Skip to main content

REVIEW article

Front. Cardiovasc. Med.

Sec. Coronary Artery Disease

Volume 12 - 2025 | doi: 10.3389/fcvm.2025.1545231

Progress in the study of the mechanism of ferroptosis in coronary heart disease and clinical intervention strategies

Provisionally accepted
  • Hunan University of Chinese Medicine, Changsha, China

The final, formatted version of the article will be published soon.

    Coronary heart disease (CHD), a serious cardiovascular condition with complex and diverse pathogenesis, has recently seen increased attention to the role of ferroptosis-a novel iron-dependent form of programmed cell death. This review synthesizes current research on ferroptosis mechanisms in CHD and emerging clinical intervention strategies. Ferroptosis is characterized by dysregulated iron metabolism, lipid peroxidation, and reactive oxygen species (ROS) accumulation, processes intimately linked to CHD pathophysiology. Under ischemic and hypoxic conditions commonly seen in coronary artery disease (CAD), cardiomyocytes become particularly susceptible to ferroptosis, resulting in cellular dysfunction and diminished cardiac performance. Mechanistic studies have revealed that altered expression of iron metabolism-related proteins (including GPX4, FTH1, TfR1, and HO-1), accumulation of lipid peroxidation products, and disruption of antioxidant defense systems (particularly the Nrf2/GPX4 pathway) are central to ferroptosis progression in cardiac tissue. Clinically, both specific ferroptosis inhibitors (such as Ferrostatin-1) and traditional medicine components (such as Puerarin) have emerged as promising therapeutic candidates, showing cardioprotective effects in experimental models. However, research into ferroptosis mechanisms in CHD remains in its early stages, with significant questions regarding its relationship with other cell death pathways and the clinical efficacy of ferroptosis-targeting interventions requiring further investigation. Future research directions should include in-depth mechanistic exploration and the development of more effective, safer clinical interventions targeting the ferroptosis pathway in cardiovascular disease.

    Keywords: coronary heart disease, ferroptosis, iron metabolism, Mechanism, Clinical intervention strategies

    Received: 14 Dec 2024; Accepted: 31 Mar 2025.

    Copyright: © 2025 Liu, Yu, Lu, LIU, Chen and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Jie Li, Hunan University of Chinese Medicine, Changsha, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    95% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more