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The implementation of biocatalytic steroid hydroxylation processes at an industrial scale
still suffers from low conversion rates. In this study, we selected variants of the self-
sufficient cytochrome P450 monooxygenase BM3 from Bacillus megaterium (BM3) for the
hydroxylation of testosterone either at the 2β- or 15β-position. Recombinant Escherichia
coli cells were used as biocatalysts to provide a protective environment for recombinant
enzymes and to ensure continuous cofactor recycling via glucose catabolism. However,
only low initial whole-cell testosterone conversion rates were observed for resting cells.
Results obtained with different biocatalyst formats (permeabilized cells, cell-free extracts,
whole cells) indicated a limitation in substrate uptake, most likely due to the hydrophilic
character of the outer membrane of E. coli. Thus, we co-expressed nine genes encoding
hydrophobic outer membrane proteins potentially facilitating steroid uptake. Indeed, the
application of four candidates led to increased initial testosterone hydroxylation rates.
Respective whole-cell biocatalysts even exceeded activities obtained with permeabilized
cells or cell-free extracts. The highest activity of 34 U gCDW

−1 was obtained for a strain
containing the hydrophobic outer membrane protein AlkL from Pseudomonas putida
GPo1 and the BM3 variant KSA14m. Overall, we show that the straightforward application
of hydrophobic outer membrane pores can boost whole-cell steroid conversion rates and
thus be game-changing with regard to industrial steroid production efficiency.
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INTRODUCTION

Steroid-based drugs account for one of the largest and still expanding sectors in the pharmaceutical
industry (Tong andDong, 2009). Their broad spectrum of pharmaceutical activities is reflected in the
prominent role they play, e.g., in contraceptives, anti-inflammatory agents, or cancer treatments
(Bureik and Bernhardt, 2007; Donova and Egorova, 2012; Donova, 2017). Hydroxylated steroid
derivatives frequently show higher biological activities than their more hydrophobic non-
hydroxylated analogs, rendering steroid hydroxylations particularly relevant (Donova and
Egorova, 2012). As number and position of hydroxyl groups are decisive for the biological
activity of steroids, highly selective hydroxylation is crucial (Bureik and Bernhardt, 2007;
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Donova and Egorova, 2012). Desired reactions often are not
accessible by chemical means, making biocatalysis a promising
highly selective and often eco-efficient alternative for steroid
functionalization (Bureik and Bernhardt, 2007; Julsing et al.,
2008; Donova, 2017).

Several microorganisms show native steroid-modifying
activities and are regularly applied at industrial scale.
However, respective processes typically suffer from low
productivities, defined as amount of product produced per
time and volume, and undesired side-reactions (Bureik and
Bernhardt, 2007; Fernández-Cabezón et al., 2018). Thus,
enzyme discovery as well as enzyme and strain engineering
have been of immense interest in recent decades (Donova,
2017; Fernández-Cabezón et al., 2018), giving rise to a huge
variety of steroid hydroxylating cytochrome P450
monooxygenases (CYP450s) covering virtually all possible
specificities (Bernhardt, 2006; Bureik and Bernhardt, 2007;
Donova, 2017; Szaleniec et al., 2018).

Employing CYP450s of mammalian origin appears attractive
due to their natural role in steroid synthesis and conversion
(Donova and Egorova, 2012; Donova, 2017). However, they often
suffer from low enzyme activities severely hampering application
(Bernhardt, 2006; Urlacher and Schmid, 2006; Julsing et al.,
2008). Bacterial CYP450s typically provide higher activities
and high levels of soluble expression in recombinant
microorganisms. The vast majority of CYP450s features
separate components involved in the shuttling of electrons
from NAD(P)H to the monooxygenase subunit (Bernhardt,
2006). Subunits need to be expressed in a stable and active
form and in the optimal ratio (Murdock et al., 1993; Staijen
et al., 2000) which is likely to confine the biotransformation
efficiency (Duetz et al., 2001). Biocatalyst efficiency, namely the
enzyme turnover rate kcat (s

−1), may therefore benefit from a
fusion of subunits as it is the case for native CYP450 BM3 (BM3,
in CYP450 nomenclature: CYP102A1) from Bacillus megaterium
ATC14581 featuring the highest known CYP450 activity (Narhi
and Fulco, 1986, 1987; Noble et al., 1999). For this fatty acid
monooxygenase, which does not accept steroids as substrates
(van Vugt-Lussenburg et al., 2006), Kille et al. developed a set of
variants with promising activities as well as regio- and
diastereoselectivities for testosterone hydroxylation (Kille et al.,
2011), constituting an interesting foundation for efficient steroid
hydroxylation.

CYP450s are cofactor-dependent and instable in isolated
form and thus are preferably applied in metabolically active
cells (Duetz et al., 2001; Schrewe et al., 2013), with self- and
enzyme regeneration and reactive oxygen species (ROS)
degradation as important stabilizing factors (Woodley, 2006).
However, microbial cell envelopes typically feature a
hydrophilic outer face, established by a lipopolysaccharide
layer and the hydrophilic nature of outer membrane porins,
e.g., in Gram-negatives (Leive, 1974; Nikaido, 2003; Chen, 2007;
Schrewe et al., 2013). This restrains the uptake of hydrophobic
substrates (Carter et al., 2003; Schrewe et al., 2011; Grant et al.,
2014), including steroids (Zehentgruber et al., 2010a;
Zehentgruber et al., 2010b; Putkaradze et al., 2019). The
heterologous co-expression of genes encoding hydrophobic

outer membrane pores can facilitate hydrophobic substrate
uptake into metabolically active cells, as it has been shown
for the bioconversion of alkanes (Julsing et al., 2012; Grant et al.,
2014; Call et al., 2016; Hsieh et al., 2018), long-chain fatty acids
(Schneider et al., 1998; Jeon et al., 2018), fatty acid methyl esters
(Julsing et al., 2012; Ladkau et al., 2016; van Nuland et al., 2016),
terpenes (Cornelissen et al., 2013; Ruff et al., 2016), and
aromatics (Ruff et al., 2016).

In this study, we evaluate the steroid hydroxylation
performance of highly active BM3 variants in living
Escherichia coli cells and follow up the hypotheses that the
outer membrane of Gram-negative bacteria forms an effective
barrier for steroids and that this barrier can be relieved by
introducing hydrophobic pores. Thereby, 2β- or 15β-
hydroxylations of testosterone served as model reactions and
the performance of permeabilized and intact cells was compared
(Figure 1). Further, different outer membrane proteins were
evaluated for their potential to improve specific steroid
hydroxylation activities of living cells (Supplementary Table S1).

MATERIALS AND METHODS

Gene Synthesis, Oligonucleotides, and
Chemicals
Custom synthesized genes and oligonucleotides were purchased
from Eurofins (Ebersberg, Germany). 2β- and 15β-
hydroxytestosterone were purchased from Steraloids Inc.
(Newport, RI, United States). All other chemicals were
obtained from AppliChem (Darmstadt, Germany), Carl Roth
(Karlsruhe, Germany), Chemsolute (Renningen, Germany), or
Sigma-Aldrich (Steinheim, Germany) in the highest purity
available.

Generation of Recombinant Bacterial
Strains
Enzymes (Phusion High-Fidelity Polymerase, restriction
enzymes, T5 exonuclease, Taq DNA ligase), dNTPS, and the
corresponding buffers were purchased from Thermo Scientific
Molecular Biology (St. Leon-Rot, Germany) or New England
Biolabs (Frankfurt/Main, Germany). Plasmid isolation and
purification of DNA from agarose gels was performed
according to the manufacturer’s instructions of the respective
kits fromMacherey-Nagel (Düren, Germany). Electro-competent
E. coli cells were prepared according to standard procedures
(Sambrook and Russell, 2001) and transformed via
electroporation (2500 V, Eppendorf Eporator®, Hamburg,
Germany).

Microbial strains and plasmids used in this work are listed in
Supplementary Table S2. E. coli DH5α was used for cloning
purposes, whereas E. coli BL21-Gold(DE3) was used for
expression and biotransformation studies. The plasmids
pETM11_KSA1, pETM11_KSA2, pETM11_KSA3, and
pETM11_KSA14 were constructed according to the
publication of Kille et al. (2011). Plasmids harboring genes
encoding the respective outer membrane proteins were
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constructed as shown in Supplementary Table S3. The respective
genes were either ordered as gene synthesis constructs or
obtained from genomic DNA. Successful cloning was
confirmed by sequencing (Genewiz Germany GmbH, Leipzig,
Germany).

Cultivation of E. coli Strains
For bacterial growth and heterologous protein synthesis, cells
were grown in lysogeny broth (LB) medium (Sambrook and
Russell, 2001), modified terrific broth (TB) (Kille et al., 2011), or
M9 medium (Sambrook and Russell, 2001) supplemented with
0.1% (v/v) US* trace element solution (Panke et al., 1999), 2 mM
MgSO4, and 0.5% (w/v) D-glucose as sole carbon and energy
source. Cultivations were conducted in a Multitron shaker
(Infors, Bottmingen, Switzerland).

Microorganisms from a frozen glycerol stock were cultivated
in LB medium (supplemented with 50 μg mL−1 kanamycin for
plasmid-containing cells) at 37°C and 200 rpm for 6–8 h. From
the LB culture, 10 mL of either M9 or TB medium were
inoculated and incubated at 30°C for 14–16 h. These
precultures were used to inoculate the same media to an
optical density of 0.2 at 450 nm (OD450). Heterologous gene
expression was induced in the early exponential phase (OD450

~0.6) by addition of 0.1 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG). In case of cultivation in M9
medium, 0.5 mM of the heme precursor 5-aminolevulinic acid
was simultaneously added for enhanced heme synthesis. Cells
were harvested 5 h after induction by centrifugation (5,000 g,
5 min, 4°C) for the preparation of permeabilized cells, resting
cells, or cell-free extracts. For the isolation of total membrane
fractions, cell pellets were stored at −20°C until further
processing.

Biotransformation With Permeabilized Cells
Specific activities of permeabilized cells were determined
according to a modified version of the protocol described by
Kille et al. (2011). Cells were harvested from TB cultures 5 h after
induction, washed once with P450 washing buffer (100 mM
potassium phosphate, pH 7.4, 5% (v/v) glycerol), and

resuspended to a cell concentration of 1 gCDW L−1 in
P450 reaction buffer (100 mM potassium phosphate, pH 7.4,
5% (v/v) glycerol, 5% (w/v) glucose, 5 mM EDTA, 0.25mM
NADP+, 1 U mL−1 glucose dehydrogenase). The cell suspension
was immediately frozen in liquid nitrogen and then thawed at
room temperature. One mL of sample was transferred to screw-
capped glass tubes (12 mL) and equilibrated in a water bath at 30°C
and 250 rpm for 15min. The biotransformation was then started
by adding 10 µL of a 100 mM testosterone stock solution inDMSO,
resulting in final concentrations of 1 mM testosterone and 1% (v/v)
DMSO. Reactions were terminated after a specific incubation time
(given in figures and corresponding descriptions) by adding
12.5 µL HCl (1M) per 100 µL resting cell suspension.
Acetonitrile was added to the samples (50% v/v) to dissolve
precipitated steroids, followed by mixing (2000 rpm, 5 min, 4°C)
and centrifugation (17,000 g, 5 min, 4°C) for biomass removal. The
resulting supernatant was stored at −20°C until further analysis.
Specific activities are given in U gCDW

−1, with 1 U defined as the
activity forming 1 µmol of product per min, and were retrieved via
quantification of accumulated product divided by the biomass
applied.

In VivoBiotransformationWith RestingCells
Fresh cells harvested 5 h after induction from an exponentially
growing M9 culture were washed once and resuspended to a cell
concentration of 1 gCDW L−1 in 100 mM potassium phosphate
buffer (pH 7.4) supplemented with 1% (w/v) glucose as the source
for energy and reduction equivalents. One mL of resting cell
suspension was filled into screw-capped glass tubes (12 mL) and
equilibrated at 30°C and 250 rpm for 15 min. Reaction start and
termination as well as sampling were performed as described
above for biotransformations with permeabilized cells.

In Vitro Biotransformation With Cell-Free
Extracts
Cells were harvested from induced exponentially growing M9
cultures, and cell pellets were resuspended in 100 mM potassium
phosphate buffer (pH 7.4) to a concentration of 3 gCDW L−1.

FIGURE 1 | Biocatalyst formats for the hydroxylation of testosterone (T) to 2β- and 15β-hydroxytestosterone (2/15β-OH-T) using self-sufficient CYP450 BM3
variants (BM3). (A) Permeabilized cells supplied with glucose and glucose dehydrogenase (GDH) for NADPH regeneration. Efficient steroid diffusion into cells can be
assumed. (B) Intact living cells recycling NADPH via active glucose catabolism. They are hypothesized to require hydrophobic outer membrane proteins (OMP) for
efficient steroid uptake and secretion.
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Subsequently, cells were disrupted by three passages through a
French Press (6.9 MPa, Glenn Mills Inc., Clifton, NJ,
United States). Cell debris was removed by centrifugation at
12,000 g for 15 min at 4°C. One mL of supernatant was
transferred to screw-capped glass tubes (12 mL), equilibrated
at 30°C and 250 rpm for 15 min, and supplied with 10 µL of a
50 mM NADPH stock solution in the same buffer. The reaction
was started by adding 10 µL of a 100 mM testosterone stock
solution in DMSO, resulting in final concentrations of 0.5 mM
NADPH, 1 mM testosterone, and 1% (v/v) DMSO. Reactions
were terminated and samples were treated as described above.

Isolation of Total Membrane Fractions
Cell pellets were thawed in ice, resuspended in a 100 mM
potassium phosphate buffer (pH 7.4) to a concentration of
3–5 gCDW L−1, and disrupted by two passages through a French
Press (6.9 MPa, Glenn Mills Inc.). The resulting crude cell extract
was centrifuged at 12,000 g for 15 min at 4°C followed by
centrifugation of the supernatant at 200,000 g and 4°C for 2 h.
The resulting pellet was resuspended in the same buffer and
analyzed by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE, see below).

Analytical Methods
Biomass concentrations were determined photometrically as the
optical density at a wavelength of 450 nm (Libra S11, Biochrom
Ltd., Cambridge, United Kingdom) with one OD450 unit
corresponding to 0.166 gCDW L−1 (Blank et al., 2008).

Protein concentrations were analyzed via BradfordDye Reagent
(Alfa Aesar, Kandel, Germany) according to the manufacturer’s
instructions using bovine serum albumin as protein standard.
Monitoring of protein synthesis was performed by harvesting
80 µg of cell dry weight (CDW) from cultures followed by SDS-
PAGE according to Laemmli (1970). Proteins extracted from
15 µgCDW were loaded per lane and stained with Coomassie
Brilliant Blue R-250. For cell-free extract and membrane
fraction analysis, 7.5 µg of total protein were loaded per lane.
PageRuler™ Prestained Protein Ladder (Thermo Fisher Scientific,
Waltham, MA, United States) was used as reference.

Steroid concentrations were determined by HPLC using a Dionex
Ultimate 3,000 system (Thermo Fisher Scientific) equipped with an
Accucore C18 column (150 × 3mm, 2.6 µm particle size, Thermo
Fisher Scientific). An eluent consisting of 40% acetonitrile in
ultrapure water was used at a flow rate of 0.6mL min−1. The
column oven temperature was set to 40°C and a sample volume
of 5 µL was injected. Steroids were detected at 245 nm using an UV
detector and quantified based on calibration curves.

RESULTS

Testosterone Hydroxylation by E. coli
BL21-Gold(DE3) Harboring Engineered BM3
Variants
In a previous study, Kille et al. developed a library of engineered
BM3 variants capable of regio- and stereoselective

hydroxylation of testosterone either at the 2β- or the 15β-
position (Kille et al., 2011). Genes encoding the respective
BM3 variants were heterologously expressed in E. coli BL21-
Gold(DE3) via the lac-based T7 expression system. Promising
variants showed good conversions and regioselectivities, from
which volumetric activities of up to 0.58 U L−1 can be estimated
(Supplementary Table S4). An important remark is that cell
preparation included the addition of EDTA and a freeze-
thawing step which is prone to involve cell membrane
permeabilization (Felix, 1982; Chen, 2007). Thus, cells
presumably were incapable of intracellular cofactor
regeneration (Julsing et al., 2008; Julsing et al., 2012; Schrewe
et al., 2013), which is corroborated by the use of an extracellular
cofactor regeneration system (Kille et al., 2011). The study
presents long-term data (24 h of biotransformation). In order
to assess biocatalyst efficiency in detail, we set out to determine
initial and specific catalytic rates for permeabilized as well as
living cells equipped with the promising BM3 variants KSA1,
KSA2, KSA3, or KSA14.

Constructed strains were based on pETM11 and E. coli BL21-
Gold(DE3) according to Kille et al. (2011) (Supplementary Table
S2, Supplementary Figure S1A). For cell cultivation and
heterologous protein synthesis in TB medium, the protocol for
microplate cultivation (Kille et al., 2011) was adapted to shake
flask scale. As expected, permeabilized cells containing KSA1,
KSA2, and KSA3 primarily produced 2β-hydroxytestosterone,
whereas 15β-hydroxytestosterone was detected as main product
of KSA14 (Supplementary Table S5). Volumetric activities for
24 h of biotransformation were in a similar range as previously
reported (Supplementary Figure S2). Initial activities within the
first 10 min were found to exceed long-term activities by factors
of 7.8–19.8, indicating that testosterone hydroxylation rates do
not remain constant in the experimental setup chosen.
Interestingly, one particular KSA14 clone exhibited a 2-fold
higher initial activity and similar 15β-regioselectivity
(Supplementary Table S5). Sequencing of the plasmid from
this clone revealed four additional nucleotide exchanges
compared to the original ksa14 gene, leading to two missense
mutations (K224E, V314I) and two silent mutations (L78L,
L871L). Both amino acid exchanges are located in the BM3
monooxygenase subunit and thus are likely to affect the
catalytic properties of the enzyme. For example, K224 forms
salt bridges with the residues involved in the opening and closing
of the substrate channel (Whitehouse et al., 2012). This variant is
hereafter designated as KSA14m.

Compared to the wildtype strain (specific growth rate µ = 0.85 ±
0.04 h−1 at 30°C in TB medium), the recombinant strains after
induction showed a shorter phase of exponential growth, followed
by a growth rate reduction whichmay be due to ametabolic burden
of BM3 expression (Figure 2A). However, growth of the empty
vector control was even slower than that of BM3-containing strains
and involved the synthesis of two unexpected 32 and 38 kDa
proteins (Figure 2B). Analysis of open reading frames on the
empty vector revealed that the so-called max dimerization protein
1 (NCBI accession number NP_002348) may be synthesized.
However, its molecular weight is estimated to be only 25 kDa,
which does not fit to the observed protein weights.
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The high expression levels of the respective BM3 variants
(Figure 2B) enabled initial specific activities ranging from
1.25 ± 0.47 to 10.93 ± 1.00 U gCDW

−1 for permeabilized cells of
the different strains (Figure 2C), whereas KSA14m hydroxylated
testosterone at a significantly higher rate of 22.73 ± 1.02 U gCDW

−1.
To investigate if intact cells enable similar specific testosterone
hydroxylation activities as permeabilized cells, non-growing living
(i.e., resting) cells were prepared after cultivation and heterologous
gene expression in TB medium and employed in activity assays.
Direct comparison revealed 4.2 to 10.7-fold lower initial activities
in the range of 0.26 ± 0.01 to 1.02 ± 0.06 U gCDW

−1 for KSA1,
KSA2, KSA3, and KSA14 (Figure 2C). KSA14m containing cells
again showed the highest testosterone hydroxylation rate (8.94 ±
0.49 U gCDW

−1, 2.5-fold lower than in permeabilized cell format).
Regioselectivity was not or only slightly reduced compared to
permeabilized cells (Supplementary Table S5). Furthermore,
permeabilized cells generally demonstrated higher conversions
than resting cells 1 hour after substrate addition (Figure 2D).
This however changed during the following 23 h, after which
resting cells of some strains showed higher conversions than

permeabilized cells. It has to be mentioned that solubility limits
of testosterone and the 15β-hydroxylated product in the aqueous
assay setup (RCA buffer supplemented with glucose and 1% (v/v)
DMSO) amounted to 66 and 565 μM, respectively. Depicted
conversions after 1 and 24 h of biotransformation were
calculated based on product formation and need to be
interpreted carefully when exceeding the aqueous solubility limit
(conversions >56%).

Heterologous BM3 Synthesis in Defined
Media
High CYP450 levels led to noticeably impaired growth of the
recombinant bacterial strains in TB medium, pointing to
metabolic burden effects. High oxygenase levels have been
reported to affect host cell physiology (van Beilen et al., 2003;
Bühler et al., 2008) and thus do not necessarily lead to higher
whole-cell activities (Schäfer et al., 2020). In contrast to complex
media like TB, defined media usually lead to slower bacterial
growth and lower metabolic activity, including heterologous gene

FIGURE 2 | Performance of E. coli BL21-Gold(DE3) strains carrying pETM11 with genes encoding the respective BM3 variants compared to the wildtype (WT) and
an empty vector control (EV) strain during and after cultivation in TB medium. (A) Bacterial growth in TB medium upon induction with 0.1 mM IPTG. (B) SDS-PAGE
analysis of the different strains 5 h after induction, with the band at 119 kDa representing the respective BM3 variant (black arrow). For the empty vector strain, two
unidentified proteins (32 and 38 kDa, grey arrows) were observed. (C) Initial (10 min) testosterone hydroxylation activities of permeabilized and resting cells. Activity
assays were conducted as described in the Materials and Methods section. (D) Conversion of testosterone (based on product formation) by the different cell formats 1
and 24 h after substrate addition. The bars represent average values and standard deviations of two biological replicates (n.d., no product formation detected).
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expression and protein synthesis, but are more feasible for
process scale up. We thus also tested M9 medium for cultivation.

In contrast to modified TB medium, all recombinant strains
showed exponential growth in M9 medium, which was not
impaired compared to the wildtype, also not upon induction
(Figure 3A). Even though BM3 levels after 5 h of induction were
lower in M9 medium compared to TB medium (Figure 3B),
resting cells showed similar initial specific activities, ranging
from 0.26 ± 0.01 U gCDW

−1 to 1.06 ± 0.02 U gCDW
−1. The

KSA14m strain again displayed a noticeably higher activity of
9.75 ± 1.60 U gCDW

−1 (Figure 3C). Interestingly, regioselectivity
was slightly lower (Supplementary Table S5).

In summary, the choice of cultivation medium did not affect
the activity of intact cells. However, selection of a suitable
biocatalyst format proved to be pivotal for higher specific
testosterone hydroxylation rates. The resting-cell format
appears less suitable for BM3-catalyzed testosterone
hydroxylation than the permeabilized-cell format, suffering
from impaired substrate uptake. It however is clearly superior
regarding cofactor regeneration and biocatalyst stability, making

cell engineering for improved substrate uptake a strategy of
choice.

Testosterone Hydroxylation by KSA14m in
Cell-Free Extracts Versus Whole Cells
As the strain containing KSA14m displayed the highest specific
testosterone hydroxylation activity, it was used to investigate the
possible substrate uptake limitation. Cells cultivated in M9
medium were either used for the preparation of intact resting
cells or disrupted to generate cell-free extracts, for which steroid
hydroxylation is not subject to mass transfer limitation over
cellular membranes. A specific activity of 34.8 ± 1.5 U per g of
total protein was obtained with cell-free extracts, which, assuming
that standard E. coli cells consist of 55% total protein (Schmidt
et al., 2016), is 2-fold higher than that of intact cells (Figure 3D).
Obviously, the activity obtained for intact cells does not reflect the
maximum BM3 activity available in the cells which corroborates
the findings with permeabilized cells and clearly indicates steroid
uptake limitation.

FIGURE 3 | Performance of E. coli BL21-Gold(DE3) strains carrying pETM11 with genes encoding the respective BM3 variants compared to the wildtype and an
empty vector control strain during and after cultivation in M9minimal medium supplemented with 0.5% (w/v) glucose. (A) Bacterial growth in M9medium upon induction
with 0.1 mM IPTG and addition of 0.5 mM5-aminolevulinic acid. (B)SDS-PAGE analysis of the different strains 5 h after induction, with the band at 119 kDa representing
the respective BM3 variant (black arrow). For the empty vector strain, two unidentified proteins (32 and 38 kDa, grey arrows) were observed. (C) Initial (10 min) and
long-term (24 h) testosterone hydroxylation activities of resting cells. (D) Activities of the KSA14m strain in different biocatalyst formats are compared. Activity assays
were performed as described in the Materials and Methods section. The bars represent average values and standard deviations of two biological replicates (n.d., no
product formation detected).
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Hydrophobic Outer Membrane Pores Boost
Testosterone Hydroxylation by Living Cells
The significant difference between the activities of cell-free
extracts, permeabilized, and intact cells indicates that the
uptake of testosterone as a large hydrophobic substrate limits
its hydroxylation by intact Gram-negative cells. We tested nine
different outer membrane proteins for an improvement of
testosterone uptake by E. coli BL21-Gold(DE3) containing the
BM3 variant KSA14m. Candidates were selected from operons
that encode pathways enabling growth on or degradation of
hydrophobic compounds (Wang et al., 1995; Ayoubi and
Harker, 1998; Kasai et al., 2001; Hearn et al., 2008; Leu et al.,
2011; Kothari et al., 2016; Mounier et al., 2018; Olivera and
Luengo, 2019) or based on previous studies employing
hydrophobic outer membrane proteins to facilitate
hydrophobic substrate uptake (Julsing et al., 2012; Cornelissen
et al., 2013; Grant et al., 2014; Call et al., 2016; Ruff et al., 2016;
Jeon et al., 2018). Corresponding genes were placed downstream
of the ksa14m gene in a bicistronic operon (Supplementary
Figure S1B).

The co-synthesis of four outer membrane proteins
significantly improved the specific whole-cell testosterone
hydroxylation activity of living cells. XylN, FhuA Δ1-160, and
TodX resulted in 3.3-, 4.6-, and 4.9-fold specific activity increases,
respectively (Figure 4A). AlkL emerged as the most effective
candidate enabling a 5.6-fold increase in whole-cell testosterone
hydroxylation activity, corresponding to an even higher protein-
specific rate than obtained with KSA14m containing cell-free
extract. Induction of heterologous gene expression
slightly affected bacterial growth of only the strains carrying
aupA/aupB, fhuAΔ1-160, todX, and xylN compared to strains
without an additional outer membrane protein (Supplementary
Figure S3). SDS-PAGE analysis of isolated total membrane
fractions further confirmed AlkL, FhuA Δ1-160, TodX, and
XylN synthesis, whereas bands representing the remaining
outer membrane proteins were not clearly visible (Figure 4B)
which may explain why an effect on whole-cell activity was not
observed in these cases. Interestingly, a protein band representing
the fatty acid pore FadL was clearly visible, but the respective
strain did not show an improved activity. To conclude, whole
living cells equipped with hydrophobic outer membrane proteins
facilitating testosterone uptake allowed even higher specific
turnover rates than obtained with permeabilized cells and cell-
free extracts.

Potential of Engineered BM3 Variants for
Testosterone Hydroxylation
Incorporation of AlkL into the whole-cell biocatalyst turned out
as the most promising strategy to increase whole-cell testosterone
hydroxylation activities by a facilitated steroid uptake. Thus, the
testosterone hydroxylation capabilities of different BM3 variants
were investigated with cells co-expressing alkL. Following this

FIGURE 4 | Initial specific testosterone hydroxylation activities (A) of
resting E. coli BL21-Gold(DE3) cells carrying pETM11 with ksa14m and the
genes encoding different membrane proteins after cultivation in M9 medium
supplemented with 0.5% (w/v) glucose. Resting cell preparation and
activity assays were conducted as described in the Materials and Methods
section. Average values and standard deviations of two biological replicates
are given. Statistical analysis was performed using Student’s t test, and the
values were taken as significantly different when p ≤ 0.05. (B) SDS-PAGE
analysis of total membrane fractions isolated from the respective bacterial
strains 5 h after induction with 0.1 mM IPTG and addition of 0.5 mM 5-
aminolevulinic acid. Blue arrows point to the protein bands at the sizes
expected for the respective membrane proteins.
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strategy, increased whole-cell testosterone hydroxylation rates
also were obtained with the variants KSA1, KSA2, KSA3, and
KSA14 (Figure 5A) emphasizing the high efficiency, with which
these variants can catalyze steroid hydroxylation in living cells.
Thereby, AlkL increased specific activities 6- to 28-fold
depending on the BM3 variant. Again, bacterial growth was
barely affected by additional alkL expression (Figure 5B). Cells
carrying KSA14m and AlkL emerged as the most active whole-
cell biocatalysts and enabled almost complete conversion of
1 mM testosterone in the course of 1 h as it is shown in
Supplementary Figure S4. Substrate depletion appeared to
cause a conversion rate decrease towards the end of the
biotransformation experiment. Catalyst instability issues
possibly caused by inherent enzyme instability and/or
substrate/product inhibitions may however also contribute to
this effect and will be subject of future research. In conclusion,
incorporation of hydrophobic outer membrane proteins, such
as AlkL, led to a significant increase of testosterone
hydroxylation activities of recombinant E. coli cells and thus
proved to be a valuable strategy to overcome steroid uptake
limitation.

DISCUSSION

Biotechnological steroid hydroxylation at industrial scale with
the typically employed wildtype microorganisms still suffers
from low transformation rates and poor selectivities
(Fernández-Cabezón et al., 2018). Steroid-hydroxylating
CYP450s are generally characterized by low catalytic
turnover rates, the need for electron transfer partners, as well
as limitations in the electron transfer from the redox cofactor to
the active site (Bernhardt, 2006; Donova and Egorova, 2012;
Donova, 2017). These bottlenecks considerably impede the
generation of recombinant production strains for commercial
applications (Duetz et al., 2001; van Beilen et al., 2003; Urlacher
and Eiben, 2006; Julsing et al., 2008; Bernhardt and Urlacher,
2014). By engineering the self-sufficient and highly active

CYP450 BM3 from Bacillus megaterium ATC14581 towards
regio- and stereoselective hydroxylation of testosterone, Kille
and colleagues laid the foundation for efficient steroid-
hydroxylation biocatalysts (Kille et al., 2011). In this study,
we set out to evaluate and improve the applicability of selected
BM3 variants in intact living cells as the preferred biocatalyst
format for oxygenase-based biocatalysis (Duetz et al., 2001;
Schrewe et al., 2013) with a focus on increasing the catalytic
turnover rates.

Introduction of Hydrophobic Outer
Membrane Proteins as Promising Strategy
to Improve Whole-Cell Steroid Turnover
Rates
Former studies demonstrated that hydrophobic substrate uptake
across cellular membranes constitutes a major bottleneck in
whole-cell biotransformations (Carter et al., 2003; Fontanille
and Larroche, 2003; Zehentgruber et al., 2010b; Schrewe et al.,
2011; Grant et al., 2014). Contrary to small hydrophobic
molecules crossing the outer membrane of Gram-negatives
through hydrophilic porins and readily diffusing through the
cytoplasmic membrane, the uptake of larger hydrophobic
molecules is restrained by polar and charged
lipopolysaccharides on the cell surface and the hydrophilic
nature of porins in the outer membrane (Hancock, 1997;
Nikaido, 2003). Although strategies targeting membrane
destruction or permeabilization may relieve this limitation,
they are destructive to the cell and its functionalities and thus
not suitable for biocatalytic reactions depending on an active
metabolism for cofactor and enzyme regeneration as well as ROS
degradation (Julsing et al., 2008; Julsing et al., 2012; Schrewe et al.,
2013).

Alternatively, the supply of cells with membrane pores has
been established as an approach enabling the conversion of a
variety of highly hydrophobic substrates by intact metabolically
active cells. Table 1 shows a comparison of the best results
obtained in this study for steroid hydroxylation with those

FIGURE 5 | Initial specific testosterone hydroxylation activities (A) of resting E. coli BL21-Gold(DE3) cells carrying pETM11 with genes encoding different BM3
variants together with or without alkL after 5 h of induction in M9 medium supplemented with 0.5% (w/v) glucose. Resting cell preparation and activity assays were
performed as described in the Materials and Methods section. (B) Specific growth rates of the respective strains in M9 medium upon induction with 0.1 mM IPTG and
addition of 0.5 mM 5-aminolevulinic acid. Average values and standard deviations of two biological replicates are given.
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obtained in earlier studies for the conversion of other
hydrophobic substrates facilitated by outer membrane
proteins. Applied pores range from members of aliphatic and
aromatic hydrocarbon degradation pathways to artificially
created pores, all with a typically uncharacterized substrate
spectrum. In this study, the feasibility of this approach was
tested for and extended to steroids. It is clear that such uptake
limitation only becomes relevant, if high intracellular steroid
conversion activities are established. Our results obtained with
the recently published testosterone hydroxylating BM3 variants
show that their high activity becomes limited by steroid uptake
into intact living cells. The introduction of 4 out of 9 tested outer
membrane proteins significantly increased the activity of E. coli
containing the highly active BM3 variant KSA14m.

However, the introduction of outer membrane proteins also
can be harmful to host cell physiology, either due to metabolic
burden of the expression of additional heterologous genes and/or
energy demanding, inefficient, and/or improper folding and
translocation of membrane proteins (van Beilen et al., 2003;
Kadisch et al., 2017b). The expression level of pores can be
another critical factor as consequentially increased intracellular

substrate concentrations may become toxic (Julsing et al., 2012;
Call et al., 2016; Kadisch et al., 2017a). For example, biocatalyst
destabilization related to high alkL expression has been reported
during biotransformation of dodecanoic acid methyl ester
(Schrewe et al., 2014) and octane (Grant et al., 2014). Similar
findings have been reported for high level fadL expression
employed for the conversion of octane (Call et al., 2016) and
(hydroxy) fatty acids (Jeon et al., 2018). Strains expressing aupAB,
fhuAΔ1-160, todX, and xylN displayed slightly lower specific
growth rates compared to a strain harboring only the BM3
variant. Effects on biocatalyst stability remain to be
investigated. A fine-tuning of membrane protein expression
levels may become necessary to control substrate influx, for
example by the use of tightly controlled expression systems
(Grant et al., 2014; Call et al., 2016), variation of promoter
strength (Kadisch et al., 2017a), or appropriate gene copy
number (Jeon et al., 2018). Furthermore, several technical
solutions can be applied to avoid toxic effects of substrate and
product molecules, such as the introduction of an organic phase
as substrate reservoir and product sink (van Beilen et al., 2003;
Schrewe et al., 2014).

TABLE 1 | Studies reporting enhanced uptake or biotransformation of hydrophobic substrates via heterologous outer membrane proteins.

Outer
Membrane
Protein

Substrate Converting Enzyme Substrate (MW in
g mol−1)

Impact References

AlkL (P.
putida GPo1)

alkane monooxygenase AlkBGT (P.
putida GPo1)

n-octane (114) 4-fold increase of specific activity Julsing et al. (2012)
n-nonane (128) 40-fold increase of specific activity Julsing et al. (2012)
C12-C16 alkanes (170–226) up to 100-fold increase of specific yields Grant et al. (2014)
nonanoic acid ethyl
ester (186)

1.7-fold increase of specific activity van Nuland et al. (2016)

dodecanoic acid methyl
ester (214)

28- and 62-fold specific activity increase in
single and two-liquid phase systems,
respectively

Julsing et al. (2012);
Ladkau et al. (2016)

CYP153A6, Fd, FDR (Mycobacterium sp.
HXN-1500)

(S)-limonene (136) 2- and 5-fold specific activity increase in
single and two-liquid phase systems,
respectively

Cornelissen et al.
(2013)

CYP153A, Fd, FDR (Marinobacterium
aquaeolei VT8)

C12-C16 alkanes (170–226) increased induction caused by alkanes Hsieh et al. (2018)

BM3 variants KSA1, KSA2, KSA3, KSA14,
and KSA14m (B. megaterium ATCC14581)

testosterone (288) 15-, 20.9-, 28-, 12.6-, and 5.6-fold increase
of specific activity

This study

FadL (E. coli BL21) hydratase (Stenotrophomonas maltophilia) oleic acid (282) 5.5-fold increase of specific activity Jeon et al. (2018)
ADH (Micrococcus luteus) 12- and 10-hydroxy-

octadecanoic acid (300)
5.5-fold increase of specific activity Jeon et al. (2018)

ADH (Micrococcus luteus), BVMO (P. putida
KT2440)

ricinoleic acid (298) 2-fold increase of specific activity Jeon et al. (2018)

alkane monooxygenase AlkBGT (P.
putida GPo1)

n-octane (114) 4.5-fold increase of alkane import rate Call et al. (2016)

FadL (P. putida
GPo1)

BM3 wildtype (B. megaterium ATCC14581) pentadecanoic acid (242) up to 2-fold increase of specific activity Schneider et al. (1998)

FhuA Δ1-160
(E. coli)

BM3 variants (B. megaterium ATCC14581) toluene (92) 1.5-fold increase of translocation efficiency Ruff et al. (2016)
anisol (108) 1.8-fold increase of translocation efficiency Ruff et al. (2016)
pinene (136) 1.8-fold increase of translocation efficiency Ruff et al. (2016)
limonene (136) 2-fold increase of translocation efficiency Ruff et al. (2016)
7-benzoxy-3-carboxy-
coumarin ethyl ester (324)

5-fold increase of translocation efficiency Ruff et al. (2016)

BM3 variant KSA14m testosterone (288) 4.6-fold increase of specific activity This study
TodX (P.
putida F1)

BM3 variant KSA14m testosterone (288) 4.9-fold increase of specific activity This study

XylN (P. putida
mt-2)

BM3 variant KSA14m testosterone (288) 3.3-fold increase of specific activity This study

Fd, ferredoxin; FDR, ferredoxin reductase; ADH, alcohol dehydrogenase; BVMO, Baeyer-Villiger monooxygenase.
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Substrate Spectrum of Outer Membrane
Proteins
Introduction or overexpression of outer membrane proteins
has become an increasingly relevant tool for
biotransformations of hydrophobic substrates with whole
microbial cells (Table 1). Several investigated candidates
feature a broad substrate range reaching beyond the
natural substrates of the pathways they are associated to.
In this study, we report an extension of the so far-known
substrate spectrum of several hydrophobic pores towards
steroids. Several studies showed that AlkL promotes alkane
uptake by E. coli (Julsing et al., 2012; Grant et al., 2014). This
outer membrane protein has been proposed to be structured
as an eight-stranded β-barrel traversing the
lipopolysaccharide layer similar to OmpW of E. coli, with
which it shares 27% amino acid sequence homology (van
Beilen et al., 1992; Hong et al., 2006). The extracellular
domain has a high affinity for hydrophobic molecules so
that substrates are easily channeled across the
lipopolysaccharide layer into the hydrophobic interior of
AlkL in the outer membrane (Grant et al., 2014). As for
OmpW, the passage is hindered by a narrowing in the
channel, which directs molecules to exit through a putative
lateral opening into the outer membrane (Hong et al., 2006).
Apparently, this mechanism also works for fatty acid
(m)ethyl esters (Julsing et al., 2012; Ladkau et al., 2016;
van Nuland et al., 2016) and monoterpenes (Cornelissen
et al., 2013). Interestingly, the radius of the lateral opening
(1.3 Å) has been described as incompatible with the size of
these known AlkL substrates but has recently been shown to
be dynamic due to a continuous restructuring of the barrel
dimension and release into the membrane through ephemeral
openings (Schubeis et al., 2020). In this study, AlkL relieved
the constrained testosterone uptake into E. coli and boosted
specific testosterone hydroxylation activities, thus expanding
the AlkL substrate spectrum to steroids, which are even larger
than the substrates known so far (Table 1).

The pivotal role of FadL as a long-chain fatty acid
transporter in E. coli has already been reported decades ago
(Nunn and Simons, 1978; Black, 1988). In whole-cell
biotransformations of long-chain fatty acids, increased FadL
levels significantly improved specific rates (Schneider et al.,
1998; Jeon et al., 2018). Similar results were obtained for
atypical FadL substrates, i.e., long-chain hydroxyl fatty acids
(Jeon et al., 2018). Interestingly, overexpression of fadL did not
lead to improved steroid hydroxylation rates in this study.
Even though the FadL basic structure has been described as
similar to AlkL (van den Berg, 2010), the proposed uptake
mechanism differs significantly. FadL is described as a long
barrel composed of 14 antiparallel β-strands that is plugged by
a central hatch domain and possesses an opening based on an
inward-pointing kink in one of the β-strands (van den Berg
et al., 2004). Between two extracellular loops, a hydrophobic
groove comprises a low-affinity binding site for substrates,
which then diffuse into a high-affinity binding pocket inside
the barrel close the N-terminus. Conformational changes in

the N-terminus and the hatch result in an affinity decrease and
generate a lateral channel for the substrate to move into the
outer membrane (Hearn et al., 2009; van den Berg, 2010).
Thereby, substrate binding has been suggested as prerequisite
(Black and Zhang, 1995; Lepore et al., 2011), with the affinity
strongly varying with fatty acid chain length (Black, 1990) and
long-chain fatty acids (≥C12) being preferred over mid-chain
fatty acids (C8-C11) (Maloy et al., 1981; Black, 1990).
Generally, electrostatic forces between negatively charged
carboxyl groups and positively charged amino acid residues
within the FadL binding pocket have been considered
necessary for substrate binding (van den Berg, 2005), which
would exclude non-charged compounds as FadL substrates.
The variation of FadL expression levels however was recently
shown to modulate the import of medium-chain alkanes into
E. coli (Call et al., 2016), suggesting that substrate binding is
not necessarily charge-dependent. The missing facilitation of
steroid import by FadL observed in this study is in line with a
possible charge dependency and/or a rather confined substrate
specificity.

In contrast, truncated FhuA was found to facilitate
testosterone uptake. The native, complete protein is
responsible for the active import of ferric hydroxamate into
E. coli. Removal of the first 160 amino acids (N-terminal cork
domain) converted the active iron transporter into a large passive
diffusion channel (i.e., FhuA Δ1-160) differing from AlkL in
terms of uptake mechanism (Ruff et al., 2016). FhuA Δ1-160 has
been shown to improve the uptake of terpenes and aromatic
compounds into E. coli up to 5-fold (Ruff et al., 2016). It also was
found to facilitate testosterone uptake resulting in a 4.6-fold
specific whole-cell activity increase, and thus can be
considered a valuable outer membrane protein with a broad
substrate spectrum.

Among the putative hydrophobic substrate uptake pores from
hydrocarbon-degrading bacteria, TodX from P. putida F1 and
XylN from P. putida mt-2 were found to significantly enhance
whole-cell testosterone hydroxylation. Both have been reported
to be involved in the uptake of alkylaromatic compounds such as
toluene or xylene (Wang et al., 1995; Kasai et al., 2001).
Interestingly, they share sequence homology with each other
and further putative outer membrane proteins from
hydrocarbon-degrading Gram-negative bacteria, e.g., TbuX,
CymD, PorA, and CumH (Kahng et al., 2000; Kasai et al.,
2001; Hearn et al., 2008), which thus also constitute
interesting candidates for the enhancement of hydrophobic
substrate uptake.

Few bacteria have been reported to be capable of metabolizing
steroids, which generally are considered as highly
biodegradation-resistant. Known uptake systems mostly do not
involve only one, but a set of proteins (Olivera and Luengo, 2019),
e.g., ten ATP-dependent proteins encoded in the actinobacterial
mce4 locus (Mohn et al., 2008). A putative, but not yet
characterized Major Facilitator Superfamily Transporter (MFS)
originating from the testosterone-degrading strain Comamonas
thiooxydans (NCBI Reference Sequence WP_041743963) did not
increase testosterone hydroxylation rates. While AupA and AupB
have been described as outer and inner membrane proteins,
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TABLE 2 | CYP450-catalyzed steroid hydroxylation efficiencies.

Enzyme Redox
Partners

Host
and Biocatalyst
Format

Reaction Reac-
tion
Time

Product
Titer
[mg L−1]

Volumetric
Productivity
[mg L−1 h−1]

Maximum
Specific
Activity

References

CYP21 (human) CYP450
reductase
(endogenous)

Schizosaccharomyces
pombe CAD 18
(permeabilized cells)

21-hydroxylation of
17α-hydroxy-
progesterone

10 h 78a 7.8a 0.05 U
gWCW

−1a,b
Zehentgruber
et al. (2010a)

CYP3A4
(human)

CYP450
reductase (human)

Yarrowia lipolytica H222-
S4 (resting cells)

6β-hydroxylation of
progesterone

90 h 76a 0.84a 0.02 U gCDW
−1 Braun et al.

(2012)
CYP11B1
G23R_L271M
(human)

Ad, ADR (bovine) E. coli C43(DE3) (resting
cells)

11β-hydroxylation of
11-deoxycortisol

24 h 843 35 0.09 U gWCW
−1

(first 12 h)a,b
Schiffer et al.
(2015)

CYP21A2
(bovine)

Fd, ADR (S.
pombe)

E. coli C43(DE3) (resting
cells)

21-hydroxylation of
medrane

20 h 650 27 0.06 U gWCW
−1

(first 3 h)a,b
Brixius-Anderko
et al. (2015)

CYP21A2
M210V (bovine)

truncated CYP450
reductase (bovine)

E. coli C43(DE3)
(permeabilized cells)

21-hydroxylation of
medrane

24 h 691 29 0.01 U gWCW
−1

(24 h)a,b
König et al. (2020)

CYP106A2 (B.
megaterium)

Ad, ADR (bovine) E. coli JM109 (growing
cells)

15β-hydroxylation of
11-deoxy-
corticosterone

48 h 330
(theo-
retical)a

14 (theo-
retical)a

OD or biomass
conc. not given

Hannemann et al.
(2006)

CYP106A2 (B.
megaterium)

Ad, ADR (bovine) E. coli BL21 (lyophilized
cell extract)

15β-hydroxylation of
progesterone

45 min 121a 154
(theoretical)

2 U gWCW
−1

(first 5 min)a,b
Zehentgruber
et al. (2010b)

CYP106A2 (B.
megaterium)

Ad, ADR (bovine) E. coli BL21 (lyophilized
cell extract)

15β-hydroxylation of
testosterone

30 min 115a 229
(theoretical)

1.08 U gWCW
−1

(first 7 min)a,b
Zehentgruber
et al. (2010b)

CYP106A2 (B.
megaterium)

truncated Ad,
ADR (bovine)

Bacillus megaterium
MS941 (resting cells)

7β-hydroxylation of
dehydroepiandro-
sterone

24 h 2,470a 103 0.14 U
gWCW

−1a,b
Schmitz et al.
(2014)

CYP109B1 (B.
subtilis 168)

Fd, FDR
(Synechococcus
elongates)

E. coli BL21(DE3)
(permeabilized cells)

15β-hydroxylation of
testosterone

20 h 235a 12a 0.10 U
gCDW

−1a,c
Zhang et al.
(2021)

CYP109E1(B.
megaterium)

truncated Ad,
ADR (bovine)

E. coli C43(DE3)
(permeabilized cells)

24- and 25-
monohydroxylation
of cholesterol

48 h 1a 45 0.01 U gcells
−1

(first 4 h)a
Putkaradze et al.
(2019)

CYP154C5
(Nocardia
farcinica)

Pd, PDR (P.
putida)

E. coli C43(DE3) (resting
cells)

16α-hydroxylation of
pregnenolone

6 h 633a 106a 0.31 U gCDW
−1

(first
120 min)a,d

Bracco et al.
(2013)

CYP154C5
(Nocardia
farcinica)

Pd, PDR (P.
putida)

E. coli C43(DE3) (resting
cells)

16α-hydroxylation of
progesterone

4 h 629a 167a 0.86 U gCDW
−1

(first 1 h)a,d
Bracco et al.
(2013)

CYP154C5
(Nocardia
farcinica)

Pd, PDR (P.
putida)

E. coli C43(DE3) (resting
cells)

16α-hydroxylation of
testosterone

8 h 289a 36a 0.17 U gCDW
−1

(first 1 h)a,d
Bracco et al.
(2013)

CYP260A1
T224A
(Sorangium
cellulosum)

truncated Ad,
ADR (bovine)

E. coli C43(DE3) (growing
cells)

9α-hydroxylation of
11-deoxycortisone

24 h 250 10 OD or biomass
conc. not given

Litzenburger and
Bernhardt, (2017)

CYP102A1
(BM3)
variant M02

- Rhodococcus
erythropolis RG9
(growing cells)

16β-hydroxylation of
norandrostane-dione

20 h 350 18 biomass
concentration
not deducible

Venkataraman
et al. (2015)

BM3 variant
LG-23

- E. coli BL21(DE3)
(permeabilized cells)

7β-hydroxylation of
testosterone

5 h 271a 54a OD or biomass
conc. not given

Li et al. (2020)

BM3 variant LG-
23/T438S

- E. coli BL21(DE3)
(permeabilized cells)

11α-hydroxylation of
estra-4,9-diene-
3,17-dione

5 h 267a 53a 0.19 U gCDW
−1a Peng et al. (2022)

BM3 variant
KSA1

- E. coli BL21-Gold(DE3)
(resting cells with AlkL)

2β-hydroxylation of
testosterone

1 h 164 164 14.6 U gCDW
−1

(first 10 min)
This study

BM3 variant
KSA2

- E. coli BL21-Gold(DE3)
(resting cells with AlkL)

2β-hydroxylation of
testosterone

1 h 61 61 8.78 U gCDW
−1

(first 10 min)
This study

BM3 variant
KSA3

- E. coli BL21-Gold(DE3)
(resting cells with AlkL)

2β-hydroxylation of
testosterone

1 h 41 41 7.19 U gCDW
−1

(first 10 min)
This study

BM3 variant
KSA14

- E. coli BL21-Gold(DE3)
(resting cells with AlkL)

15β-hydroxylation of
testosterone

1 h 123 123 13.4 U gCDW
−1

(first 10 min)
This study

BM3 variant
KSA14m

- E. coli BL21-Gold(DE3)
(resting cells with AlkL)

15β-hydroxylation of
testosterone

1 h 195 195 34.4 U gCDW
−1

(first 10 min)
This study

Fd, ferredoxin; FDR, ferredoxin reductase, Ad, adrenodoxin; ADR, adrenodoxin reductase; Pd, putidaredoxin, PDR, putidaredoxin reductase.
aEstimated from figures and parameters (conversions, selectivities, biocatalyst concentrations) provided by the respective reference.
bWCW: wet cell weight.
cCDW, calculated based on given OD600 = 20 and empirical correlation factor 0.34 for E. coli (= 6.8 gCDW L−1) (Falcioni et al., 2013).
dCDW, calculated based on given OD600 = 40 and empirical correlation factor 0.34 for E. coli (= 13.6 gCDW L−1).
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respectively, involved in alkane uptake in Marinobacter
hydrocarbonoclasticus SP17 (Mounier et al., 2018), the exact
function of proteins encoded by ORF664 and ORF665 in
Acinetobacter venetianus RAG-1 is currently uncertain, with a
possible role in dodecane uptake (Kothari et al., 2016). Besides an
unsuitable substrate specificity, expression issues such as
improper folding may be the reason for the lacking positive
effect on testosterone hydroxylation in these cases.

The increase in testosterone hydroxylation activities not only
depended on the type of outer membrane protein applied, but,
interestingly, also deferred for different BM3 variants applying
the same pore. This high variation may be due to differing Km

values of respective BM3 variants. For example, the Km of KSA2
for testosterone has been reported to be 86-times higher than
the Km of KSA14 (Kille et al., 2011). Such a high Km may
increase the substrate limitation effect without AlkL. The impact
of facilitated substrate uptake via an outer membrane protein
thus would be much higher as it was the case for KSA2 as
compared to KSA14 in combination with AlkL (Figure 5A).

Benchmarking BM3-Catalyzed
Testosterone Hydroxylation in the
Whole-Cell Biocatalyst Format
In this study, we investigated the steroid hydroxylation performance
of highly active BM3 variants in living E. coli cells equipped with
different hydrophobic outer membrane proteins to relieve substrate
uptake limitation. In vivo testosterone hydroxylation rates obtained
with these whole-cell biocatalysts even exceeded activities obtained
with permeabilized cells or cell-free extracts (for KSA14m), which
can be ascribed to the stabilizing cellular environment and efficient
cell-, enzyme-, and cofactor regeneration qualifying such whole-cell
biocatalysts for successful future bioprocess development (Duetz
et al., 2001; van Beilen et al., 2003; Woodley, 2006; Schrewe et al.,
2013). During the past decades, many CYP450s with diverse
specificities have been described and engineered for steroid
hydroxylations (Bureik and Bernhardt, 2007; Donova and
Egorova, 2012; Szaleniec et al., 2018; Zhang et al., 2020), with
the discovery of novel products and selectivity improvement as
main arguments for high industrial potential (Fernandes et al., 2003;
Zhang et al., 2020). However, only few studies went beyond typical
screening experiments towards the evaluation of biocatalytic
performance in terms of final product titer, volumetric
productivity, and maximum specific activity. An overview of the
latter is given in Table 2 based on data provided in references and
estimations derived therefrom. The summarized studies differ in
employed CYP450 and desired hydroxylation as well as applied
redox partner proteins, host organism, and biocatalyst format.

Some reported final product titers exceed the minimum process
requirements of 0.001 and 0.1 g L−1 h−1 for pharmaceuticals and fine
chemicals, respectively (Straathof et al., 2002). Mammalian CYP450s
provided the least promising results (Zehentgruber et al., 2010a;
Braun et al., 2012; Brixius-Anderko et al., 2015; Schiffer et al., 2015;
König et al., 2020) as expected based on their discussed drawbacks
for biotechnological use (Bernhardt, 2006; Urlacher and Schmid,
2006). With bacterial CYP450s generally acknowledged as more
favorable, recent research has focused especially on the families

CYP106, CYP154, CYP109, and CYP260 (Szaleniec et al., 2018).
Comparable with mammalian CYP450s, good steroid hydroxylation
efficiencies were not reported for wildtype CYP109 and CYP260 or
their variants in the chosen setups (Litzenburger and Bernhardt,
2017; Putkaradze et al., 2019; Zhang et al., 2021). In contrast,
CYP106A2 and CYP154C5 enabled ca. 10-fold higher final
product titers (Hannemann et al., 2006; Zehentgruber et al.,
2010b; Bracco et al., 2013; Schmitz et al., 2014). Final product
titers in the same range have also been reported for BM3
variants engineered for steroid hydroxylation with differing
regiospecificities (Venkataraman et al., 2015; Li et al., 2020; Peng
et al., 2022). In the present study, such product titers were reached in
a shorter period of time and with lower whole-cell biocatalyst
concentrations. This was enabled by specific activities exceeding
the so far reported values by factors of 8 up to 40 compared with the
turnover rates of progesterone hydroxylation by Bracco and
coworkers (Bracco et al., 2013), emphasizing the great potential
of these BM3 variants in whole cells equipped with hydrophobic
outer membrane pores such as AlkL for steroid hydroxylation. For
high volumetric productivities and product titers, extended reaction
times and high biomass concentrations are prerequisites and
promise highly efficient steroid hydroxylation with the
hydrophobic pore-containing whole-cell biocatalysts developed in
this study.

CONCLUSION

In this study, we highlight whole-cell biocatalysts as preferable
format for testosterone hydroxylation. The application of a highly
active steroid-hydroxylating CYP450 such as the BM3 variant
KSA14m and a suitable hydrophobic outer membrane protein
such as AlkL brings whole-cell steroid hydroxylation
activities to a new level (an up to 40-fold increase) with the
potential to boost productivities and product titers of
microbial steroid conversion processes. Furthermore, this
study highlights the broad substrate spectrum of several
hydrophobic outer membrane proteins and thus also
contributes to the improvement of whole-cell
bioconversions of hydrophobic substrates in general.
Following studies will assess stability and kinetics of the
constructed whole-cell biocatalysts aiming at their highly
productive application on bioreactor scale.
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