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Flow biocatalysis is a key enabling technology that is increasingly being applied to
a wide array of reactions with the aim of achieving process intensification, better
control of biotransformations, and minimization of waste stream. In this mini-
review, selected applications of flow biocatalysis to the preparation of food
ingredients, APIs and fat- and oil-derived commodity chemicals, covering the
period 2020-2022, are described.
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1 Introduction

The importance of flow chemistry, the transformation of iterative batch operations in
continuous chemical processes as a component of the modern chemist toolbox, is reflected
by the large number of publications and patents from both academia and industry over the
past decade (Alper et al., 2019; Giroud et al., 2019; Kappe et al., 2019; Kinlen and Zweig,
2020; Griffiths and Ley, 2022; Polterauer et al., 2022; Gambacorta and Baxendale, 2022).
Although flow chemistry was created for “conventional” organic chemistry reactions, this
technique is being increasingly used also for biocatalytic processes due to the smaller
equipment footprint, the increased safety for the operator, the better control of
biotransformations while shortcutting reaction times and rendering scale-up more
predictable (Tamborini et al., 2018; Benítez-Mateos et al., 2021).

Nowadays biocatalysis is recognized as an unparalleled tool to achieve reaction selectivity
and sustainability, although low catalyst stability and productivity are still a sore point in
many cases (Sheldon and Woodley, 2018; Hanefeld et al., 2022). Integration of enzymes
within flow technology has been demonstrated to improve the biocatalyst performance and
to generate highly productive biotransformations (Bolivar et al., 2019; Contente et al., 2019).

The use of enzymes in continuous reactors is associated to enzyme immobilization that
streamlines both biocatalyst handling and product downstream. Suitable immobilization
techniques generally enhance the stability of the biocatalyst under operational conditions,
thus allowing for its repeated use and prolonging lifetime biocatalyst productivity to a high
total turnover number (TTN) (Thompson et al., 2019; Bolivar and Lopez-Gallego, 2020;
Bolivar et al., 2022). Downstream processing, which is generally recognized as a tricky step, is
facilitated by reduced handling steps, reduced or negligible enzyme leaching (depending on
the immobilization technique used), in situ product removal (that also reduces enzyme
inhibition), and straightforward recovery and recycling of unreacted reagents. A key
advantage of continuous flow is the overall alignment between analytical and preparative
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scale conditions, that shortens the optimization stage from discovery
to process development. Last but not least, a number of smart
solutions involving in-line devices based on phase separation, catch-
and-release resins and scavengers, that are assisted by integrated
real-time reaction monitoring, can be set-up.

On the other hand, the layout of flow systems overcomes
some typical constraints of batch enzymatic reactions (long
reaction times, catalyst concentration, scalability issues, risk
of product variation from batch to batch). Reaction
conversion can be increased by using several reactors in
series, while process productivity can be enhanced by
employing reactors in a parallel mode, or alternatively by
simply allowing the system to work over time, without the
need of proportionally increasing the reactor size and the
biocatalyst amount (Britton et al., 2018; Tamborini et al.,
2018; Benítez-Mateos et al., 2021; Meyer et al., 2022).
Moreover, recent advancements include integration of flow
systems with microwave (Martina et al., 2021), ultrasounds
(Banakar et al., 2022), photocatalysis (Chanquia et al., 2022),
and supported catalyst reactions (Colella et al., 2018).

The research and advances in continuous flow reactors are
aiming at expanding the portfolio of reactions based on the
aforementioned advantages, while tackling the challenges of
these systems. Current challenges deal with the need of precise
control and monitoring of some intensive variables (e.g., pH),
fluid-dynamics for intensification of multi-phase reactions (e.g.,
gas-liquid-solid transformations), poorly soluble or insoluble
substrates in the reaction medium, as well as the need of
stabilized biocatalysts and a controlled operation under
changes and perturbations that might occur in inflow streams.
Biotransformations in continuous mode are developing rapidly:
this mini-review aims at highlighting representative case-studies
reported in 2020-2022 cutting across food, commodity and fine
chemical sectors (Figure 1).

2 Continuous reactors in a nutshell:
Selected layouts and applications

Continuous or discontinuous operation is largely determined by
the magnitude of the production task. For pharmaceutical and fine
chemical production, batch is the customary mode of operation
(Benítez-Mateos et al., 2021). In these cases, stirred tank reactors
(STRs) are the most popular configuration at laboratory scale: their
user-friendly design allows to quickly achieve the proof-of-concept
of the reaction and enzyme characterization to appraise the potential
for large-scale production. STRs can operate continuously in steady
state (CSTRs); in this case the tank is instrumented with feed and
exit pipes for reactant inlet and product outflow. They are generally
considered versatile reactors in terms of operating conditions and
ease of control of main operational variables. When (C)STRs are
combined with immobilized biocatalysts, the mechanical stability of
the enzyme carrier could be an issue since attrition can occur, thus
resulting in biocatalyst leakage and/or low catalytic performance
(Lutz, 2013).

Packed-bed reactors (PBRs) are probably the most used layouts
for continuous processes since the biocatalyst is exposed to a lower
shear stress. Moreover, PBRs offer clear advantages over CSTRs for
enzymes following Michaelis-Menten or product-inhibition-type
kinetics. This kinetic advantage applies both for mono-substrate
and multi-substrate (e.g., synthesis reactions) conditions. Substrate
enzyme inactivation or low solubility of the substrate can be
overcome by multi-dose along the reactor (Gruber et al., 2017).
The typical architecture of PBRs used for biocatalytic applications is
such that a tube or channel contains the (bio)catalyst, and the
solution of reactants flows through it, allowing the reaction to occur.
In terms of reactor size, a significant part of the reactor volume
(40%–60%) is occupied by the biocatalyst itself, while in CSTRs the
biocatalyst usually accounts for less than 10% of the reactor volume.
As a result, PBRs give higher conversion rates per reactor volume

FIGURE 1
Continuous flow bioreactors at a glance: selected reactor layouts and applications discussed in the text.
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compared to other reactors (Lutz, 2013). PBRs are easily scalable and
applied for large-scale continuous biotransformations in diverse
industry sectors, from the well-known resolution of acyl- DL-
amino acids employing the immobilized Aspergillus oryzae
aminoacylase (Sato and Tosa, 2010), to the most recent
production of biodiesel (Erdem and Woodley, 2022; Miotti et al.,
2022) or fructose syrup (Neifar et al., 2020). Further recent
applications include the continuous removal of urea in high
polyphenol wines with an immobilized Lactobacillus fermentum
acid urease to reduce ethyl carbamate formation (Fidaleo and Tavilli,
2021), and the hydrolysis of cellobiose with immobilized β-
glucosidases (Alvarez-Gonzalez et al., 2022). Cellobiose, a β-
1,4 glucose-based disaccharide, is used as a model-molecule in
many studies aimed at finding solutions to the depolymerization
of cellulose from renewable lignocellulosic biomass.

Photoreactor systems (PhRs) are another type of reactors which
could be combined with biocatalysis under flow conditions
(Chanquia et al., 2022; Masson et al., 2022). Many lab-scale PhRs
are nowadays available from different suppliers; even though they
are not explicitly meant for photobiocatalysis, they could be adapted.
Reliable open-source systems (Winkler et al., 2021) as well as 3D-
printed model rectors (Schiel et al., 2021) allowing for an easy
exchange of reactor vessels and light sources are also available.

Membrane reactors (MRs) are also employed for continuous
operations with enzymes. The integration of membranes in a
biocatalytic reactor allows to keep the bulk of two reactants
separated, thus preventing side reactions, or to selectively remove
the products, circumventing thermodynamic equilibrium. MRs are
an option for the conversion of large molecular size substrates; in
this case, the membrane retains not only the enzyme, but also the
unreacted starting material (Pottratz et al., 2022). Several factors are
involved in the reactor selection and operation mode, being
productivity (amount of product per unit of reactor volume and
unit of time) and product-to-biocatalyst ratio (amount of product
per unit of biocatalyst) the most important from an applicative
standpoint (Grubecki and Kazimierska-Drobny, 2019; Carrazco-
Escalante et al., 2021; Lindeque and Woodley, 2022).

The development of continuous flow reactors has been
associated with the miniaturization and design of enzyme
microreactors. Besides the advantages of reaction intensification,
bioreactor downscaling into microfluidic devices (lab-on-a-chip) to
perform chemical and biological transformations has the clear
advantage of speeding up analysis and throughput, while
reducing reagent and sample consumption. Enzymes can be,
indeed, incorporated within a microchannel forming a
microbioreactor (Brás et al., 2021; Cardoso Marques et al., 2021;
Žnidaršič-Plazl, 2021).

Regardless of the reactor type, flow biocatalysis strongly relies on
immobilized enzymes which are retained in the reactor while the
substrate is continuously fed to be converted into product, thus
allowing long-term or repeated use of the biocatalyst as a result of its
higher operational stability and resistance to reaction changes.
Moreover, the diversity of immobilization techniques gives rise to
a vast number of bioreactor designs that can be customized and also
connected together forming cascades (Benítez-Mateos et al., 2022b).
In this context, implementation of cell-free multi-step reactions is a
dream target in synthetic chemistry (Benítez-Mateos et al., 2022b).
The space and time compartmentalization enabled by continuous

flow reactors is a significant advantage for multi-enzymatic
reactions. Aminations and redox reactions have received
remarkable attention in this frame (Baumer et al., 2020;
Menegatti and Žnidaršič-Plazl, 2021; Roura Padrosa et al., 2021).

Transaminases are a workhorse in the synthesis of enantiopure
amines. The need for a continuous supply of the amino donor to
shift the reaction equilibrium is routinely tackled by coupling an
auxiliary reaction to the main biotransformation. In a recent work,
an alanine dehydrogenase exhibiting excellent stability to different
cosolvents has been combined with a formate dehydrogenase as
L-alanine recycling system, in the amination of three model
substrates with unfavorable equilibria. The whole biocatalytic
system (transaminase and auxiliary enzymes) has been co-
immobilized in a flow reactor (Roura Padrosa et al., 2021). In
addition to the amino donor recycling, continuous flow reactors
have been used for the retention of the pyridoxal phosphate cofactor
by designing a porous copolymeric hydrogel matrix formed in a two-
plate microreactor. Immobilization efficiency, productivity, and
stability of the microreactor were evaluated (Menegatti and
Žnidaršič-Plazl, 2021).

The need for cofactor regeneration in redox reactions has
inspired different strategies for the “orchestration” of cascades
involving the main enzyme(s), cofactors, and auxiliary proteins.
In a recent work, a closed-loop recycling system for NADPH was
developed. Although the strategy relies on the well-known in situ
cofactor regeneration by the addition of a cosubstrate, the novelty
stands in the recovery of aqueous outflow containing the cofactors
and their recirculation into the system, allowing for self-sufficient
bioreactors (Baumer et al., 2020).

Compartmentalization in continuous flow reactors needs also
the development of new materials and immobilization strategies to
“tailor” enzyme localization. For the trienzymatic synthesis of sialic
acid, N-acyl-D-glucosamine 2-epimerase, N-acetylneuraminate
lyase, and cytidine monophosphate (CMP)- sialic acid synthetase,
were immobilized into bulk hydrogels and microstructured
hydrogel-enzyme-dot arrays, which were then integrated into
microfluidic devices. This study demonstrates how immobilizing
enzymes in (compartmentalized) microfluidic devices can
circumvent cross-inhibitions occurring under continuous
conditions (Obst et al., 2021). Advances in the development of
new controllable modular immobilization strategies were also
reported. A modular cascade flow reactor using a generalizable
solid-binding peptide-directed immobilization strategy was
developed to allow the selective immobilization of fusion
enzymes on anodic aluminum oxide monoliths with high
positional precision (Yucesoy et al., 2021). Here, a lactate
dehydrogenase and a formate dehydrogenase were fused with
substrate-specific peptides to facilitate their self-immobilization
through the membrane channels in a cascade geometry (Yucesoy
et al., 2021). The development of multi-enzymatic systems also
requires the fine tuning of the reaction conditions. Mathematical
modeling was applied to meet this challenge by using both
mechanistic and empirical tools to optimize a reaction involving
a reductive aminase and a glucose dehydrogenase for continuous
biocatalytic reductive amination in flow (Finnigan et al., 2020). Flow
reactors offering the advantage of working in biphasic systems (e.g.,
water/organic solvents) are also a suitable venue for the
implementation of chemoenzymatic cascades. A sequential as
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TABLE 1 Selected examples of in flow biocatalytic applications (2020–2022).

Food-related compounds

γ-Glutamyl peptides Robescu et al. (2022)

Lipophilic phenolic esters Annunziata et al. (2022)

Fragrances Nagy et al. (2022)

Trehalose Kowalczykiewicz et al. (2022)

Palm olein Zhang et al. (2022)

Phytosterol esters Xu et al. (2022)

Monomers from cellobiose Alvarez-Gonzalez et al. (2022)

Molecules from milk hydrolysis Ryazantseva et al. (2021)

(R)-δ-decalactone Szczepańska et al. (2021)

Vanillamides Pinna et al. (2022)

C-Glycoside nothofagin Liu and Nidetzky (2021)

Flavour esters Contente et al. (2020)

Lacto-N-triose II (LNT II) Ruzic et al. (2020)

Emulsifiers and stabilizers from coconut oil Santana et al. (2020)

Leather and woody acetate as fragrances Tentori et al. (2020)

APIs

L-Menthyl glyoxylate Azevedo et al. (2022)

Nucleoside analogues Rinaldi et al. (2020), Tamborini et al. (2020), Benítez-Mateos et al. (2022a), Benítez-Mateos and
Paradisi (2022)

α-Hydroxy ketones as building blocks Peng et al. (2022)

Deglycosylated ginsenoside Rb1 Kazan et al. (2021)

Betazole Romero-Fernandez and Paradisi (2021)

(S)-2-Hydroxy-1-phenylpropanone Oeggl et al. (2021)

Nicotinic acid Teepakorn et al. (2021)

Amide and ester intermediates for pharmaceuticals Annunziata et al. (2020)

Amines as building blocks Böhmer et al. (2020)

Small cyclic amines as building blocks Hegarty and Paradisi (2020)

L-Pipecolic acid Roura Padrosa et al. (2020)

(S)-1-(5-Fluoropyrimidin-2-yl)-ethanamine Semproli et al. (2020)

N-Heterocycles from diamines as building blocks Al-Shameri et al. (2020)

FXI (Factor XI) inhibitors Wu et al. (2020)

Other applications

Carbohydrate fatty acid esters do Nascimento et al. (2022)

6-Aminocaproic acid Romero-Fernandez et al. (2022)

α-Ketobutyrate Jorge et al. (2022)

Hydrolyzed compounds from lignocellulosic biomass Maheswari et al. (2022)

Waste water treatment Klein et al. (2022)

Palmitic acid derivatives Benincá et al. (2022), Simić et al. (2022)

Cosmetic ingredients Kruschitz et al. (2021)

(Continued on following page)
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well as a tandem-type chemoenzymatic flow cascade combining an
organocatalytic aldol reaction and a biocatalytic reduction to form
stereoselectively a 1,3-diol with two stereogenic centers were
developed (Schober et al., 2022).

3 Examples from literature
(2020–2022)

An overview of the continuous systems for the biosynthesis of
food-related compounds, active pharmaceutical ingredients (APIs)
and their intermediates as well as fats and oil derivatives is reported
in Table 1. Selected examples are described below in more detail.

3.1 Food-related compounds

In the last few years, flow biocatalysis has drawn interest in the
preparation of food-related compounds such as additives,
nutritional supplements and food preservatives. According to
FDA and EMEA regulations, processing food ingredients via
biocatalytic approaches let them to be commercialized as natural,
thus improving their market value, while the use of flow facilities
generally ensures a higher productivity with respect to conventional
batch operations (Schrader et al., 2004; Gambacorta et al., 2021).
Coupling biocatalysis with flow chemistry results in selective
syntheses, enhancing the final product quality while reducing the
process associated costs. For instance, the productivity of the
enantiopure (R)-δ-decalactone via C-C double bond enzymatic
reduction of the (R)-enantiomer of massoia lactone, drastically
increased in flow. Under continuous mode, a 10 mM scale
biotransformation was converted in 120 min residence time,
while the same reaction in batch occurred with lower substrate
loading and longer reaction time (3 mM, 4 h) (Szczepańska et al.,
2021). Implementing flow biocatalytic systems often allows to
improve the economic and environmental process efficiency by
reducing enzyme inhibition, facilitating product isolation and
enhancing biocatalyst stabilization and reuse (Bolivar and Lopez-
Gallego, 2020; Cardoso Marques et al., 2021). As reported by
Annunziata et al. (Annunziata et al., 2022), a panel of nature-
inspired phenolic esters as antimicrobial food additives with
enhanced lipophilicity was prepared by designing a flow process
with the immobilized lipase Novozyme 435 in cyclopentyl methyl
ether (CPME), a non-conventional green solvent. Similarly, a lipase
from Candida rugosa (CrL) immobilized on silica packed
microarrays, displayed 30 days of consistently high lipid-
phytosterol ester production thanks to the improved biocatalyst
stability (Xu et al., 2022). By exploiting a different immobilization

strategy (cross-linked enzyme-adhered nanoparticles, CLEANs), the
stability of the lipase B from Candida antarctica (CaLB) was
maximized, thus allowing the process intensification for the
production of terpene acetate fruit flavors and aromas (Nagy
et al., 2022). Another continuous lipase-mediated process was
developed for the interesterification of palm olein, an important
modification for the triacylglycerol industrial usability (Zhang et al.,
2022). A major breakthrough for the production of flavor-esters
(20%–93% conversion) was obtained utilizing an acyltransferase
from Mycobacterium smegmatis (MsAcT) in a biphasic medium
with naturally occurring substrates in high concentration (125 mM)
and 5 min residence time (Contente et al., 2020) (Supplementary
Figure S1A).MsAcT was subsequently employed in pure toluene for
the continuous preparation of vanillamides as new nature-inspired
antimicrobials against foodborne pathogens (Pinna et al., 2022)
(Supplementary Figure S1B). Several examples of food-applied flow
biocatalysis regard the use of sugar modifying enzymes. Liu and
coworkers co-immobilized the sugar nucleotide-dependent
C-glycosyltransferase (CGT) with the sucrose synthase (SuSy) for
the continuous production of the natural antioxidant C-glycoside
nothofagin and the in situ regeneration of the expensive cosubstrate
UDP-glucose (Liu and Nidetzky, 2021). A similar approach was
employed to produce the non-reducing disaccharide trehalose by
using monolithic microreactors (Kowalczykiewicz et al., 2022). A
continuous bi-enzymatic cascade was set up by connecting two
reactors in series, the UDP-glucose pyrophosphorylase (TaGalU)
and the trehalose transferase (TuTreT), leading to a space-time-yield
of 49.6 gproduct·L-1·h-1·mgprotein

−1 and an excellent enzymatic
operational stability (100 h). Bolivar and coworkers recently
reported on a sustainable cellobiose hydrolysis. By designing a
glucosidase-based reactor using glyoxyl-agarose for immobilization,
the full conversion (34 g L-1) was achieved in 20min residence time
(Alvarez-Gonzalez et al., 2022). An engineered variant of the hydrolytic
enzyme β-N-acetyl-hexosaminidase from Bifidobacterium bifidum was
employed to produce the precious oligosaccharide lacto-N-triose II, a
component of human milk oligosaccharides used as a synthon for
nutritional supplements, providing a further example of the
synergistic use of protein and reaction engineering for synthetic
purposes (Ruzic et al., 2020).

3.2 Active pharmaceutical ingredients

Most of the literature covering 2020–2022 deal with the
preparation of key building blocks (Al-Shameri et al., 2020;
Böhmer et al., 2020; Hegarty and Paradisi, 2020; Roura Padrosa
et al., 2020; Oeggl et al., 2021; Semproli et al., 2020; Teepakorn et al.,
2021; Azevedo et al., 2022; Peng et al., 2022) for fine chemicals/APIs

TABLE 1 (Continued) Selected examples of in flow biocatalytic applications (2020–2022).

Cinnamoyl tryptamines Roura Padrosa and Contente (2021)

Glycosylated natural products Gkantzou et al. (2021)

Fusel oil Vilas Bôas et al. (2021)

Lignocellulose-based bamboo powder Palma et al. (2021)
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rather than with the total synthesis of drugs (Rinaldi et al., 2020;
Tamborini et al., 2020; Wu et al., 2020; Kazan et al., 2021; Romero-
Fernandez and Paradisi, 2021; Benítez-Mateos et al., 2022a; Benítez-
Mateos and Paradisi, 2022). Interestingly, nucleoside analogues
result the most reported examples in this framework (Rinaldi
et al., 2020; Tamborini et al., 2020; Benítez-Mateos et al., 2022a;
Benítez-Mateos and Paradisi, 2022) and the analysis of this trend
was thus reported herein. Nucleoside analogues have been used
since the 70s as anticancer and antiviral agents (De Clercq and Li,
2016). Owing to their chemical similarity with natural nucleosides,
these molecules are able to impair DNA/RNA synthesis by
inhibiting cellular or viral replication. Nucleoside-based drugs
are strongly back in the game in the past 3 years; besides
vaccine development (Szabó et al., 2022), the urgent need for
quickly controlling the SARS-CoV-2 outbreak was tackled through
repurposing already approved antiviral drugs (Kumar et al., 2021).
Remdesivir (GS-5734), which was originally developed for the
treatment of Ebola infection, and molnupiravir stand out in this
scenario (Beigel et al., 2020; Bernal et al., 2022). Repurposing
approaches of approved drugs were a need to speed up clinical
translation of hopefully promising candidates (Chitalia and
Munawar, 2020; Al-Karmalawy et al., 2021; De et al., 2021;
Schultz et al., 2022), while novel technologies to access new
drugs and to improve established drug processes were boosted
at the same time.

The recent developments in biocatalytic routes to nucleoside
analogues (Huffman et al., 2019; McIntosh et al., 2021; Burke et al.,
2022), nicely reviewed by Cosgrove and Miller (Cosgrove and
Miller, 2022) and by Westarp et al. (Westarp et al., 2022), and the
demand for natural and modified nucleotides for mRNA vaccines
have given a new impetus to nucleic-acid chemistry. Flow (bio)
catalysis, which is being rapidly spreading for both bioprocess
development and optimization in the pharma sector (Hughes,
2018), was indeed the next step. Four pharmaceutically relevant
5-halogenated-2’-deoxyuridine nucleoside analogues (fluoro-,
chloro-, bromo-, and iodo-) were synthesized at 10 mM scale by
a thymidine phosphorylase from Halomonas elongata (HeTP)
immobilized on methacrylate microbeads achieving
conversions >80% within 45 min residence time. The same
reaction in batch gave 67%–84% conversions in 24 h
(Supplementary Figure S2A). The synthesis of floxuridine (5-
fluoro-2’-deoxyuridine) was further scaled-up to 20 mM
obtaining the highest space-time yield (5.5 g/L/h) reported to
date (Benítez-Mateos et al., 2022a). In the paper by Rinaldi
et al., an immobilized enzyme reactor based on Lactobacillus
reuteri 2’-deoxyribosyltransferase (LrNDT) was employed for
the synthesis of 5-fluoro- and 5-iodo-2’-deoxyuridine at an
analytical scale, affording 50%–59% conversion after 30 min
residence time, respectively (Rinaldi et al., 2020)
(Supplementary Figure S2B). The purine nucleoside
phosphorylase from H. elongata (HePNP) immobilized on
agarose microbeads was employed by Benitez-Mateos and
Paradisi for the flow synthesis of a panel of nucleoside
analogues with bulky nucleobases (6-O-methylguanine, 1,2,4-
triazole-3-carboxamide, benzimidazole, aniline-purine, and
benzamidepurine). A conversion >90% was obtained after
10 min residence time in the transglycosylation of inosine with
6-O-methylguanine, for the synthesis of a nucleoside analogue of

the anticancer drug nelarabine, while modest conversions (<20%)
were achieved with the other nucleobases tested (Benítez-Mateos
and Paradisi, 2022). A uridine phosphorylase from Clostridium
perfringens (CpUP) and a purine nucleoside phosphorylase from
Aeromonas hydrophila (AhPNP) were co-immobilized in flow on
glyoxyl-agarose (Supplementary Figure S2C) and used in a cascade
mode for the preparative synthesis of vidarabine: about 1 g of the
target product (55% isolated yield, >99% purity) was obtained after
1 week (Tamborini et al., 2020).

3.3 Commodity chemicals from fats and oils

Lipids are a valuable renewable source for the sustainable
manufacturing of multiple chemicals such as biolubricants,
biosurfactants, and biofuels. Hydrolysis, esterification,
interesterification, and decarboxylation are the main target
reactions involved. Continuous bioreactors are a useful tool
both for the study and the intensification of biotransformations.
Lipases are the “first in class” enzymes in this frame and are
generally used as immobilized biocatalysts in PBRs. A recent report
described the synthesis of a biolubricant from isoamyl alcohol,
contained in fusel oil (>60% wt), and oleic acid (1: 1.5 M ratio)
catalyzed by Rhizopus oryzae lipase and performed in a two-stage
PBR coupled to a water extraction column filled with molecular
sieves. Under optimized conditions, ester productivity was
292.20 μmol g−1 min−1 and biocatalyst stability (t1/2) was
179.6 h (Vilas Bôas et al., 2021) (Supplementary Figure S3). In
another report, palm oil was interesterified in a fixed-bed reactor:
flow rate and temperature were studied as key parameters
controlling the interesterification degree (Zhang et al., 2022).
Decarboxylation of fatty acids to the corresponding
hydrocarbons (Cn-1) was carried out to produce biofuels.
Compared to lipase-catalyzed reactions, photodecarboxylase-
based reactions are in an early phase. Continuous flow
reactors have been used for the study of the reactions and
assessment of photostability and suitable light penetration
(Benincá et al., 2022; Simić et al., 2022). The full conversion
of palmitic acid in the photodecarboxylation catalyzed by
Chlorella variabilis fatty acid photodecarboxylase was obtained
in a rapid residence time (15 min) by using a high power blue
LED source (300 W). Furthermore, the use of less expensive and
sustainable light sources such as common white LED source
(300 W) or even sunlight were evaluated, achieving full
conversions after 1 h.

4 Conclusion and outlook

Continuous processes merging the advantages of flow reactors,
the inherent selectivity of enzymes, and the access to
heterogeneous and stable biocatalysts as a result of their
compartmentalization by immobilization complement nowadays
the classical round-bottom flask batch chemistry. Furthermore,
automation, less space and easy scale-up, better mixing, more
efficient heat transfer are only a few of the technical strength points
of continuous processes which translate in better control over
reaction conditions by real-time monitoring as well as of product
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variability, less energy consumption, higher safety and
productivity. Thus, it is not surprising that this enabling
technology answers all the Green Chemistry principles. In this
context, flow biocatalysis has proved to tackle some of the main
challenges of start-and-stop batch biotransformations. Scalability
of biotransformations is still far from the industrial requirements
and is rarely coupled with industrially feasible and straightforward
downstream processes (that are high product concentration and
product recovery by precipitation/crystallization over extraction
or chromatographic steps). Biocatalyst turnover and reusability are
further issues that have to be assessed when developing
bioprocesses. Therefore, biocatalyst stabilization by
immobilization plays a key role in this regard. When
approaching flow mode operations with equilibrium-controlled
reactions, the use of an excess of reactants is generally avoided (to
minimize waste formation and to assist the purification step), while
taking advantage of the progressive removal of the substrate/
product. For cofactor-dependent enzymes, recycling systems in
flow (e.g., enzyme and cofactor co-immobilization strategies) need
to be designed for efficient processes: this is an issue that it is
expected to catalyze much effort in the next future.

The numerous advantages of continuous flow processes have
favored the application of this technology, initially confined to
continuous bulk production, also to the fine chemicals sector.
Taking into account the increasing demand for a safer, less-
energy demanding, and sustainable chemistry, it is foreseen that
flow biocatalysis will play a major role in this frame. Nevertheless,
the higher complexity of flow compared to batch processes as well
as time and cost investments required to switch from batch to
flow are the other side of the coin. Continuous set-ups do not
outperform traditional batch techniques by definition. Hence, a
batch versus flow assessment and a bioprocess design should be
done first to figure out whether a “traditional” biotransformation
can really benefit from continuous technology. Systematic
analysis and comparison of reactor formats should be
accompanied with standardized metrics of both catalyst and
reactor performance (Thompson et al., 2019; Bolivar and
Lopez-Gallego, 2020). Metrics assessing reaction performance
should be ideally accompanied with the analysis of product
quality, process cost-effectiveness and energy efficiency to
assist optimal process design and reactor implementation
(Cardoso Marques et al., 2021).
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