk sac
(Huang and Auerbach, 1993), placenta (Gekas et al., 2005;
Ottersbach and Dzierzak, 2005), and head region (Li et al.,
2012). Collectively, these studies suggest that the appearance
of multipotent erythroid–myeloid and lymphoid potentials
precedes the appearance of post-natal long-term repopulation
HSC activity, especially in the yolk sac.

Whether hematopoietic cells in the early yolk sac give
rise to HSCs in the late yolk sac and body or not is a
controversial topic. Labeling early yolk sac cells by activating
Rosa reporters using tamoxifen in Runx1-MerCreMer mice
resulted in the detection of Rosa reporters in multiple adult blood
cell lineages (Samokhvalov et al., 2007). However, detection was
limited to only a small fraction of adult blood cells, with the
exception of microglia and other macrophages (discussed below)
(Ginhoux et al., 2010). Given that there were trace amounts of
administered tamoxifen, discerning minimal reporter expression
from possible reporter activation of late hematopoietic cells in
other embryonic locations was difficult. In addition, a report
showed that haploinsufficiency of Runx1 has a promotive effect
on the transplantability of E10-11 yolk sac hematopoietic cells
(Cai et al., 2000). These experimental approaches of the study
make it hard to draw a conclusion regarding the fate of early yolk
sac hematopoietic cells.

As mentioned above, transplantation of early yolk sac cells (up
to E9.5) into post-natal mice does not lead to the engraftment of
cells. However, it is noteworthy that E9.5 yolk sac cells cultured
on stromal cells for 1–2 weeks engrafted in adult mice repopulate
T, B, and natural killer (NK) lymphoid compartments, but not
myeloid cell lineages. B cell lineage repopulation was particularly
more efficient than that of T and NK cell lineages (Figure 2) (Ito
et al., 2013). These observations suggest that engraftment failure
of early yolk sac cells originates at the multipotent progenitor
level, not at the committed progenitor level. Although T and NK
cells and conventional follicular B cells are replaced by HSC-
derived cells, B-1 B cells establish a self-replenishable pool in
the body cavity. Once established, the pool is not replaced by
adult HSCs (Lalor et al., 1989). Therefore, even if the early yolk
sac cells do not contribute to HSC compartment, the B-1 B cell
pool can be established and maintained via early yolk sac-derived
cells. Recent reports have suggested that early yolk sac-derived
macrophage lineages may also persist in the body for a long time.
These early yolk sac cell contributions are discussed below.

COLONIZATION OF THE FETAL LIVER

At E10–11, hematopoietic cells colonize the hepatic primordia
(Houssaint, 1981; Zovein et al., 2010). The vast majority of
cells that initially seed the fetal liver are likely to be yolk
sac-originated cells. This is because yolk sac hematopoiesis
precedes that of the aortic and placental region, and the yolk
sac contains the largest pool of blood cells at this stage (Lux
et al., 2008). Additionally, the vitelline vein from the yolk sac
drains directly into the fetal liver (Kaufman, 1992; Zovein et al.,
2010). Therefore, it is likely that early yolk sac cells establish
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FIGURE 2 | Repopulation of lymphoid lineage cells by E9 yolk sac-derived cells. (A) Overview of the experimental procedure. (B) Representative flow cytometry plots

showing T, B, and NK donor cell populations in the spleen at 3 weeks post-transplantation.

the first wave of hematopoiesis in the fetal liver. Most of the
hematopoietic cells, except for primitive erythroid cells, have a
CD45+KIT+ cell surface phenotype at this stage of fetal liver
development. ∼10% of the cell population expresses AA4.1 on
the cell surface. In contrast, expression of Sca-1, an HSC marker,
is observed in <1% of the cell population at this stage. While
Sca-1 is likely expressed in aortic region-derived hematopoietic
cells (Miles et al., 1997), CD45+KIT+AA4.1+ E9.5 yolk sac
multipotent hematopoietic progenitor cells do not express Sca-
1 (Yamane et al., 2009). Taking these observations into account,
early yolk sac-derived multipotent hematopoietic cells are likely
to be the major hematopoietic source in the very early stage of
fetal liver hematopoiesis. Lymphomyeloid progenitors that lack
erythroid and megakaryocytic potentials have been observed in
fetal liver at E11.5, and have CD45+KIT+ FLT3+IL7Rα+ cell
surface phenotypes (Böiers et al., 2013). It is not known if these
lymphomyeloid progenitors are a contiguous cell population
from the multipotent hematopoietic progenitor cells in the yolk
sac. Examination of E10.5 fetal liver will help to determine the
origin of these cells.

PERSISTENCE OF YOLK
SAC-ORIGINATED CELLS TO ADULTHOOD

B-1 B Cells
As mentioned above, early yolk sac cells generate the B
lymphocyte lineage. However, early yolk sac-derived B cell
progenitor cells have a strong tendency for differentiation into
B-1 B lymphocytes (Yoshimoto et al., 2011; Ito et al., 2013),
whereas differentiation into follicular B cells and splenicmarginal
zone B cells (B-2 B cell lineages) is minimal (Ito et al., 2013).
This tendency is not restricted to yolk sac-derived B progenitor
cells, but is also observed in cells derived from the caudal

halves of the embryo (Ito et al., 2013), or specifically the para-
aortic splanchnopleura-derived B progenitor cells (Godin et al.,
1993). These findings suggest that this is a common feature in
hematopoietic cells appearing during the early developmental
stages. Experimentally, early yolk sac-derived B progenitor cells
can be engrafted in adult mice and permanently self-replenish in
recipientmice (Ito et al., 2013). It is known that the B-1 B cell pool
is established during the fetal period (Lalor et al., 1989). However,
the physiologically relative contributions of yolk sac multipotent
hematopoietic progenitor cells and fetal liver HSCs are unknown
and warrant further study.

Follicular B cells produce antibodies mainly against protein
antigens, with the help of T cells for activation. However,
B-1 B cells produce antibodies against polysaccharides and
phospholipids in a T cell-independent manner. Although the
biological importance and relevance of the differentiation
tendency of B progenitor cells in the early developmental stage
is unknown, initial antibody production may be specialized to
the B-1 IgM repertoire during development, given that a broad
antibody repertoire derived from follicular B cells is obtained by
the fetus via maternal IgG passed through the placenta.

Macrophage Lineage
The early yolk sac origin of adult microglial cells has been
revealed (Ginhoux et al., 2010). In this study, tamoxifen
administration at E7.0–E7.5 efficiently labeled >30% of
microglial cells in the brain using Runx1-MerCreMer/Rosa
reporter mice as aforementioned, whereas there was only limited
fluorescent labeling of adult peripheral blood lineages (Ginhoux
et al., 2010). Initial seeding of macrophages in various tissues
during the mid-gestational stage is likely attributed to yolk sac-
originated hematopoietic cells (Schulz et al., 2012). Persistence
of yolk sac-derived macrophage lineages in adult tissues is
prominent in microglial cells in the brain. Tissue-resident
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macrophages in the liver, lung, and epidermis may also be from
early yolk sac-derived cells, yet they are limited in comparison
to microglial lineage cells (Perdiguero et al., 2015). Because the
yolk sac-derived macrophage progenitor cells reside in the brain
before the establishment of the blood–brain barrier (Ginhoux
et al., 2010), the immunologically privileged state of the brain
after blood–brain barrier establishment may hamper further
recruitment of microglial progenitor cells (Ajami et al., 2007;
Zhao et al., 2015).

IDENTIFICATION OF DIVERSE TYPES OF
HEMATOPOIETIC CELLS IN THE YOLK
SAC

The lineage relationship of hematopoietic cells observed in
the yolk sac has not been well-characterized compared with
adult bone marrow hematopoietic cell compartments. The
hematopoietic progenitors with erythromyeloid potential in the
yolk sac are referred to as EMP. This term was initially used
for the colony-forming cells with an erythromyeloid phenotype
in the yolk sac (Bertrand et al., 2005). However, the term has
been used differently by various groups, leading to its ambiguous
definition. To avoid confusion, we use the term EMP to refer
to the cells that give rise to definitive erythroid cells and the
granulocyte/macrophage lineage, but not to primitive erythroid
cells and lymphoid cells. Although CD41 (and KIT) are often
used to identify EMPs in the early yolk sac (Chen et al., 2011;
Hoeffel et al., 2015), the cell fractions separated by these two
markers is still heterogenous (as discussed below), and the early
yolk sac is likely to contain more variations of hematopoietic
progenitors than previously thought.

The colony-formation assay revealed that the appearance of
primitive erythroid precursors and mono-potent macrophage

precursors precedes that of definitive erythroid and
granulocytes/macrophages, and erythro-myeloid precursors
in the yolk sac (Palis et al., 1999). The former colonies have been
observed as early as E7.0, whereas the latter EMP-type colonies
were observed mainly after E9 (Palis et al., 1999; Ferkowicz et al.,
2003). Cells expressing mid-levels of CD41 were reported to have
generated only primitive erythroid colonies and mono-potent
macrophage colonies in the E7–E8 yolk sac, whereas CD41high

cells in the yolk sac observed after E8.25 were reported to
preferentially give rise to EMP-type colonies (Ferkowicz et al.,
2003). Additionally, it was shown that KITlow cells, rather than
KIThigh cells, are a preferential source of primitive erythroid
and mono-potent macrophage colonies in the E8.5 yolk sac
(McGrath et al., 2015).

It was reported recently that a cell subset expressing FcγR
II (CD32) and/or FcγR III (CD16) within the CD41+KIThigh

cell fraction present in the E8.5–9.5 yolk sac showed EMP
readouts, but did not give rise to primitive erythroid cells. In
addition, these FcγR II/III+CD41+KIThigh cells were reported
to lack B cell lineage potential by stromal cell culture, whereas
B cell potential was detected in non-FcγR II/III+CD41+KIThigh

cell compartments of the E9.5 yolk sac (McGrath et al., 2015).
Collectively, these properties of the FcγR II/III+CD41+KIThigh

cell subset in the yolk sac highly resemble those of presumptive
EMPs.

The cell fractionation method using distinct cell surface
markers revealed that CD45+KIThighAA4.1+ cells contained
within the CD41+ cell fraction in the E9.5 yolk sac show
multipotent hematopoietic cell activity with definitive erythroid,
myeloid, and lymphoid potentials, but are devoid of primitive
erythroid potency (Yamane et al., 2009). Similarly, it was also
reported that CD43+KIThighSca1+CD11A− cells in the E9.5–
11.5 yolk sac, which is contained in the CD41+ cell fraction at
least until E9.5, can give rise to erythromyeloid and lymphoid

FIGURE 3 | A model showing our current understanding of yolk sac hematopoiesis.
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cells, although the cell population size seems very small (Inlay
et al., 2014). Contrary to these reports, absolute lymphopoietic
capability was observed in VE-cadherin+ cells within the CD41−

cell fraction (Yoshimoto et al., 2011, 2012).
In addition, the more immature committed hematopoietic

cells in the E8.5–9.5 yolk sac were identified as having
a CD45−CD41+AA4.1−KITmed cell surface phenotype.
These cells give rise to the primitive erythroid lineage and
CD45+KIThighAA4.1+ multipotent hematopoietic cell fraction
(Yamane et al., 2013, 2017) (Figure 3); the presence of these
cells has been previously observed in embryonic stem cell
culture models (Kennedy et al., 1997; Perlingeiro et al., 2001).
Even at a clonal level, CD45−CD41+AA4.1−KITmed cells
in the yolk sac can give rise to rearranged B lineage cells
and embryo-specific β globin-expressing primitive erythroid
cells simultaneously in vitro (Yamane et al., 2013). Therefore,
the cell fraction present in the E8.5–9.5 yolk sac appears to
serve as a common precursor for primitive erythroid cells
and multipotent hematopoietic progenitors. Mechanistically,
CD45−CD41+AA4.1−KITmed− common precursor cells
have a relatively high level of erythroid transcription factors,
and can immediately give rise to CD45−CD71high primitive
erythroblasts (Yamane et al., 2017). Downregulation of erythroid
transcription factor expression accompanies differentiation
toward CD45+KIThighAA4.1+ multipotent hematopoietic
progenitor cells, which is partly due to the action of the
transcription factor Pu.1 (Yamane et al., 2017).

CSF1R (FMS)-expressing cells have been reported as early as

E9 in mouse yolk sacs using the MerCreMer mouse transgenic
line under control of the Csf1r promoter (Perdiguero et al.,

2015). These cells are thought to give rise to microglial

and first-wave embryonic macrophages. The above-mentioned
multiple cell populations have a potency to differentiate into
macrophage lineages. It remains unknown which cell population
physiologically supplies these macrophage lineages (Figure 3).

Additional markers such as FcγR II/III, CD45, AA4.1, and
CD11A need to be examined together with CD41 and KIT
to precisely characterize the hematopoietic cell populations in
the yolk sac. In addition, the overlapping and hierarchical
relationships between each cell population remain largely
unknown and require further study. Figure 3 summarizes the
information discussed in this review.

CONCLUDING REMARKS

Our understanding of mouse yolk sac hematopoiesis has
greatly increased over the past few years. However, further
studies are warranted to highlight the precise contributions
of yolk sac hematopoietic cells to adult-stage hematopoietic
cells. In addition, further research is needed to determine
if yolk sac-derived macrophages are replaced when mice
are exposed to infectious microbes (Machiels et al., 2017),
given that most studies specifically use pathogen-free mice.
Furthermore, it is critical to illustrate if the knowledge
obtained to date is applicable to not only other animal
models, but also organisms with longer lifespans, including
humans. As technology and methodologies improve,
our means to elucidate yolk sac hematopoiesis will be
enhanced.
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