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In this study, magnetic cobalt oxide (Co3O4) nanoparticles (NPs) were synthesized through a new and green method using cobalt chloride hexahydrate (CoCl2.6H2O), pluronic P123 as a stabilizer, and sodium borohydride (NaBH4). The CO3O4 nanoparticles were characterized by diffuse reflectance infrared Fourier transform spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and vibrating sample magnetometer.
The magnetic Co3O4 NPs were used as a catalyst with high activity and stability in the synthesis of tetrahydrobenzo[b]pyran derivatives. This reaction was carried out in water, as it is an environmentally friendly solvent, using a low loading of Co3O4 NPs at room temperature. Various derivatives of aldehydes were used as substrates to obtain a high yield of the corresponding tetrahydrobenzo[b]pyrans in short times. In addition, the catalyst was recovered and reused several times with no notable decrease in its activity.
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1 INTRODUCTION
In the last decade, magnetic nanoparticles (MNPs) have been noted by many researchers owing to their advantages of high stability, magnetic and electrical properties, high surface area, and special optical properties (Ichiyanagi et al., 2004; Zhang et al., 2006; Bisht and Rajeev, 2011; Ghasemzadeh et al., 2017; Ramamoorthy and Rajendran, 2017; Yin et al., 2017; Vennela et al., 2019). Among different magnetic nanoparticles, cobalt oxide (Co3O4) NPs are very interesting due to their high chemical stability, good reactivity, high surface area, excellent semiconductivity, easy synthesis, high catalytic performance, and superior magnetic properties. These nanoparticles have many applications, such as in energy storage, sensors, anodic supplies, drug delivery, and catalysis (Kumar et al., 2008; Koza et al., 2012; Wang et al., 2015; Agilandeswari and Rubankumar, 2016; Ivetić et al., 2016; Pourzare et al., 2017; Galini et al., 2018; Shi et al., 2019; Tahanpesar et al., 2019; Mohammadi et al., 2020; Tonelli et al., 2020; Al-Qasmi, 2022; Anele et al., 2022; Bilge et al., 2022; Farrag and Ali, 2022; Mohammadpour-Haratbar et al., 2022; Saeed et al., 2022). The chemical formula of these NPs is Co2+(Co3+)2O4 with a normal spinel structure in which Co2+ ions are in tetrahedral interstices and Co3+ ions are in the octahedral interstices of the cubic close-packed lattice of oxide anions (Salavati-Niasari et al., 2009; Thota et al., 2009). It is believed that the shape and size of NPs affect their properties; thus, the morphology of these nanoparticles must be controlled. Co3O4 NPs have been synthesized in various morphologies such as nanorods (Lou et al., 2007; Meng et al., 2015), nanotubes (Chen et al., 2015; Wang et al., 2019), nanowires (Mahmoud and Al-Agel, 2011; Yao et al., 2012), cubic (Ghiasi et al., 2016; Liu et al., 2020), spheres (Chen et al., 2007; Wang et al., 2017), and mesoporous (Qiu et al., 2014; Zhao et al., 2019). Since Co3O4 NPs and their nanocomposites are resistant to corrosion, they have been used as powerful catalysts in different chemical reactions. Some recent reports in this matter are Co3O4–SiO2 nanocomposites for CO oxidation (Jia et al., 2011), Co3O4@SiO2 NPs for the preparation of 3,4-dihydroquinoxalins (Ghasemzadeh et al., 2016), Co3O4 for the reduction of 4-nitrophenols (Al Nafiey et al., 2017), Co3O4@SiO2 for the preparation of indazoles (Ghasemzadeh et al., 2017), Co3O4 NPs as a photocatalyst for methylene blue degradation (Vennela et al., 2019), and Co3O4@SiO2 core/shell–nylon as an adsorbent for the removal of Congo red from wastewater (Mohammadi et al., 2020). There are also several methods for the synthesis of these NPs, including sol–gel, chemical pyrolysis, microemulsion, chemical vapor deposition (CVD), coprecipitation, microwave, decomposition of organic precursors, and hydrothermal methods (He et al., 2004; Yoshikawa et al., 2004; Ştefănescu et al., 2008; Ozkaya et al., 2009; Gupta et al., 2011; Alagiri et al., 2013; Salavati-Niasari and Khansari, 2014; Gopinath et al., 2016; Diallo et al., 2017; Izu et al., 2017; Jamil et al., 2018; Tan et al., 2018; Yetim, 2021). However, some of the aforementioned methods face problems of high reaction temperature, high pressure, and the use of expensive precursors. Therefore, designing a novel method to overcome the aforementioned limitations is an important subject in this matter.
On the other hand, multicomponent reactions are one of the very important chemical processes because of their key role in the synthesis of biologically active heterocyclic organic compounds (Fotouhi et al., 2007; Altass et al., 2021; Alshorifi et al., 2022; Altass et al., 2022; El-Yazeed et al., 2022). Tetrahydrobenzo[b]pyrans are one of these compounds that are synthesized via a three-component reaction. They have good biological activity and are used in the pharmaceutical field, cosmetics, agriculture, pigment, etc. (Hekmatshoar et al., 2008). To date, many catalysts have been reported for the preparation of tetrahydrobenzo[b]pyrans. Some of the recently developed catalysts are choline hydroxide-based ionic liquid [Ch][OH] (Hu et al., 2014), nano-structured diphosphate (Na2CaP2O7, DIPH) (Maleki et al., 2016), dihydrogen phosphate-supported silica-coated magnetic nanoparticles (H2PO4–SCMNPs) (Saadati-Moshtaghin and Zonoz, 2017), Fe3O4@Ph–SO3H (Elhamifar et al., 2018), Preyssler heteropoly acid on Ni0.5Zn0.5Fe2O4 magnetic nanoparticles (MNPs) (Javid and Moeinpour, 2018), nickel Schiff base complex immobilized on silica-coated Fe3O4 (Fe3O4@SiO2@NiSB) (Maleki et al., 2020), and Eu/IDA/CPTS@CoFe2O4 (Tamoradi et al., 2020).
In view of the aforementioned characteristics, herein, for the first time, a novel surfactant-assisted method is presented for the preparation of magnetic cobalt oxide nanoparticles. In this method, NaBH4 has been used as a reducing agent and the pluronic P123 surfactant has been employed as a stabilizer. Moreover, the reaction was performed in EtOH at room temperature. The Co3O4 NPs were characterized and employed as a powerful nanocatalyst in the synthesis of tetrahydrobenzo[b]pyrans.
2 EXPERIMENTAL
2.1 General
All chemicals were used as received with no further purification. Pluronic P123 (98%), CoCl2.6H2O (98%), malononitrile (≥99%), and dimedone (95%) were purchased from Sigma-Aldrich. Moreover, aldehydes (≥95%) and sodium borohydride (99%) were purchased from Merck. Powder X-ray diffraction (PXRD) was performed using a Bruker D8 ADVANCE diffractometer (Germany). The morphology of the particles was evaluated using the TESCAN-Vega3 scanning electron microscope (SEM) (Czech Republic). Energy-dispersive X-ray (EDX) spectroscopy was performed using the TESCAN-Vega3 apparatus (Czech Republic). Fourier transform infrared (FT-IR) spectroscopy was recorded on a Bruker Vector 22 spectrometer (Germany). The magnetic properties of the particles were investigated using a vibrating sample magnetometer (VSM) of Meghnatis Daghigh Kavir Co. (Iran). X-ray photoelectron spectroscopy (XPS) was performed using a Thermo Scientific K-Alpha + XPS spectrometer (United States).
2.2 Preparation of Co3O4 nanoparticles
Magnetic Co3O4 nanoparticles were synthesized through the following reduction procedure: CoCl2.6H2O (1.85 mmol; 0.440 g) was added in 15 mL of absolute EtOH while stirring at RT. Then, ethanol-dissolved pluronic P123 (0.2 g in 5 mL EtOH) was added to the aforementioned solution. After complete mixing, NaBH4 (12.9 mmol; 0.487 g) was added, and the resulting combination was stirred for 10 min at RT. The obtained material was magnetically separated and then washed completely with warm EtOH and water to remove pluronic P123 and other impurities. The magnetic Co3O4 NPs were obtained after drying the product at 65°C for 5 h.
2.3 Synthesis of tetrahydrobenzo[b]pyrans using Co3O4 NPs
For this, dimedone (1.0 mmol), aldehyde (1.0 mmol), malononitrile (1.2 mmol), and a Co3O4 catalyst (0.015 g) were mixed in water (8 mL) while stirring at RT. The reaction progress was monitored by TLC. After completing the process, the catalyst was separated using an external magnetic field. Then, hot EtOH was added, and the resulting mixture was put in an ice bath to precipitate the pure product.
2.4 Procedure for the recovery of the Co3O4 NPs in the synthesis of tetrahydrobenzo[b]pyrans
For this, the reaction was performed as explained previously. After finishing the process, monitored by TLC, the catalyst was separated using a magnet. Then, the recovered catalyst was washed with EtOH and reused in the next run under the same conditions as the first run. These steps were repeated, and it was found that the Co3O4 NPs can be recovered and reused several times with no significant decrease in their efficiency.
3 RESULT AND DISCUSSION
The water- and air-stable magnetic Co3O4 nanoparticles were easily and rapidly prepared at RT through a novel reduction method in the presence of pluronic P123 as a stabilizer and NaBH4 as a reducing agent (Scheme 1).
[image: Scheme 1]SCHEME 1 | Preparation of Co3O4 nanoparticles.
The Co3O4 NPs were characterized using FT-IR, PXRD, VSM, EDX, XPS, and SEM techniques. In the FT-IR spectrum (Figure 1) of Co3O4 NPs, the stretching vibration of the Co–O bond was observed at 619 cm−1. The absorption peaks that appeared at 1,636 and 3,416 cm−1 are related to bending and stretching vibrations of OH, respectively. Furthermore, the band at 1,412 cm−1 is for the B–O bond, resulting from the hydrolysis of the borohydride ion (Medina et al., 2019).
[image: Figure 1]FIGURE 1 | FT-IR spectrum of the Co3O4 NPs.
The PXRD analysis shows nine peaks with low intensity at 2θ = 19, 32, 35, 37, 45, 56, 60, 65°, and 72° corresponding to the spinel crystalline structure of magnetic Co3O4 NPs, which is in agreement with the previous literature (Figure 2) (He et al., 2004; Merino et al., 2012; Mujtaba et al., 2016; Hu et al., 2018).
[image: Figure 2]FIGURE 2 | PXRD pattern of the Co3O4 NPs.
The XPS analysis of cobalt oxide nanoparticles clearly shows the presence of Co and O elements (Figure 3). The most significant peaks related to O 1s, Co 2p3/2, and Co 2p1/2 appeared at 529.1, 780.1, and 795.8 eV, respectively. The energy difference between the Co 2p3/2 and Co 2p1/2 splitting is 15.7 eV, indicating the presence of Co2+ and Co3+ in the prepared material. These results are in good agreement with the previous reports and confirm the Co3O4 structure for the prepared material (Nwanya et al., 2017; Qiu et al., 2017; Zhang et al., 2017).
[image: Figure 3]FIGURE 3 | XPS analysis of the Co3O4 NPs.
The morphology of the catalyst was studied by SEM. This analysis showed sponge-like spherical particles for the designed material (Figure 4). According to the SEM images, the average size of the designed Co3O4 NPs was about 36 nm.
[image: Figure 4]FIGURE 4 | SEM images of the Co3O4 NPs.
In the next study, the magnetic properties of Co3O4 NPs were investigated using a vibrating sample magnetometer (VSM). Importantly, herein, two other methods were used to prepare magnetic Co3O4 NPs, and the magnetic properties of the resulting products were compared with those of our method (Figure 5). These methods were a) the milling process (Medina et al., 2019), b) EtOH/NaBH4 without a stabilizer (our test), and c) ETOH/NaBH4 in the presence of pluronic P123 as a stabilizer agent (our method). The VSM analysis showed the products with a magnetization of 28, 33, and 56 for the a, b, and c methods, respectively (Figure 5). This confirms the very good efficiency of our novel procedure to prepare Co3O4 NPs with high magnetic properties. This result is attributed to the key role of pluronic P123 as a surfactant in the stabilization of magnetic NPs during their preparation. It is also important to note that the prepared black Co3O4 NPs were easily separated using an external magnet (Figure 5, inset figure).
[image: Figure 5]FIGURE 5 | VSM diagrams of Co3O4 NPs prepared via (A) the milling process, (B) EtOH/NaBH4, and (C) EtOH/NaBH4/pluronic P123 methods. Magnetic separation of Co3O4 NPs (inset figure).
The EDX analysis was used to distinguish the elements in the structure of the Co3O4 material. This analysis showed the presence of O and Co in the Co3O4 structure (Figure 6). Moreover, the EDX mapping analysis also showed the uniform distribution of these elements in the material network (Figure 7).
[image: Figure 6]FIGURE 6 | EDX image of the Co3O4 NPs.
[image: Figure 7]FIGURE 7 | EDX mapping analysis of the Co3O4 NPs.
After successful characterization, the Co3O4 NPs were used as an efficient catalyst in the synthesis of tetrahydrobenzo[b]pyrans. For this, the reaction between dimedone, benzaldehyde, and malononitrile was selected as a test model, and the effect of different parameters was studied (Table 1). In the absence of a catalyst, no product was found (Table 1, entry 1), while by adding the catalyst, the product yield was increased, and the best result was obtained using 0.015 g of Co3O4 NPs (Table 1, entries 2–4). Screening different solvents showed that a low yield in toluene and acetonitrile, a moderate yield in EtOH and THF, and the highest yield in water were obtained (Table 1, entries 3, 5–8). Increasing temperature from RT to 35°C and 50°C showed no significant change in the product yield (Table 1, entries 3, 9, 10). According to these results, 0.015 g of Co3O4, water solvent, and RT were chosen as optimum conditions (Table 1, entry 3).
TABLE 1 | Effect of catalyst loading, solvent, and temperature in the synthesis of tetrahydrobenzo[b]pyransa.
[image: Table 1]With the optimal conditions in hand, the catalytic activity of Co3O4 was investigated for different aldehyde substrates to produce the tetrahydrobenzo[b]pyran derivatives. As shown, benzaldehyde (Table 2, entry 1), electron-donating containing aldehydes (Table 2, entries 2–4), and electron-withdrawing bearing aldehydes (Table 2, entry 5) are converted to the corresponding products in high yields at short times. Halogen-substituted aldehydes also delivered a high yield of the corresponding adducts (Table 2, entries 6, 7). In addition, the reaction between 4-nitrobenzaldehyde, malononitrile, and coumarin in the presence of the Co3O4 nanocatalyst also gave a high yield of the corresponding product (Table 2, entry 8). These results confirm the high activity and efficiency of the Co3O4 catalyst for the preparation of a wide range of biologically active tetrahydrobenzo[b]pyrans.
TABLE 2 | Synthesis of tetrahydrobenzo[b]pyrans in the presence of the Co3O4 catalyst.
[image: Table 2]The recoverability and reusability of the designed catalyst were investigated in the reaction model of benzaldehyde, dimedone, and malononitrile under optimal conditions. It was found that the Co3O4 nanocatalyst can be recovered and reused six times with no noticeable decrease in its activity (Figure 8).
[image: Figure 8]FIGURE 8 | Recoverability and reusability of the Co3O4 catalyst.
Finally, the catalytic activity of the designed Co3O4 nanoparticles was compared with former heterogeneous catalysts in the synthesis of tetrahydrobenzo[b]pyrans (Table 3). It was found that the present catalyst has a high ability to synthesize desired products with higher efficiency and more recovery times than previous catalysts. These findings are attributed to the high surface area, excellent magnetic properties, and good stability of Co3O4 MNPs.
TABLE 3 | Comparison of the efficiency of Co3O4 nanoparticles with former catalystsa.
[image: Table 3]4 CONCLUSION
In this study, a novel and interesting method for the preparation of magnetic cobalt oxide (Co3O4) NPs was developed. These NPs were synthesized under green conditions at RT in a short time. The FT-IR, PXRD, SEM, VSM, XPS, and EDX analyses confirmed the good preparation, high stability, and good magnetic properties of Co3O4 NPs. These magnetic NPs were used as a powerful and efficient nanocatalyst for the synthesis of tetrahydrobenzo[b]pyrans. The desired products were obtained in water as an environmentally friendly solvent in a short time. The Co3O4 nanocatalyst was separated easily using an external magnet and recovered at least six times with no significant decrease in its activity. Due to the simplicity and eco-friendliness of the designed method, the preparation of other magnetic metal oxide NPs using this strategy is underway in our laboratory.
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