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Mitochondria associated
membranes in dilated
cardiomyopathy: connecting
pathogenesis and cellular
dysfunction
Pingge He1†, Hongbo Chang1†, Yueqing Qiu1 and Zhentao Wang1,2*
1Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, China,
2Department of Cardiovascular Medicine, Second Affiliated Hospital of Henan University of Chinese
Medicine, Zhengzhou, China
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, yet therapeutic
options remain limited. While traditional research has focused on mechanisms
such as energy deficits and calcium dysregulation, increasing evidence
suggests that mitochondria-associated membranes (MAMs) could provide new
insights into understanding and treating DCM. In this narrative review, we
summarize the key role of MAMs, crucial endoplasmic reticulum (ER)-
mitochondria interfaces, in regulating cellular processes such as calcium
homeostasis, lipid metabolism, and mitochondrial dynamics. Disruption of
MAMs function may initiate pathological cascades, including ER stress,
inflammation, and cell death. These disruptions in MAM function lead to
further destabilization of cellular homeostasis. Identifying MAMs as key
modulators of cardiac health may provide novel insights for early diagnosis
and targeted therapies in DCM.
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1 Introduction

Dilated cardiomyopathy (DCM) is a progressive disease characterized by left

ventricular enlargement and impaired contractile function, often caused by genetic

mutations, viral infections, and autoimmune diseases (1). The pathophysiology of DCM

includes myocardial fibrosis, cardiomyocyte hypertrophy, apoptosis, and contractile

dysfunction, influenced by factors including genetic mutations [e.g., Troponin T2,

Cardiac Type, Titin, Lamin A/C(LMNA), Phospholamban (PLN), Tropomyosin 1,

Laminin Subunit Alpha 2], myocardial injury, ventricular remodeling, oxidative stress,

and mitochondrial dysfunction, which ultimately leads to heart failure (2). Current

treatments, including pharmacological therapies (e.g., angiotensin-converting enzyme

inhibitors, β-blockers, andSodium-Glucose Cotransporter 2 inhibitors) and device

interventions (e.g., implantable cardioverter-defibrillators, left ventricular assist devices),

remain limited by their inability to reverse cardiac damage or halt disease progression,

underscoring the need for novel therapeutic strategies (3).

Mitochondria and the endoplasmic reticulum (ER) are central to DCM pathogenesis,

regulating energy metabolism, calcium homeostasis, and apoptosis. Mitochondria produce

ATP essential for cardiac contraction, while the ER ensures calcium storage and protein
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folding (4, 5). In DCM, dysfunction in these organelles leads to

energy deficits, calcium dysregulation, and cellular stress

responses, exacerbating cardiac dysfunction (6).

According to recent studies, mitochondria-associated

membranes (MAMs), physical connections of the ER and

mitochondria, serve as a platform for signal transduction and

inter-organelle communication (7). MAMs facilitate calcium

transfer, regulate mitochondrial ATP production, and prevent

calcium overload-induced apoptosis (8, 9). They are also

implicated in ER stress, mitochondrial dynamics, autophagy,

inflammation, and oxidative stress, all of which contribute to

DCM (10–12). Despite their importance, the precise mechanisms

by which MAMs influence DCM remain poorly understood, and

their therapeutic potential is largely unexplored. This review aims

to elucidate the structure and function of MAMs, summarize

their role in DCM development, and highlight their potential as

a novel therapeutic target for this complex disease.
2 Structural characteristics and
functional implications of MAMs

MAMs were first reported in the late 1950s and were

successfully isolated from rat liver tissue in the 1990s (13).

Advances in techniques such as transmission electron microscopy

have confirmed that MAMs are subcellular compartments located

at the mitochondria–ER contact (MERC) sites, consisting of

protein complexes within the gap between the ER and the outer

mitochondrial membrane (OMM). These complexes physically

link the membranes of the two organelles while maintaining a

defined distance, providing a structural platform for inter-

organellar communication. The number, width, and length of

MAMs are regulated parameters that reflect various physiological

and pathological mechanisms (14). For instance, the number of

MAMs increases by 2.5-fold during early ER stress in Henrietta

Lacks cell (15), and their abundance is also elevated under

hypoxic conditions (16). Typically, the distance between the

OMM and smooth ER is maintained at 10–25 nm, while the

distance from ribosome-rich rough ER is 50–80 nm (17). This

distance is dynamic and varies with cellular metabolic states;

narrower gaps enhance ER-mitochondria interactions, while

wider gaps weaken them (18). For example, lipid transfer often

occurs within ultra-tight contacts of <10 nm (19), and apoptotic

stimuli reduce the MERC distance in Rat Basophilic Leukemia

2H3 cells from 28.2 to 20 nm (18). MAMs cover varying

proportions of the mitochondrial surface depending on cell type,

typically ranging from 4% to 20%, and within the same cell type,

their coverage varies with stress and metabolic states (20). When

the liver is in the postprandial state, the average length of MERC

nearly doubles, with the coverage increasing from 4% to 11%,

facilitating the metabolic adaptations required for postprandial

liver function (20).

To date, in-depth mass spectrometry investigations have

revealed over 1,000 proteins associated with MAMs in the brain

and liver (21). MAM-associated proteins are categorized into

three types based on their cellular localization: (1) proteins that
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are only found on the MAMs; (2) proteins that are expressed in

both the MAMs and other cellular compartments; and (3)

proteins that accumulate on the MAMs under specific conditions

(22). Resident proteins within MAMs are characterized according

to their particular activities. Calcium-regulatory proteins facilitate

calcium ion flow between the ER and mitochondria, which is

required for mitochondrial ATP generation and cellular

stress adaptation (4). Lipid transport proteins aid in the

transfer of phospholipids, such as phosphatidylserine and

phosphatidylethanolamine, hence promoting mitochondrial

membrane integrity and bioenergetic functions (19). Structural

anchoring proteins keep mitochondria and the ER in close

proximity, facilitating inter-organellar communication and

coordinating activities including mitochondrial fusion, fission,

and autophagy (11). In addition to their structural functions,

MAMs are important regulators of inflammation, oxidative stress,

and cell death (23). Dysregulation of calcium homeostasis at

MAMs can lead to mitochondrial calcium excess, apoptosis, and

energy deficits (4). Similarly, decreased lipid transport can

undermine mitochondrial membrane stability, resulting in

cardiomyocyte dysfunction (24). These disturbances are directly

linked to the pathogenesis of many cardiovascular illnesses,

including ventricular hypertrophy, diabetic cardiomyopathy, and

myocardial infarction (11). For example, increased calcium

signaling at MAMs exacerbates ventricular hypertrophy (25),

whereas altered lipid metabolism contributes to energy

deficiencies in diabetic cardiomyopathy (26). These results

demonstrate the structural and functional functions of MAMs in

preserving cellular homeostasis and point to the potential

therapeutic benefits of these molecules in the treatment of

cardiovascular disorders.
2.1 Ca2+ transport

Ca2+ are essential for excitation-contraction (EC) coupling in

cardiac myocytes, where they directly contribute to energy

production, contractile activation, and cell survival (27). Ca2+

enters the cell during an action potential through the activation

of L-type calcium channels, which in turn initiates calcium

release from the sarcoplasmic reticulum (SR) via ryanodine

receptors 2 (RyR2) (4). Ca2+ is released and binds to contractile

proteins, which in turn triggers muscle contraction. The

sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA)

either returns Ca2+ to the SR during relaxation or is discharged

from the cell through the sodium-calcium exchanger (4). MAMs

regulate Ca2+ transfer at the ER-mitochondria interface to ensure

the precision of EC coupling, satisfy the high energy demands of

cardiac myocytes, and maintain calcium homeostasis. Several

essential proteins and regulatory mechanisms are involved in the

transfer of Ca2+ at this interface. To begin, the ER membrane’s

inositol 1,4,5-trisphosphate receptors (IP3Rs) release Ca2+ in

response to cellular signaling, thereby establishing a local high-

calcium microdomain (28). The Ca2+ subsequently passes

through voltage-dependent anion channels (VDACs) on the

outer mitochondrial membrane and enters the mitochondrial
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matrix through the mitochondrial calcium uniporter (MCU) on

the inner membrane, thereby supporting ATP production (29).

Key proteins regulating Ca2+ transfer at MAMs include the

chaperone glucose-regulated protein 75 (Grp75) (Supplementary

Figure S1), which bridges IP3Rs and VDACs to facilitate efficient

Ca2+ transfer (28). The Sigma-1 receptor (Sig-1R), which

enhances Ca2+ flux under ER stress by interacting with IP3Rs

(30). Mitofusin-2 (MFN2) is another key protein that stabilizes

ER-mitochondria contact sites, thereby maintaining calcium

dynamics and ensuring efficient Ca2+ signaling between these

organelles (31). Redox proteins such as Endoplasmic Reticulum

Oxidoreductin 1 alpha (Ero1α) and Endoplasmic Reticulum

Protein 44 (ERp44) modulate Ca2+ transfer by adjusting the

redox state of IP3Rs (32–34), while selenoprotein N1 (SEPN1)

(35) and Protein Tyrosine Phosphatase Interacting Protein 51

(PTPIP51) [interacting with ER protein Vesicle-Associated

Membrane Protein-Associated Protein B (VAPB)] (36) help

regulate ER-mitochondria Ca2+ transfer to prevent excessive flux.

Additional proteins, such as calnexin (CNX) and Thioredoxin-

related Transmembrane Protein 1, which modulate the redox

state of SERCA2b, ensure proper ER Ca2+ levels, thereby

supporting mitochondrial oxidative phosphorylation (37, 38).

Glycogen Synthase Kinase 3 Beta (Gsk-3β), a kinase involved in

mitochondrial apoptosis regulation, can specifically interact with

and regulate the protein composition of the IP3R Ca2+

channeling complex (39). FUN14 Domain Containing 1

(FUNDC1), an autophagy receptor at MAMs, interacts with

IP3Rs and other calcium-related proteins to maintain calcium

homeostasis, protecting cardiac myocytes from ischemic damage

(40). Cyclophilin D, a mitochondrial chaperone protein, interacts

with the VDAC1/Grp75/IP3R1 complex to regulate Ca2+ transfer

and mitochondrial dysfunction under hypoxia-reoxygenation

stress (41).

In conclusion, these proteins form a highly integrated network

at MAMs that ensures efficient Ca2+ transfer and signaling. By

coordinating calcium signaling, MAMs support mitochondrial

energy production to meet the workload demands of

cardiac myocytes.
2.2 Lipid synthesis and transport

Some major proteins found in MAMs regulate the metabolism

of phospholipids, cholesterol, and sphingolipids, all of which are

essential for mitochondrial membrane integrity and cell function.

Among the lipids generated at MAMs, phospholipids such as

phosphatidylserine (PS) and phosphatidylethanolamine (PE) are

necessary for mitochondrial membrane dynamics, whereas

phosphatidylcholine (PC) is an important structural component

of the cellular membrane (42, 43). Neutral lipids, such as

triacylglycerol and cholesteryl esters, are critical for energy

storage, membrane fluidity, and resistance to lipotoxicity and

oxidative stress (44). The synthesis of these lipids is facilitated by

various enzymes found in MAMs (Supplementary Figure S1).

Phosphatidylserine (PS) is produced by phosphatidylserine

synthases (PSS1 and PSS2) on MAMs, transported to
Frontiers in Cardiovascular Medicine 03
mitochondria via the Oxysterol-Binding Protein-Related Protein

5/8 (ORP5/8)-PTPIP51 complex, and converted to

phosphatidylethanolamine (PE) by phosphatidylserine decarboxylase

(45–47). PE maintains mitochondrial membrane curvature

and function (48). Furthermore, phosphatidylethanolamine

N-methyltransferase 2 can methylate PE to produce PC, thus

completing a critical lipid production cycle (49). Diacylglycerol

O-Acyltransferase 2 (DGAT2) catalyzes the formation of neutral

lipids such as triglycerides (50). Acetyl-CoA cholesterol

acyltransferase 1 (ACAT1) converts cholesterol into cholesteryl

esters, hence regulating cholesterol levels (51). Fatty acyl-CoA

ligase 4 (FACL4) converts free fatty acids into complex lipids

needed for membrane formation and energy storage (52). The

interaction of the Steroidogenic Acute Regulatory Protein (StAR)

and Voltage-Dependent Anion Channel 2 (VDAC2) at MAMs

promotes cholesterol transport into mitochondria, regulating the

rate of steroid hormone synthesis and, as a result, cellular lipid

balance and function (53).

Lipid transport between the ER and mitochondria is critical for

cellular homeostasis and is mediated by proteins such as ATPase

family AAA domain-containing protein 3 (ATAD3), which

improves structural stability at the ER -mitochondria interface,

promotes lipid transport, and ensures the efficient bidirectional

exchange required for membrane and energy homeostasis (54).

Caveolin-1 has a structural role in MAMs and can regulate

membrane curvature and lipid signaling (55). Dysregulation of

lipid metabolism at MAMs has a significant impact on

cardiovascular pathology. Impaired phospholipid metabolism

alters the structure of the mitochondrial membrane, reduces the

efficiency of oxidative phosphorylation, and increases

susceptibility to oxidative stress, all of which are associated with

the onset of cardiovascular diseases (CVDs) (56). Abnormal

cholesterol metabolism via ACAT1 causes lipid buildup, which

leads to atherosclerosis and endothelial dysfunction (57).

Similarly, DGAT2-mediated triglyceride production dysregulation

may enhance cardiac steatosis and lipotoxic cardiomyocyte death

(58). Dysfunctional lipid transport systems, such as decreased PS

transfer via ORP5 or disturbed ER-mitochondrion connections

via ATAD3, can affect calcium homeostasis, activate

inflammasomes, and cause chronic inflammation. These

mechanisms together hasten the progression of CVDs, such as

atherosclerosis, diabetic cardiomyopathy, and heart failure (59).
2.3 Mitochondrial dynamics

Mitochondrial dynamics is the ongoing cycle of mitochondrial

fusion and fission (60). Under physiological conditions, these

processes enable mitochondria to constantly change their

morphology, shape, and quantity in response to numerous

cellular stimuli (61). The dynamic balance between fusion and

fission is crucial for maintaining mitochondrial function, cellular

health, and energy metabolism, especially in the heart, which has

extremely high energy requirements (62).

MAMs play an important role in mitochondrial fission via

proteins such as Dynamin-related protein 1 (Drp1), Fission 1
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(Fis1), Mitochondrial Fission Factor (Mff), and FUNDC1

(Supplementary Figure S1). Mitochondrial fission begins with the

recruitment of Drp1, a major Guanosine Triphosphatase

(GTPase), to OMM (63). Several important proteins located at

the MAMs, such as mitochondria Fis1, Mff, and mitochondrial

dynamics proteins MiD49 and MiD5170, need to work in

concert to facilitate this recruitment (64). These proteins

cooperate to localize Drp1 at the ER-mitochondria interface,

where it oligomerizes and activates its GTPase activity, causing

mitochondrial membrane constriction and ultimately resulting in

fission. Inverted formin 2 (INF2) is crucial for actin

polymerization at MAMs, promoting actin-dependent

mitochondrial constriction, Drp1 recruitment, and the increase in

mitochondrial calcium levels required for division (65). Ras-

related protein Rab-32 promotes Drp1 localization and the

assembly of fission machinery at mitochondria (65). Under

hypoxic conditions, the OMM protein FUNDC1 accumulates at

MAMs and acts as a new Drp1 receptor, binding to the ER-

localized protein CNX and facilitating fission (16).

Mitochondrial fusion enables the exchange of contents by

integrating the outer and inner membranes, maintaining

mitochondrial integrity and function (66). Fusion starts with

MFN2 anchoring and merging the outer membrane, followed by

Optic Atrophy Protein 1 (OPA1) regulating the inner membrane

fusion (67). These stages help to exchange mitochondrial DNA,

proteins, and metabolites, which is critical for maintaining

mitochondrial integrity and adjusting to cellular energy demands

(66). Interestingly, FUNDC1 also appears to play a role in

regulating mitochondrial fusion. In response to low oxygen

conditions (hypoxia), FUNDC1 facilitates mitochondrial fusion

by preventing excessive fission, thus helping cells adapt to

metabolic stress (68). MFN2 is found in MAMs, where it tethers

mitochondria to the ER and other surrounding organelles by

interacting with Mitofusin 1 (MFN1) or another MFN2 and

promoting outer membrane fusion (69). OPA1 is located in the

mitochondrial inner membrane, where it regulates inner

membrane fusion and organizes cristae structures, which are

essential for efficient ATP generation and stress response (70).

Furthermore, the Endoplasmic Reticulum-Associated Degradation

indirectly promotes mitochondrial fusion by removing faulty

fusion proteins, hence maintaining mitochondrial dynamics in

balance (30). The relationship between fusion and fission

emphasizes the importance of MAMs and their associated

proteins in mitochondrial dynamics, which is strongly linked to

cellular health and disease progression.
3 The role of MAMs in DCM

Given the crucial role of MAMs in regulating various cellular

processes, it is essential to explore their contribution to the

development of DCM. In this review, we aim to summarize the

key role of MAMs in regulating biological processes such as

calcium overload, mitochondrial homeostasis, inflammation, ER

stress, apoptosis, autophagy, necrosis, and ferroptosis within the

context of DCM pathology. Additionally, we will identify and
Frontiers in Cardiovascular Medicine 04
discuss specific MAM-related proteins involved in these processes

(Supplementary Figure S2).
3.1 Ca2+ overload

Mutations in the RNA Binding Motif Protein 20 gene lead to

calcium overload in myocardial cells, resulting in elevated levels

of Ca2+ in the SR (71). The calcium channel blocker verapamil

has been shown to effectively alleviate arrhythmias in DCM

patients (71), supporting the critical role of calcium dysregulation

in the pathogenesis of DCM. Abnormal calcium signaling at

MAMs can affect myocardial contractility and relaxation,

promoting myocardial fibrosis and cardiac remodeling, which are

central factors in the progression of DCM (72). Several key

proteins located at MAMs undergo changes during the

development of DCM.GSK-3β protein, present at MAMs,

interacts with the IP3R complex to regulate calcium exchange

(73) (Supplementary Figure S2). Studies have shown that

Coxsackievirus B3 infection activates GSK-3β, inducing

myocardial injury and apoptosis, leading to DCM (74).

Additionally, calcium/calmodulin-dependent protein kinase II

(CaMKII) regulates calcium transfer at MAMs through

phosphorylation of the RYR2, and its overactivation is closely

associated with DCM (Supplementary Figure S2). Elizabeth et al.

(75) reported that CaMKII overexpression in mice leads to severe

ATP depletion and SR calcium leakage in myocardial cells,

resulting in advanced DCM. LMNA gene mutations cause

LMNA-DCM, accounting for 4%–8% of all DCM cases (76).

Research by Hang et al. (77) showed that iPSC-derived

cardiomyocytes from LMNA-DCM patients exhibit abnormal

calcium handling and elevated oxidative stress (ROS). ROS

activation of the CaMKII-RyR2 pathway further exacerbates

arrhythmias and nuclear membrane deformation (78). Dickkopf

3 ameliorates the development of familial dilated cardiomyopathy

by downregulating CaMKII (78).

Another important regulator in calcium cycling is PLN, which

controls calcium reuptake by regulating SERCA2, thereby affecting

cardiac contraction and relaxation (Supplementary Figure S2). PLN

mutations or dysfunction decrease SERCA2 activity, disrupting

calcium cycling and accelerating DCM progression (79, 80). After

LAVDs support, the significant dysregulation of SERCA2 in

DCM patients was restored, further emphasizing the importance

of SERCA2 in DCM pathophysiology (81). In Duchenne

muscular dystrophy (DMD), mutations in the dystrophin gene

not only affect skeletal muscle but also impact cardiac muscle,

leading to cardiac dilation and eventual failure, progressing to

DCM (82). Studies (83) have shown that in DMD mouse

models, early cardiac damage is associated with elevated

expression of IP3R1 and its regulatory subunit Sig-1R, enhancing

the IP3R1-GRP75-VDAC-MCU complex and increasing

mitochondrial calcium content. Metformin may help reverse

these changes (84). In patients with DCM and doxorubicin

(DOX)-treated mice, a downregulation of FUNDC1 was observed

in cardiac tissues. This deficiency exacerbated DOX-induced

cardiac damage and heart dysfunction in mice (85). The
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regulation of Ca2+ homeostasis mediated by MAMs plays a crucial

role in maintaining normal myocardial function and

cardiomyocyte activity.
3.2 Mitochondrial destabilization

Mitochondrial fusion and fission are key mechanisms in

maintaining the dynamic balance of mitochondrial morphology

and function and are crucial for cardiac homeostasis and normal

cardiac remodeling processes. A large number of very small and

fragmented mitochondria have been found in the myocardial

tissues of end-stage DCM patients, which are associated with the

loss of mitochondrial fusion/fission balance (86). Recent studies

have suggested that mutations in fission genes may be a cause of

DCM. Immediate postnatal gene ablation of Drp1 in mice is

lethal (87). In adult Drp1 knockout mice, myocardial

mitochondria become enlarged and elongated, with reduced

volume. These mice develop replacement fibrosis, increased

mitophagy, calcium uptake, superoxide production, and

permeability transition pore opening, leading to cardiomyocyte

apoptosis. They display typical DCM features, including

ventricular wall thinning, dilation, and an increased r/h ratio (left

ventricular end-diastolic diameter to wall thickness) (87–89). In

models with impaired Drp1 function, upregulation of the fusion

factors MFN2 and OPA1 provide some compensatory effects

against mitochondrial damage (87). Moreover, in Mff gene-

deficient mice, mitochondrial fission capability is significantly

reduced, resulting in excessive mitochondrial fusion and network

formation, ultimately leading to premature death due to severe

DCM (90). However, researchers have found that regulating the

expression of fusion-related proteins (such as MFN1 or OPA1)

can improve this pathological damage (90). These findings

suggest that the balance between mitochondrial fusion and

fission is crucial for cardiomyocytes and provides new

therapeutic perspectives. In the treatment of DCM caused by

defects in fission genes, therapy may not only target fission, with

drugs like LCZ696 (a novel angiotensin receptor neprilysin

inhibitor) or Drp1-specific inhibitors like Midivi-1 (91), but also

employ drugs that modulate fusion proteins (e.g., MFN2 agonists).

Of course, the lack of MFN1 and MFN2 genes is lethal in

mouse embryos, while adult mice show mitochondrial

fragmentation and respiratory chain dysfunction, leading to fatal

DCM (92). A study of endomyocardial biopsies from the

interventricular septum of 22 idiopathic dilated cardiomyopathy

(IDCM) patients revealed that MFN1 expression was significantly

reduced in the myocardium of treatment-resistant IDCM

patients. Restoring MFN1 function or increasing its expression

may be beneficial for treatment-resistant IDCM patients (93). In

addition, abnormal processing of the fusion protein OPA1 leads

to excessive mitochondrial fission and fragmentation, ultimately

causing ventricular dilation and heart failure. Regulation of key

proteases that affect OPA1 processing (such as Opa1

mitochondrial dynamin-like GTPase-1 and YME1 like 1) can

significantly improve mitochondrial morphology and function in

cardiomyocytes (94). In conclusion, changes in mitochondrial
Frontiers in Cardiovascular Medicine 05
fusion and fission mechanisms in the heart promote

mitochondrial metabolic damage, thereby triggeringDCM. The

associated proteins are primarily located on MAMs

(Supplementary Figure S2), especially MFN2, playing an

important regulatory role in the distance between the ER

and mitochondria.
3.3 Inflammation

Cardiac injury caused by genetic, immune, or infectious factors

triggers inflammation and activates immune repair processes.

However, sustained or excessive inflammatory responses can lead

to fibrosis, oxidative stress, and mitochondrial dysfunction, which

are major driving forces in the onset and progression of DCM

(2). The NOD-like receptor protein 3 (NLRP3) inflammasome is

currently the only inflammasome known to be localized on

MAMs (95) (Supplementary Figure S2). On the one hand, its

components, including NLRP3, Apoptosis-associated speck-like

protein containing a CARD (ASC), and Caspase-1, aggregate and

assemble at MAMs (96). On the other hand, MAMs dysfunction-

induced calcium overload, oxidative stress, mitochondrial

dysfunction (such as the release of ROS, mitochondrial DNA,

cardiolipin, mitochondrial-associated antiviral signaling, and

thioredoxin-interacting protein) can activate the NLRP3

inflammasome, amplifying inflammatory signaling and triggering

downstream effects (97, 98).

Cheng et al. (99) conducted a study on 18 human cardiac tissue

samples and found that, compared to patients without a history of

heart disease, DCM patients exhibited ASC speck formation in

cardiomyocytes, along with elevated protein expression of

caspase-1 and the pro-inflammatory cytokines IL-1β and IL-18.

Plasma levels of IL-1β and IL-18 were also significantly higher in

DCM patients, indicating that the NLRP3 inflammasome is

activated in DCM and is likely involved in promoting cardiac

dysfunction (100, 101). Following its assembly, the NLRP3

inflammasome catalyzes the production of caspase-1, which

cleaves Gasdermin D (GSDMD) to form its active N-terminal

functional domain (GSDMD-NT) (102). This process facilitates

pore formation in the cell membrane, ultimately inducing

pyroptosis. In myocardial tissues from nine DCM patients,

GSDMD-NT levels were significantly elevated (99).

Interestingly, the researchers also performed triple

immunostaining for active caspase-1, TdT-mediated dUTP Nick-

End Labeling, and α-actin on cardiac specimens and observed

that pyroptotic cardiomyocytes were markedly more abundant

than apoptotic ones in DCM. These findings suggest that

NLRP3-mediated pyroptosis may play a critical role in the

progression of DCM (99). Furthermore, dapagliflozin has been

shown to inhibit the activation of the NLRP3 inflammasome by

suppressing p38-dependent Toll-like receptor 4 expression and

reducing ROS production, highlighting its potential therapeutic

value in treating DCM (103). Additionally, the NLRP3

inflammasome has been found to induce myocardial fibrosis and

impair myocardial contractility; however, its specific role in DCM

remains to be elucidated (104, 105).
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3.4 ER stress

Protein mutations, oxidative stress, ROS production, and

aberrant intracellular Ca2+ handling can all increase the demand

for protein synthesis, disrupting the ER homeostasis and leading

to the accumulation of misfolded proteins within the ER lumen,

thereby triggering ER stress (ERS) (106). In response, the cell

activates three key sensors of the unfolded protein response

(UPR): PKR-like ER kinase (PERK), activating transcription

factor 6 (ATF6), and inositol-requiring enzyme 1α (IRE1α)

(107). These sensors dissociate from the chaperone protein

Binding Immunoglobulin Protein [Bip, also known as Glucose-

Regulated Protein 78 (GRP78)] and initiate different signaling

pathways to restore ER homeostasis and prevent cell death (107).

Proteins such as PERK, IRE1α, and Bip are highly enriched in

MAMs (108, 109) (Supplementary Figure S2), which also

regulate ERS signaling. For instance, VAPB directly suppresses

UPR by interacting with ATF6 (110). Dysfunction of MAMs can

exacerbate or induce ERS.

Several studies have shown that in patients with DCM, levels of

UPR markers—such as BiP, ATF6, phosphorylated eukaryotic

initiation factor 2α (P-eIF2α), and X-box Binding Protein 1—are

significantly elevated, indicating that ERS and UPR pathways are

activated in the myocardium of DCM patients (81, 111). UPR

can serve as a compensatory mechanism, protecting myocardial

cells in the short term. For example, PERK activation leads to

the phosphorylation of eIF2α, temporarily halting protein

synthesis to restore ER balance and alleviate ER stress (112, 113).

Furthermore, PERK maintains the expression of SERCA2a,

regulating calcium homeostasis in cardiomyocytes, preventing ER

stress, and offering protection in heart failure (114–116).

However, prolonged activation of the UPR (referred to as

maladaptive UPR) can impair cellular homeostasis, triggering

autophagy or apoptosis, and further exacerbating cardiac

structural and functional damage (117–119). As an important

site for calcium signaling and ROS regulation, MAMs play a

significant role in amplifying the ER stress response. Under

excessive ER stress, IRE1α interacts with the adaptor proteins

TNF receptor-associated factor 2 and apoptosis signal-regulating

kinase 1 to activate downstream apoptotic signaling (120).

Additionally, IRE1α regulates IP3Rs, inducing calcium

dysregulation and further promoting apoptosis (121). The

accumulation of PERK in MAMs not only activates protective

signaling via the eIF2α activating transcription factor 4 (ATF4)

pathway but also promotes the expression of pro-apoptotic

factors such as C/EBP homologous protein (CHOP), exacerbating

cardiomyocyte death under prolonged stress (122). Compounds

such as Ferulic Acid, Pterostilbene, and Tyrosol have been shown

to alleviate ER stress-induced cardiac injury, likely through their

modulation of MAMs. These compounds may reduce the

activation of the PERK/eIF2α/ATF4/CHOP pathway, thereby

decreasing cardiomyocyte apoptosis and protecting the heart

from ER stress-mediated damage. This highlights the therapeutic

potential of targeting MAMs in combating ER stress-induced

cardiac injury (123).
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3.5 Apoptosis

The release of cytochrome c (Cytc) from mitochondria and the

activation of caspase-3 in the myocardial tissue of end-stage DCM

patients provide molecular evidence for the involvement of

apoptosis in the development of DCM (124, 125). MAMs typically

regulate apoptosis by modulating intracellular oxidative stress,

mitochondrial function, Ca2+ concentration, and ER stress.

Dysregulated expression of Ero1α and SHC Adaptor Protein p66

(p66Shc) on MAMs can directly promote the generation of ROS

(Supplementary Figure S2), leading to oxidative stress in

cardiomyocytes and triggering cardiomyocyte apoptosis (126, 127).

In DCM, factors such as DNA damage and myocardial

mechanical stretch increase the expression of Tumor Protein p53

(p53), which accumulates in MAMs and promotes apoptosis

through multiple molecular mechanisms (128–130). p53 directly

activates the pro-apoptotic gene Bcl-2-associated X protein (Bax),

leading to Bax translocation to the outer mitochondrial

membrane, where it interacts with the anti-apoptotic protein B-cell

lymphoma 2 (Bcl-2), which also relocalizes to MAMs (131, 132).

This interaction disrupts the mitochondrial outer membrane

integrity, facilitating Cytc release from the mitochondria. Cytc

then activates caspase 9, which further triggers downstream

caspase activation (caspase 3 and caspase 7), leading to the

cleavage of critical cellular proteins and ultimately leading to

cardiomyocyte apoptosis (129, 130, 133, 134). Interestingly,

although the anti-apoptotic factor Bcl-2 levels increase in DCM,

this increase is insufficient to counterbalance the pro-apoptotic

signals, suggesting a compensatory mechanism that fails under

prolonged stress (133, 135). Moreover, studies have shown that

under stress conditions, p53 can also bind to SERCA2, leading to

mitochondrial Ca2+ overload and apoptosis (128). However, when

the activity of cardiac SERCA2 ATPase is reduced, p53 takes on a

protective role (136). The modulation of these key pathways,

including the Bcl-2 family, Bax, and the caspase cascade, within

MAMs underscores the critical role of MAM dysfunction in

exacerbating apoptosis in DCM. The mitochondrial fusion protein

OPA1 on MAMs can directly participate in cytochrome c release

by affecting the opening of crista junctions, located at the junction

of mitochondrial cristae and the boundary membrane, thus

regulating apoptosis in the progression of DCM (137, 138).

Protein Kinase B (PKB, also known as Akt) on MAMs can

phosphorylate IP3R3, reducing the sensitivity of cells to Ca2

+-dependent apoptosis (139, 140). The functional loss of its

upstream regulator, mechanistic Target of Rapamycin Complex 2

(mTORC2), decreases Akt activity and accelerates cardiomyocyte

apoptosis (141, 142). mTORC2 is also localized to MAMs (139).

These studies suggest that MAMs play a critical role in

cardiomyocyte apoptosis during the progression of DCM.
3.6 Autophagy

Autophagy is a key cellular mechanism that helps cells respond

to stress by degrading damaged cellular structures, particularly
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under conditions of ER stress and excessive ROS production,

thereby aiding in the restoration of cellular homeostasis; however,

excessive autophagy can also lead to cardiomyocyte injury and

death (143–145). Although numerous studies have identified

abnormal autophagy in DCM, with abundant autophagic

vacuoles (autophagosomes and autolysosomes) and lysosomes in

myocardial cells, the general conclusion suggests that autophagy

plays a protective role in cardiomyocytes, reducing myocardial

degeneration and reversing ventricular remodeling (146–148).

Some studies indicate that many key proteins directly involved in

autophagy, such as Parkin E3 ubiquitin ligase (Parkin), Beclin 1

(BECN1), and AMP-activated protein kinase (AMPK), are

localized to MAMs, where autophagosomes are formed

(149–151) (Supplementary Figure S2).

Parkin deficiency affects the ubiquitination of MFN2, disrupting

the integrity of MAMs, inhibiting autophagy, and leading to

mitochondrial dysfunction, which in turn triggers severe DCM

(152, 153). Bcl-2 binds to BECN1 to suppress autophagy, but

during cellular stress, BECN1 dissociates from Bcl-2, promoting

autophagy (154). Researchers have observed that activation of

Macrophage Stimulating 1 in DCM strengthens the binding of

Bcl-2 to BECN1, thereby inhibiting autophagy and promoting

apoptosis (155). AMPK, as an energy sensor, regulates the

dynamic stability of MAMs in cardiomyocytes by phosphorylating

MFN2 and activating autophagy under energy stress conditions

(156). MAMs also influence autophagy through the regulation of

mitochondrial function, calcium ion transport, and lipid synthesis

(149). Drp1 promotes autophagy by regulating mitochondrial

fission, and its dysfunction (such as resistance to oligomer

disassembly) leads to mitochondrial autophagy impairment,

reduced calcium uptake, and compromised ATP synthesis, thereby

triggering DCM (157). PE, a marker of autophagosomal

membrane expansion, is a major receptor for Autophagy-Related

Gene 8 (ATG8), and in DCM studies, ATG8 is often used as a

marker of autophagic activity (158). However, how MAMs

regulate the relationship between PE and ATG8 to influence

autophagy requires further exploration. Ca2+ promote autophagy

by inhibiting the mechanistic target of the rapamycin (mTOR)

pathway via AMPK and CaMKII (159–161). However, excessively

high calcium concentrations can activate calpains and calcineurin,

which negatively regulate autophagy, potentially impairing

myocardial function and contributing to the development of DCM

(159–161). Tacrolimus and other rapamycin analogs can restore

autophagy by blocking mechanistic Target of Rapamycin Complex

1 activity, preventing the progression of LMNA mutation-induced

cardiomyopathy (162). In summary, MAMs regulate autophagy

through multiple pathways, including mitochondrial fusion and

fission, lipid metabolism, and calcium homeostasis.
3.7 Necroptosis

During the transition from pressure-overload hypertrophy to

DCM, the mitochondria-targeted pro-apoptotic Bcl-2 family

protein Nix (Nip3-like protein X) induces cardiomyocyte

apoptosis by promoting the oligomerization of Bax and Bcl-2
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homologous antagonist/killer (163). On the other hand,

endoplasmic/sarcoplasmic reticulum (ER/SR)-targeted Nix

increases ER/SR calcium storage and triggers mitochondrial

permeability transition pore (MPTP) opening in cardiomyocytes

via MAMs. This leads to ATP depletion, mitochondrial swelling,

OMM rupture, and Cytc release, resulting in a form of

programmed cell death distinct from apoptosis, known as

necroptosis (164–166) (Supplementary Figure S2). The

cardiotoxicity of the anti-cancer drug sorafenib may cause DCM,

with its mechanism potentially linked to increased MAMs

formation, reduced distance between MAMs and mitochondria,

and consequent Ca2+ overload in cardiomyocytes (167). This

overload activates CaMKII and the Receptor Interacting Protein

Kinase 3 Mixed Lineage Kinase Domain-Like Protein cascade,

inducing necroptosis. Overexpression of MFN2 shows promise in

mitigating sorafenib-induced cardiac dysfunction (167).
3.8 Ferroptosis

Ferroptosis is a novel iron-dependent form of cell death, whose

mechanism involves the generation of free radicals via the Fenton

reaction, lipid peroxidation, and the inactivation of intracellular

antioxidant systems, such as the depletion of glutathione (GSH)

and glutathione peroxidase 4 (GPX4) (168). DOX, gene knockout

of ferritin H, and iron deposition induced by various factors can

directly trigger ferroptosis in cardiomyocytes, leading to cardiac

dysfunction and heart injury (169–171). This suggests that

ferroptosis is an important pathological factor in cardiomyopathy.

However, evidence regarding the role of ferroptosis in DCM

remains limited, with much of the research still in the

bioinformatics phase. Studies have shown that disruptions in Ca2+

homeostasis at the MAMs, accumulation of unsaturated fatty acids,

and the buildup of ROS can all induce ferroptosis (172–174). Heme

Oxygenase 1 enrichment at MAMs plays a critical role in the

pathogenesis of DCM by regulating iron homeostasis (175). In a

DOX-induced mouse model, overactivation of the Nrf2-HMOX1

axis leads to HMOX1-mediated heme degradation and the release

of free iron (Fe2+), which accumulates in mitochondria (169). This

iron overload generates ROS through the Fenton reaction,

triggering oxidative stress, lipid peroxidation, and ferroptosis,

thereby exacerbating myocardial injury and dysfunction. Inhibition

of HMOX1 activity by zinc protoporphyrin IX reduces free iron

release, significantly alleviating myocardial damage and dysfunction

(169). Targeting HMOX1 or MAMs function may provide new

therapeutic strategies for DCM (Supplementary Figure S2). In

DOX-induced cardiomyopathy, the FUN14 domain containing 2

(FUNDC2) protein at the OMM regulates mitochondrial GSH

levels by influencing the stability of the mitochondrial glutathione

transporter Solute Carrier Family 25 Member 11 (SLC25A11) and

GPX4, thereby promoting ferroptosis (176). Wang et al. (177)

through microarray data analysis, identified the signal transducer

and activator of transcription 3 (STAT3) as a gene associated with

ferroptosis in DCM, and the transcription factor STAT3 encoded

by this gene is located in the MAMs (178).
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4 Discussion

This article delves into the critical role of MAMs in the

pathogenesis and progression of DCM. MAMs play an essential

role in maintaining cardiac cell function by precisely regulating

intracellular calcium homeostasis, lipid metabolism, and

mitochondrial dynamics. Dysregulation of MAMs leads to

calcium overload, mitochondrial dysfunction, and activation of

cell death pathways such as autophagy, apoptosis, necroptosis,

ferroptosis, and necrosis, all of which are closely associated with

the clinical and pathological features of DCM (Supplementary

Table S1). These findings highlight MAMs as a key node in

cellular dysfunction and pathological transitions. Modulating the

function of MAMs may not only provide early biomarkers for

cardiac diseases but also offer new perspectives and potential

targets for therapeutic interventions and the development of novel

treatment strategies for DCM. However, most experimental

studies on MAMs have focused on cardiomyocytes, with relatively

fewer studies on fibroblasts and endothelial cells. Further research

is needed to explore whether MAMs in different types of cardiac

cells have distinct effects on the onset and progression of DCM.

Additionally, as indicated by previous analyses, the protein

expression profile of MAMs in DCM caused by different genetic

mutations often varies, and the roles of some proteins exhibit a

dual nature. Therefore, finding a balance between the protective

effects and potential risks of MAMs is crucial. It is particularly

important to develop more precise intervention strategies tailored

to different genetic types of DCM. With the ongoing in-depth

investigation of MAMs as a therapeutic target, we anticipate that

this will lead to groundbreaking advances in the clinical treatment

of DCM, improve patient outcomes, and provide new strategies

for comprehensive cardiac disease management.
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