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Background: Kawasaki disease (KD) primarily affects children as an acute
systemic vasculitis. Numerous studies indicated an elevated risk of
cardiovascular disease due to metabolic disturbances. Despite this knowledge,
the specific metabolic modes involved in KD remain unclear.
Methods:We examined the metabolome of individuals with 108 KD and 52 non-
KD controls (KD vs. nKD) by ultraperformance liquid chromatography (UPLC) and
tandem mass spectrometry (MS).
Results: Differential analysis uncovered the disturbed production of bile acids
and lipids in KD. Furthermore, we investigated the impact of treatment,
intravenous immunoglobulin (IVIG) resistance, and coronary artery (CA)
occurrence on the metabolome. Our findings suggested that IVIG treatment
alters the lipid and amino acid metabolism of KD patients. By orthogonal
projections to latent structures discriminant analysis (OPLS-DA), there was no
significant difference between the coronary injury groups and non-coronary
injury groups, and IVIG resistance didn’t appear to cause the metabolic
change in KD patients.
Conclusions: Patients with KD exhibit metabolic abnormalities, particularly in
bile acids and lipids. IVIG interventions may partially ameliorate these
lipid abnormalities.

KEYWORDS
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Introduction

Kawasaki disease (KD) is a multisystem inflammatory condition predominantly

affecting children under five years of age, characterized by distinctive clinical

manifestations including persistent fever, oral mucosa changes, hyperemic bilateral

conjunctiva, extremity changes, and cervical lymphadenopathy (1–3). This condition

significantly impacts both physical and mental health, necessitating prompt

diagnosis and intervention (3). Intravenous immunoglobulin (IVIG) remains the

primary therapeutic approach, functioning through multiple mechanisms including

modulation of inflammatory cytokine expression, reduction of toxicity, improvement
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of vascular endothelial function, and mitigation of coronary

artery lesions (CAL) (4). However, IVIG resistance poses a

significant clinical challenge, as affected patients may develop

serious complications, particularly CAL. Current biochemical

indicators associated with KD, such as erythrocyte

sedimentation rate, C-reactive protein, and procalcitonin, lack

disease specificity, highlighting the urgent need for developing

specific diagnostic biomarkers to enable more effective clinical

management of KD (3, 5–10).

Metabolomics offers a comprehensive approach to

understanding systemic metabolic changes, providing both

quantitative and qualitative methods for extensive biomarker

detection and precise disease state classification. This

analytical approach has proven particularly valuable in

identifying cardiovascular disease biomarkers. Studies have

revealed specific metabolic signatures associated with various

cardiovascular conditions: valine has been identified as a

protective factor in acute myocardial infarction, while

elevated serum creatinine levels indicate an increased risk

(11). Furthermore, several metabolites, including

medium-chain acylcarnitines, short-chain and long-chain

dicarboxylacylcarnitines, branched-chain amino acids, and

fatty acids, have demonstrated independent predictive value

for future cardiovascular events (12). In the context of cerebral

infarction, key metabolic biomarkers have been identified,

including folic acid, cysteine, S-adenosyl homocysteine, and

oxidized glutathione (13).

Research has established that KD is characterized by significant

metabolic dysregulation. Early studies identified urinary neopterin as

a predictive biomarker for coronary artery abnormalities, while

subsequent research revealed that low serum 25(OH)-vitamin

D levels, crucial for immunological regulation, may contribute to

coronary artery complications (14). The growing recognition of

metabolites’ role in KD pathogenesis has led to increased

application of metabolomics in recent research (15). Notably,

lipidomics investigations have yielded important insights: Japanese

researchers demonstrated elevated oxidized phosphatidylcholine

(PC) levels during KD’s acute phase, while another study focusing

on IVIG-resistant KD patients identified significant pre- and post-

treatment variations in lysophosphatidylcholine (LPC) and

lysophosphatidylethanolamine (LPE) (16, 17). Although these

studies have established the relevance of metabolic investigations

in KD, comprehensive understanding of KD metabolism remains

limited. The field has also benefited from other omics approaches,

including genomics and metagenomics, which have provided

valuable insights from genetic and microbial perspectives,

highlighting the crucial role of multi-omics approaches in

advancing KD research (18–20).

In this study, we conducted untargeted metabolomic

profiling to characterize the metabolic signatures

distinguishing KD patients from non-KD controls. Our

comprehensive analysis encompassed 108 KD patients and 52

non-KD controls, examining not only the baseline metabolic

differences but also investigating how these profiles were

influenced by medical intervention, IVIG resistance, and the

development of CAL.
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Results

Blood serum samples collection and
untargeted metabolome assessments

To establish the profiles of the metabolic characteristics of KD

patients, blood serum samples from 108 patients with KD and 52

non-KD controls were collected (KD vs. nKD) for untargeted

metabolome assessments. Initially, the serum samples had been

collected before or after IVIG administration in KD patients,

which were used to compare the differences between metabolites

pre-treatment and post-treatment. Then, comparisons were also

made based on whether the patients underwent resistance in

IVIG initial supplementation (IVIG vs. rIVIG), and whether

coronary artery lesions (CAL) had been observed in the acute or

sub-acute term when KD onset (CAL vs. nCAL). Moreover, in

order to further exploration of the potential molecular

mechanisms of the metabolic substrates in the pathogenicity and

pathophysiological process of KD, the patients who were

diagnosed with KD had been recognized by various clinical

manifestations (Supplementary Tables S1–S4). Essentially, a total

of 1,069 metabolites were detected between KD and nKD

(Supplementary Table S5), including lipids, organic acids, organic

heterocyclic metabolites, and others.
Alternation of metabolism had been
identified in KD patients

Firstly, differential analyses were performed to detect the

differentially expressed metabolites among various groups.

Moreover, to achieve more scientific and convincing results,

orthogonal projections to latent structures discriminant analysis

(OPLS-DA) were involved. The identified metabolites were

clustered based on OPLS-DA, and the OPLS-DA score plots were

visualized with the first principal component (t1, 10%) and the

orthogonal component (to1, 8.1%) (Figure 1A), presenting two

separated clusters between KD and nKD samples which indicated

a significant difference in metabolic substrates analysis.

Moreover, further validation plots were obtained through 200

permutation tests (Figure 1B). The R2Y and Q2Y scores were

0.96 and 0.9, which demonstrated the OPLS-DA as a satisfied

analytical model with test effectiveness. 146 differentially

expressed metabolites (O_DEMs) (VIP value >1, P-value <0.05,

and |Log2FC|>1) were targeted by OPLS-DA method

(Figure 1C). Next, we involved KEGG enrichment for O_DEMs

(Figures 1D,E). It demonstrated that the down-regulated

O_DEMs in KD enriched in the biosynthesis of unsaturated fatty

acids pathway. The O_DEMs demonstrated significant

enrichments in lipids, mainly in fatty acid metabolism, which

indicated the alternations of fatty acid metabolism contributed to

the pathogenicity of KD.

Then all the O_DEMs had been enrolled for the next analysis.

Interestingly, lipids-related metabolites took a major proportion

(66.7%) of nKD’s O_DEMs (Figure 1F, left). Moreover, multiple
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FIGURE 1

Metabolomics between KD and nKD. (A) OPLS-DA scores scatter plot of KD and nKD. (B) OPLS-DA permutation test. The R2X, R2Y, and Q2Y were
0.229, 0.96, and 0.9. (C) Volcano plot for the OPLS-DA model. Blue indicated upregulated O_DEMs in nKD and red indicated upregulated
O_DEMs in KD. Only points with VIP greater than 1 have a color in the plot. (D) KEGG pathway enrichments of nKD (E) KEGG pathway
enrichments of KD. (F) The proportions of lipids in nKD(left) and KD(right)’s DEMs pie chart. (G) Schema of dysregulated bile acid metabolism.
Brightening color boxes represent metabolites that had been identified and have significant differences; darkening color boxes represent
metabolites that had been identified but did not have significant differences; grey boxes represent metabolites that had not been identified; red
showed a positive correlation and blue showed a negative correlation; PE, Phosphatidylethanolamine.
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lipids-related metabolites found among all the DEMs were

associated with hepatic function. The lipid metabolites, such as

bilirubin, uric acid were identified as both reduced in KD

patients (Supplementary Table S5). Notably, the regulation of bile

acids were found to be elevated in KD patients with significant

enrichments of primary bile acid biosynthesis (Figure 1E), which

were critical in fatty acid metabolism (21). To further analysis

the specific metabolites had been identified to participate in what

metabolic processes, such as deoxycholic acid. We linked the bile

acid and lipid metabolism pathways to illustrate the alternations

of fatty acid metabolisms involved in KD, which were induced by

the down-regulated cholesterol and upregulated bile acids

resulting in the decreased biosynthesis on fatty acid (Figure 1G).
IVIG alleviated the dysfunction in fatty acid
metabolism in KD patients

Next, we focused on the effects of the medical treatment on

KD’s metabolism, so we performed an OPLS-DA analysis. The

OPLS-DA score plot is shown in Figure 2A, with 8.8% t1 and

9.4% to1, confirming a clear separation of results between post-

treatment and pre-treatment groups. The 200 permutation tests

were used to determine the OPLS-DA models’ reliability,

showing the OPLS-DA model was reliable (Figure 2B). And

OPLS-DA detected 114 O_DEMs (VIP value >1, P-value <0.05,

and |Log2FC|>1) (Figure 2C).

Up-regulated O_DEMs in Post-treatment were enriched in

aminoacyl-tRNA biosynthesis, protein digestion and absorption,

arginine biosynthesis and D-amino acid metabolism KEGG

pathway (Figure 2D). Meanwhile, down-regulated O_DEMs had

different KEGG enrichment results, such as small cell lung

cancer, et al. (Figure 2E). Notably, multiple lipids (LPE, etc.)

(Figure 2F, left) and amino acids (DL-arginine, etc.) elevated in

Post-treatment.

Comparing the CAL and nCAL, the difference is too rare to

build a valid statistical model in OPLS-DA. In addition, the

OPLS-DA method also didn’t show any significant differences

between IVIG and rIVIG.
Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA) was

used to identify potential biomarkers and further grouped

metabolites into 8 different modules (excluding the grey color

module, Figure 3A). Five modules (including turquoise, yellow,

brown, black and blue) were significantly related to KD factor (|

r|≥0.4, P-value < 0.05), and two modules (including turquoise and

yellow) were significantly related to the treatment factor. To

characterize module functions, the metabolites of modules were

used to perform KEGG database searches and literature-based

functional mining. Surprisingly, some WGCNA modules merited

attention. For example, both the turquoise and black modules

were related to the bile acid metabolism (Supplementary Table S5)
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but showed opposite correlations in KD and after the IVIG

treatment (Figure 3A). The turquoise module contained mainly

non-bile acid metabolites related to bile acid metabolism, such as

uric acid, phosphatidyl ethanolamine (PE), etc. While the black

module contained mainly free bile acids, such as deoxycholic acid.

Next, we focused on modules with KEGG pathway enrichment

results. Another module that was also related to bile acid metabolism

was the brown module. The brown module had the strongest

positive relation with KD (r = 0.624, P-value < 0.001), including

metabolites involved in purine metabolism, bile acid metabolism,

etc. This work was similar with the differential results by OPLS-

DA analysis. Metabolites in the brown module were enriched in

purine metabolism, primary bile acid biosynthesis, arginine and

proline metabolism, pentose phosphate pathway, and inositol

phosphate metabolism KEGG pathway (Figure 3B).

The blue module positively correlated only with the KD trait

and contained metabolites mainly enriched in amino acid-related

pathways (Figure 3C), such as glycine, serine and threonine

metabolism. The blue module was not associated with the

treatment trait. However, in the differential results, we found that

multiple amino acids were down-regulated in the Post-treatment

group. It may because that WGCNA places more emphasis on

correlation and difference analysis focuses more on the difference.

The yellow module was also highly negatively correlated with

KD and treatment traits and acted as the strongest correlation

with treatment traits. The yellow module contained metabolites

mainly enriched in the biosynthesis of unsaturated fatty acids

and arachidonic acid metabolism (Figure 3D).

Similar to the differential results, there were no significant

correlations between these modules and CAL and IVIG traits.
Discussion

KD is an acute systemic vasculitis that primarily affects the

heart and coronary arteries, while also impacting multiple

visceral organs, including the liver—the key organ for bile acid

synthesis and secretion. Our study revealed significant alterations

in bile acid metabolism associated with KD.

The liver is the primary site for high-density lipoprotein (HDL)

production. Once secreted, HDL binds with cholesterol to form

HDL-cholesterol (HDL-C), which facilitates cholesterol transport

back to the liver. HDL-C plays crucial roles in both vascular

inflammation and calcification (22–26). In hepatic metabolism,

cholesterol catabolism leads to the synthesis of primary bile

acids. These primary bile acids undergo transformation by

intestinal microbiota to form secondary bile acids, which are

either excreted or reabsorbed through enterohepatic circulation

(27–29). Both primary and secondary bile acids can undergo

conjugation with glycine or taurine to form conjugated bile acids

(30). Through Weighted Gene Co-expression Network Analysis

(WGCNA), we observed distinct expression patterns: conjugated

bile acids clustered in the brown module, while free bile acids

were grouped in the black module.

Bile acids serve crucial physiological functions but can also act

as double-edged swords in human health. While essential for
frontiersin.org
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FIGURE 2

Metabolomics between post-treatment and Pre-treatment. (A) OPLS-DA scores scatter plot of Post-treatment and Pre-treatment. (B) OPLS-DA
permutation test. The R2X, R2Y, and Q2Y were 0.182, 0.713, and 0.51. (C) Volcano plot for the OPLS-DA model. Yellow indicated upregulated
O_DEMs in Pre-treatment and green indicated upregulated O_DEMs in Post-treatment. Only points with VIP greater than 1 have a color in
the plot. (D) KEGG pathway enrichments of Post-treatment (E) KEGG pathway enrichments of Pre-treatment. (F) The proportions of lipids in
Post-treatment (left) and Pre-treatment (right)’s DEMs pie chart.
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normal metabolism, elevated bile acid levels can promote

inflammation, and their chronic accumulation may result in

cholestasis, leading to liver inflammation and injury. Although

cholestasis has been occasionally observed in clinical cases of

KD, none of our study samples exhibited this condition. This

absence of cholestasis might be attributed to either well-
Frontiers in Cardiovascular Medicine 05
controlled disease states in our samples or that the disease had

not progressed to a more severe stage.

Our analysis of differentially expressed metabolites (DEMs) in

KD revealed two significant changes: a decrease in cholesterol

derivatives, such as 22(S)-Hydroxycholesterol, and an elevation in

bile acid levels. Clinical laboratory findings (Supplementary
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FIGURE 3

Screening markers for KD. (A) Module-trait relationships between WGCNA modules and KD. (B) The KEGG enrichment analysis of brown module. (C)
The KEGG enrichment analysis of blue module. (D) The KEGG enrichment analysis of yellow module.
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Frontiers in Cardiovascular Medicine 06 frontiersin.org

https://doi.org/10.3389/fcvm.2025.1549900
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Wang et al. 10.3389/fcvm.2025.1549900
Table S1) further demonstrated significant reductions in TC and

HDL-C, while LDL-C remained unchanged. The observed

decrease in TC and HDL-C likely stems from two

mechanisms: reduced hepatic HDL production and enhanced

cholesterol catabolism. This increased cholesterol breakdown

subsequently led to elevated bile acid synthesis (31). Our

results indicated disturbed bile acid metabolism in KD

patients, suggesting compromised hepatic scavenging capacity

resulting in bile acid accumulation. The liver-cardiovascular

disease connection is well-documented in the literature, and

our findings revealed multiple indicators of impaired hepatic

clearance capacity, including abnormalities in liver

metabolites, elevated liver function markers (ALT and LDH),

and decreased bilirubin levels. This was further supported by

reduced TB and DBIL in clinical tests.

Bile acids play essential roles in lipid metabolism by breaking

down lipids into smaller molecules and facilitating their dispersion

into oil-in-water colloidal particles. This process enhances lipid

solubility in aqueous solutions, creating optimal conditions for

lipid particle interactions and lipase activity, thereby promoting

efficient lipid digestion and absorption. In KD, we observed

widespread downregulation of multiple lipids, particularly

those affecting vasoactive endothelial function, including

lysophosphatidylcholine (LPC), lysophosphatidylethanolamine

(LPE), and lysophosphatidic acid (LPA) (32–34). LPC and LPE

serve dual roles as metabolites of phosphatidylcholine (PC) and

phosphatidylethanolamine (PE) respectively, while also functioning

as structural components of mammalian cell membranes. Studies

have revealed diverse immunological effects of LPCs: saturated and

monounsaturated forms exhibit pro-inflammatory properties, while

polyunsaturated variants demonstrate anti-inflammatory effects

(35, 36). Similarly, LPE has been shown to exert anti-

inflammatory effects on macrophages and can potentially trigger

protective immunity through natural killer T cell-dependent

mechanisms (37, 38). Notably, all identified LPCs and LPEs were

found among the downregulated overlapping differentially

expressed metabolites (O_DEMs) in KD, with the majority

clustering within the blue module.

Previous lipidomics studies in KD have demonstrated that

oxidized phospholipids, particularly PCs, can trigger inflammatory

signals leading to coronary arteritis (16). Our findings revealed

that elevated bile acid levels were associated with decreased

lipid concentrations, with these down-regulated lipids subsequently

affecting vasoactive endothelial function. Furthermore,

disturbances in bile acid metabolism could directly impact

cardiovascular health, as bile acids can impair cardiac

mitochondrial function, potentially leading to cardiomyopathy (39).

Comparing metabolite profiles before and after medical

treatment revealed significant changes in both lipid and amino

acid metabolism. Post-treatment analyses showed marked

increases in various lipids, such as LPC, and amino acids,

including citrulline. These changes are particularly significant as

amino acids not only serve as protein building blocks but also

promote endothelial cell proliferation and angiogenesis, while

abnormal lipid metabolism can trigger vascular inflammation

through immune cell activation, particularly macrophages (40).
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The therapeutic intervention effectively ameliorated these lipid

disorders in KD patients, addressing the metabolic disturbances

we previously described (41).

Our study involved several limitations. For example, even if our

conclusions fitted the clinical laboratory examination, but still need

more patients to validate conclusions. Our IVIG vs. rIVIG was

inconclusive, probably because there were too few individuals in

the rIVIG group due to sampling limitations, resulting in our

failure to analyze metabolic difference results. And some content

of research needed to be explored in depth. Our study

comprehensively profiled the changes in metabolites related to

KD, yet did not delve deeply into the pathogenesis of KD.

Subsequent studies could use targeted metabolomics for more

precise quantitative analysis, delving into the specific roles of

metabolites in the pathogenesis of KD. For bile acid metabolism,

many studies have shown that microbes in the body regulate it.

A disorder in bile acid metabolism was found in our results,

which may be related to the patient’s microbial metabolism.

There have been multiple microbial studies demonstrating

interactions between bile acids and microbial populations (28, 42,

43). As for microbial studies in KD, the spotlight was on

variations in microbial content. For example, Kinumaki et al.

(44) revealed an elevated presence of Streptococcus spp. in the

gut microbiota of patients in the acute phase of KD. So

continued research combining metabolome and metagenomic

may explore new biological pathways. We only used blood as the

research object, and later studies can add substances such as

urine and tissue fluid. We can also improve our study by

determining the amount of undetected or non-significantly

different substances in our study through methods such as

targeting metabolome.

In summary, metabolomics analysis identified potential

metabolic pathways in the KD. Our analyses suggested that

significant changes in bile acid and lipid metabolism correspond

to KD.
Methods

Study design and subjects

This study was approved by the Ethics Committee of West

China Second University Hospital of Sichuan University (NO.

2020-092). Written informed consents were obtained from all

subjects. Besides, another serum was collected and used later

to determine the measurement of liver function, renal

function, lipid level, and so on. The 108 participants involved

in this research were enrolled from the West China Second

University Hospital of Sichuan University from August 2022

to June 2023. The enrolled 52 controls were age-appropriate

and sex-matched healthy children who were totally absent

from the history of KD. A total of 108 consecutive KD

children (57 males/51 females, average aged 3.19 ± 2.38 years)

and 52 volunteer controls (21 males/31 females, average aged

3.99 ± 2.23 years) were included for blood samples collection

and 160 in total.
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Inclusion and exclusion criteria

We recruited candidates for further analysis using the

following inclusion criteria: (1) All patients should meet the

diagnostic criteria for complete or incomplete diagnosis of KD

as recommended by the AHA (2017), and the diagnosis should

be confirmed by two physicians; (2) Echocardiography found

coronary aneurysms in the acute or subacute phase; (3)

Procedure questionnaire, basic information, clinical

manifestations, hematological examination results, treatment

procedures, echocardiogram results were collected; (5) In order

to easy balance the bias from high-risk ages, the age of the

included patients ranged from 1 to 10 years old, which was

convenient to balance the bias of high-risk age; (6) Neither

transthoracic echocardiography nor transcatheter angiography

evaluated coronary features. Exclusion criteria included: (1)

Patients with cardiovascular malformations; (2) The patient had

been diagnosed with autoimmune disease before the onset

of KD; (3) The patients had received anticoagulant or

antiplatelet drugs before the onset of KD; (4) Patients who

have undergone heart surgery; (5) Suspected myocarditis

before KD; (6) Glucocorticoids were provided before IVIG; (7)

Patients provided monoclonal antibodies, including tumor

necrosis factor (TNF)-α or interleukin-6 antibodies; (8)

Kawasaki disease diagnosed with macrophage activation

syndrome or hemophagocytic lymphohistiocytosis; (9) No

echocardiography was available to record KD in the acute and

subacute phases.
Ultra-performance liquid chromatography-
tandem-mass spectrometry

The collected blood samples were kept in sodium heparin

anticoagulation tubes. After centrifuging the blood samples in

the field and dispensing their upper liquid layer, all samples

were transferred to the laboratory in dry ice and kept in a

−80°C cryogenic refrigerator until extraction was initiated.

Serum samples were subjected to ultra-performance liquid

chromatography-tandem-mass Spectrometry (UPLC-MS/MS)

analysis. A HypersilGoldcolumn (C18) was used, with 5 mM

ammonium acetate (A, for negative mode), 0.1% formic acid

(A, for positive mode), and methanol (B). The mass

spectrometer was operated in both positive and negative

electrospray ionization (ESI+/ESI−) mode. The UPLC-MS/MS

raw data were analyzed by the Metabolite Discoverer 3.3 (CD3.3,

ThermoFisher), and raw data was extracted, peak-identified and

QC processed. The qualitative and quantitative analysis of

metabolites by matching peaks with the mzCloud, mzVault, and

MassList databases. Then Metabolites were annotated using

LipidMaps (http://www.lipidmaps.org) (45), HMDB (http://

www.hmdb.ca/) (46), and KEGG (http://www.genome.jp/kegg)

(47) databases.
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Metabolomics data were analyzed by
statistical analysis

Differential metabolites analysis was conducted using the

R package MetaboAnalystR4.0 (48). Preprocessing data with

“Normalization(mSet, “MedianNorm”, “NULL”, “AutoNorm”,

ratio = FALSE, ratioNum = 20)”. Processed data were subjected to

statistical analyses to identify between-group DEMs. P-values are

from hypergeometric tests. The part of OPLS-DA analysis used

package ropls (49) function“opls” to get the variable important in

projection (VIP) values of each metabolite. OPLS-DA scores

scatter plot and OPLS-DA permutation test were also used

package ropls. The screening criteria for O_DEMs were VIP value

>1, P-value <0.05, and |Log2FC|>1. The KEGG database was used

for pathway enrichment analysis to find enriched metabolic

signaling pathways involving differential metabolites between two

groups. The number of all human KEGG pathway metabolites

equaled “N” (N =m+ n) and the number of individual pathway

metabolites equaled “m”. Names of DEMs were all converted to

KEGG IDs starting with “C” followed by a five-digit number, and

the number of DEMs enriched in the pathway was counted as “x”

(q = x-1). For KEGG pathway enrichment analysis, enter the total

number of metabolites as “k”. The P-value of each pathway was

calculated using the “phyper” function that comes with the

R language, and the pathways were finally screened for

significance according to the P-value <0.05. Volcano plots and

KEGG pathway annotations and enrichments plots were drawn

using the ggplot2 package, and the Venn plot used an online tool

(http://bioinformatics.psb.ugent.be/webtools/Venn/).
Weighted gene co-expression network and
receiver operating characteristic analyses

WGCNA was performed in R using the WGCNA package (50).

Setting the soft power threshold at 8 to arrive at the network

adjacency and a minimum module size of 30. The grey module

contains all analytes that were not assigned to any of the other

modules, and a total of 8 non-gray modules were generated. For the

brownmodule, the correlation between everymetabolite was calculated.
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