
Speciality Grand Challenges in
Organometallic Catalysis
Alceo Macchioni*

Department of Chemistry, Biology and Biotechnology and CIRCC, University of Perugia, Perugia, Italy

Keywords: homogeneous catalysis, supported catalysis, bio-organometallic catalysis, cluster catalysis,
organometallic catalysis

The interaction between a metal center (M) and a molecular moiety (substrate) is the basis of most
catalytic processes. The chemical environment surrounding M can equally be a set of suitable ligands
(Coordination Catalysis) (Crabtree, 2014), a set of properly engineered/functionalized ligands
anchored onto a solid support (Single-Site Surface Coordination Catalysis) (Copéret et al., 2016),
a small cluster of metal atoms as well as a lattice of a material (Heterogeneous Catalysis) (Friend and
Xu, 2017), and an enzymatic framework (Biocatalysis) (Schwizer et al., 2018) (Figure 1).

If at least one of the M-environment interactions involves an M–R bond (where R � C and H), all
types of catalysis listed above are by definition Organometallic Catalysis. Furthermore, even in the
absence of a M–R bond in the starting molecule/material, the catalytic process may be still defined as
of organometallic nature if a M–R fragment forms in any step of the catalytic cycle. These simple
considerations clearly indicate the generality and importance of organometallic catalysis. Relevant
examples of organometallic catalysis, for each of category illustrated above, are very well known and
reported in the textbooks (Drauz et al., 2012; Bochmann, 2014).

The success of organometallic catalysis may be ascribed to the capability of a metal to activate low-
energy reaction pathways along which the deformed substrate, stabilized through coordination at a
properly designed LnM-fragment, is induced to react in a novel and original way. This explains why
some reactions are exclusive of coordination/organometallic complexes. In this respect, a classical
example is the reductive elimination, which is one of the fundamental steps of organometallic
catalytic cycles (Hartwig, 1998; Chen et al., 2017; Chu and Nikonov, 2018; Wolczanski, 2018). It
involves the release of R–X from a (LnMXR) complex, where oxidation state, coordination number
and electron of the metal center are reduced by two units.

As a result of this propensity to activate a substrate by opening low-energy reaction pathways, the
activity of organometallic catalysts can be so high that a <10−6 M active metal concentration is
sufficient for carrying out the reaction efficiently: in these cases, catalyst separation and recovery
from the products might even be avoided, as it occurs in some industrial polymerization processes
(Stürzel et al., 2016). This notwithstanding, catalyst recovery is still necessary is many cases, and
typically more easily achievable with heterogenous rather than molecular systems. For this reason,
industrially relevant molecular catalysts are often heterogenized onto suitable supports, as
mentioned above, leading to heterogeneous catalysts with similar (ideally the same) activity and
selectivity to the molecular counterpart, but with the additional advantage of being easy to separate
from the reaction environment and recycle (Schwarz et al., 1995; McNamara et al., 2002; Witzke
et al., 2020).

Selectivity is another strong suit of organometallic catalysis, which can be achieved by tailoring the
chemical environment of the active metal by proper selection/combination of ligands. As a matter of
fact, chemical, regio–and stereo–selectivity approaching 100% have been obtained for many
reactions of industrial relevance, even in non-enzymatic systems.

Importantly, the effectiveness of organometallic catalysts stems also from possible
M–environment cooperativity. The latter may involve ligands, which may be redox active or
bear a dandling functionality (a base, an acid, etc.), support, other metallic centers (both in
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molecular clusters and extended lattices) and even an enzymatic
framework. Notable in the latter respect are the recent
developments of artificial metalloenzymes, in which non-native
activating metal ions is accommodated in a protein scaffold, to
induce selectivity to catalytic process (Schwizer et al., 2018;
Lombardi et al., 2019).

Despite the versatility of organometallic catalysis and its
paramount success, many open challenges can be foreseen for
the next decades. One that the scientific community is very aware
of is the replacement of noble-metal organometallic catalysts with
those based on earth-abundant analogues (Bolm, 2009; Chirik
andMorris, 2015; Roger et al., 2017). This is not a simple task, due
to the typical superior reactivity of the former systems.
Traditionally, the best performances in most relevant catalytic
processes have been obtained by using the Pt group metals
(Albrecht and van Koten, 2001; Johansson Seechurn et al.,
2012; Lyons and Sanford, 2010; Seechurn et al., 2012; Labinger
and Jay, 2017; Roger et al., 2017). The substitution of a rare and
expensive metal of the second and third transition rows (such as
Ru, Rh, and Ir) is typically pursued by looking for an abundant
and cheap metal of the first transition row belonging to the same
triad (e.g., Ru → Fe, Rh → Co, Pd → Ni) (Zhang et al., 2012;
Smieja et al., 2013; Tasker et al., 2014;Wenger, 2019) or related by
the diagonal relationship (e.g., Ru → Mn, Rh → Fe) (Rayner-
Canham, 2011; Zell and Langer, 2018). These replacements are
often detrimental but not necessarily dramatic in terms of catalyst
TurnOver Frequency (TOF), whereas they are surely more critical
in terms of TurnOver Number (TON). Nevertheless, many
research groups have obtained remarkable success in some
important chemical transformations. For instance,
hydroformylation is one of the largest scale processes of the
chemical industry, traditionally relying on highly active Rh
catalysts. Very recently (2020) Stanley and coworkers reported
simple carbonyl Co complexes with performances comparable to
those of noble metal systems; the key for high activity appears to
be the cationic nature of the Co-complexes (Hood et al., 2020).

Another large-scale industrial field in which it would be
important to develop non-noble metal catalysts concerns
hydrogenation reactions (Filonenko et al., 2018). Among
others, a recent interesting example has been reported by
Beller and coworkers, who developed a Mn system for
quinolones hydrogenation under mild conditions, consisting of

a very simple and cheap Mn pentacarbonyl bromide complex
(Papa et al., 2020). Other first row metals developed for
N-heteroarenes reduction include cobalt (Adam et al., 2017;
Sahoo et al., 2018) and iron (Chakraborty et al., 2014). The
transition from noble-to abundant-metal organometallic
catalysts will surely continue to be one of the challenges for
the scientific community for the years to come (Bullock, 2010).

For reactions where adequate non-noble metal catalysts are
difficult to find, an alternative strategy could be trying to
minimize the utilization of such precious elements, by
maximizing their performance. In a way, it could be said that
the “noble-metal atom economy” is pursued in those cases
(Macchioni, 2019). This can be achieved, for instance, by
anchoring a well-defined molecular catalyst onto a suitable
support, thus facilitating the recovery and reuse of precious
catalysts.

To this aim, the most commonly and successfully used
supports include silica (Baffert et al., 2011; Wu et al., 2014),
organic polymers (Arakawa et al., 2008; McNamara and Hicks,
2014) and metal oxides (Kaboudin et al., 2013). Furthermore, the
modification of the surrounding environment of the supported
metal complex can be a good opportunity to enhance the catalytic
performance of the material (Maeda et al., 2020).

Alternatively, the minimization of precious M-atoms can be
achieved by diluting them in a proper porous or layered material
material based on earth-abundant elements, and having features
that maximize M-accessibility and performance. Among the class
of materials with these features, metal organic frameworks
(MOFs) are surely very attractive and are receiving a lot of
attention (Yoon et al., 2012; Furukawa et al., 2013; Liu et al.,
2014). For example they can be used as effective porous supports
for inorganic catalysts (e.g., to prevent particle aggregation)
(Yang et al., 2018) but also in combination with enzymes to
reproduce cellular microenvironments (Chen et al., 2018).
Importantly, they can also serve directly as catalysts (Zhang
et al., 2018) often favoring cooperative effects (An et al.,
2019). Also layered double hydroxides (LDHs) meet the
requirement to be easily doped with active metals, ensuring a
high percentage of active sites, especially after their exfoliation
(Fan et al., 2014; Song and Hu, 2014; Cai et al., 2019; Laipan et al.,
2019). An example has been recently reported in which micro-
and nano-sized iridium-doped zinc−aluminum LDHs,

FIGURE 1 | (A) Coordination and Single-Site Surface Coordination Catalysis; (B) Cluster and Heterogeneous Catalysis; (C) Biocatalysis. The empty square linked
to M represents a coordination vacancy.
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containing as low as 1 wt% of noble metal, have been exploited in
both chemical and electrochemical catalytic water oxidation,
exhibiting excellent catalytic performances, comparable only to
those of the most efficient molecular iridium catalysts, tested
under similar reaction conditions (Fagiolari et al., 2020; Zaccaria
et al., 2020). Many scientists are successfully pursuing both
approaches to “noble-metal atom economy” that will surely be
of great importance for the future.

Other challenges in which the community of catalytic
organometallic chemists is likely to engage will be: 1) the
development of heterogeneous stereoselective single-site
catalysts (Dal Santo et al., 2012); 2) the application of
organometallic catalysts in more sustainable, alternative media
(Dixneuf and Soule, 2019); and 3) the development of biomimetic
catalysts or structural or functional models of enzymatic catalysts
(Zakzeski et al., 2010; Beller et al., 2017). These fundamental
achievements are a necessary requirement for organometallic
catalysis to play a significant role in the trans-disciplinary
effort of the scientific community to drive the major societal
transformations. In our century, characterized by the climate and
energetic crises, this mostly means contributing to implement
sustainable production processes based on innovative materials

(Schneiderman and Hillmyer, 2017), energy sources (Armaroli
and Balzani, 2007) and chemical feedstocks (Zakzeski et al.,
2010).

In conclusion, it is reasonable to think that all the
conditions are in place for the future of organometallic
catalysis to be as successful as in the past decades. It is
also foreseeable that an important key to such success will
come from the marked interdisciplinary nature of
organometallic catalysis.
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