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Detection of arterial remodeling
using epicardial adipose tissue
assessment from CT calcium
scoring scan
Juhwan Lee1, Tao Hu1, Michelle C. Williams2, Ammar Hoori1,
Hao Wu1, Justin N. Kim1, David E. Newby2, Robert Gilkeson3,4,
Sanjay Rajagopalan3 and David L. Wilson1,4*
1Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States,
2BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom,
3Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH,
United States, 4Department of Radiology, Case Western Reserve University, Cleveland, OH, United States
Introduction: Non-contrast CT calcium scoring (CTCS) exams have been widely
used to assess coronary artery disease. However, their clinical applications in
predicting coronary arterial remodeling remain unknown. This study aimed to
develop a novel machine learning model to predict positive remodeling (PR)
from CTCS scans and evaluate its clinical value in predicting major adverse
cardiovascular events (MACE).
Methods: We analyzed data from 1,324 patients who underwent both CTCS and
CT angiography. PR was defined as an outer vessel diameter at least 10% greater
than the average diameter of the segments immediately proximal and distal to
the plaque. We utilized a total of 246 features, including 23 clinical features,
12 Agatston score-derived features, and 211 epicardial fat-omics features to
predict PR. Feature selection was performed using Elastic Net logistic
regression, and the selected features were used to train a CatBoost machine
learning model. Classification performance was evaluated using 1,000
repetitions of five-fold cross-validation and survival analyses, comparing actual
and predicted PR in the context of predicting MACE.
Results: PR was identified in 429 patients (32.4%). Using Elastic Net, we identified
the top 13 features, including four clinical features, three Agatston score-derived
features, and six fat-omics features. Our method demonstrated excellent
classification performance for predicting PR, achieving a sensitivity of
80.3 ± 1.7%, a specificity of 89.7 ± 1.7%, and accuracy of 81.9 ± 2.5%. The
Agatston-score-derived and fat-omics features provided additional benefits,
improving classification performance. Furthermore, our model effectively
predicted MACE, with a hazard ratio (HR) of 4.5 [95% confidence interval (CI):
3.2–6.4; C-index: 0.578; p < 0.00001] in the training set and an HR of 3.2 (95%
CI: 2.5–4.0; C-index: 0.647; p < 0.00001) in the external validation set.
Conclusion: We developed an innovative machine learning model to predict
coronary arterial remodeling from epicardial fat and calcification features from
low-cost/no-cost screening CTCS scans. Our results suggest that vast number
of CTCS scans can support more informed clinical decision-making and
potentially reduce the need for invasive and costly testing for low-risk patients.

KEYWORDS
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1 Introduction

Coronary artery disease (CAD) is the leading cause of

morbidity and mortality in industrialized countries globally

(1, 2), highlighting the urgent need for advanced diagnostic

tools to predict and mitigate its progression at an early stage.

Early detection and accurate prediction of CAD are crucial for

timely intervention and improving patient outcomes. Various

imaging techniques have been employed to visualize plaque

in coronary vessels and characterize CAD. Among these

techniques, coronary computed tomography angiography

(CCTA) is considered the most effective for identifying the

presence and distribution of CAD (3).

CCTA can identify high-risk plaque features such as low-

attenuation plaque, napkin-ring sign, spotty calcification, and

positive remodeling (PR), which are indicators of increased risk

for cardiovascular events. PR refers to the outward expansion of

a coronary artery in response to atherosclerotic plaque buildup,

and it has been shown to be a strong indicator of major adverse

cardiovascular events (MACE) in several studies (4–8). However,

the use of CCTA is often limited by factors such as cost,

variability in assessments, the need for contrast agents, and

exposure to ionizing radiation. Additionally, the relationship

between PR and the likelihood of adverse events is not

fully understood.

Non-contrast CT calcium scoring (CTCS) exam can

provide direct evidence of coronary atherosclerosis through

the detection of calcifications in the coronary arteries. It is

recognized by several guidelines as a preferred tool for risk

assessment (9, 10). However, to date, no studies have

investigated whether the use of non-contrast CTCS could

predict high-risk plaque features. While CTCS is well-

established for assessing cardiovascular risk, its potential to

predict specific disease conditions is not fully utilized,

presenting an opportunity to expand its diagnostic

capabilities. We hypothesize that quantitative measurements

from CTCS are related to high-risk plaque features.

Specifically, we identified features in CTCS images associated

with the presence of PR. This analysis aims to uncover

significant features from CTCS relevant to arterial

remodeling and enable further correlative studies with CCTA

to identify obstructive disease based on CTCS findings. In

this regard, we have developed novel feature sets using

CTCS, such as calcium-omics (11) and fat-omics (12), which

have shown strong associations with future MACE outcomes.

Given that CTCS offers unique perspective on coronary

plaque, there is a strong rationale to relate CTCS findings to

cardiovascular risk assessed by CCTA.

In this study, we developed a novel machine learning model to

predict the presence of PR from low-cost or no-cost screening non-

contrast CTCS scans and evaluated its performance using extensive

multi-center datasets. We analyzed various clinical features,

Agatston score-derived features, and epicardial fat-omics features

(12) to identify the most relevant ones. We then trained multiple

machine learning models and compared their performance in

predicting PR and MACE.
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2 Methods

2.1 Study design and patient population

This research was conducted as a sub-study within the

Scottish COmputed Tomography of the HEART (SCOT-

HEART) multicenter randomized controlled trial (ClinicalTrials.

gov. Unique identifier: NCT01149590). The primary trial

received approval from the local ethics committee, and all

participants provided written informed consent. This specific

sub-study was carried out under a data use agreement between

the University of Edinburgh, Edinburgh, UK, and the

University Hospitals Cleveland Medical Center, Cleveland,

Ohio, USA. The main findings of the primary study have been

published previously (13–15). In summary, of the 4,146

participants who attended the cardiology outpatient clinic, 2,073

were assigned to the intervention group. Among them, 1,778

underwent CT scans, and 1,324 of these scans were of sufficient

quality for analysis in this sub-study. Further details can be

found in other publications (7, 16).
2.2 CT image acquisition

All participants underwent both non-contrast electrocardiogram-

gated CTCS and contrast-enhanced electrocardiogram-gated CCTA.

The imaging was conducted using either 64- or 320-detector row

scanners (Brilliance 64 from Philips Medical Systems, Netherlands;

Biograph mCT from Siemens, Germany; Aquilion ONE from

Toshiba Medical Systems, Japan). Adjustments for tube current,

voltage, and the volume of iodine-based contrast agent were made

according to each participant’s body mass index (BMI).
2.3 Assessment of positive remodeling

The assessment of positive remodeling for each coronary

segment was conducted using standardized semi-automated

software (Autoplaque, Version 2.5, Cedars-Sinai Medical Center).

PR was characterized by an outer vessel diameter that was at

least 10% greater than the average diameter of the segments

directly proximal and distal to the plaque (remodeling index

>1.1) (17). The remodeling index was calculated by semi-

automatically extracting coronary artery centerlines and

identifying the vessel lumen, wall, and plaque components on

multi-planar reformatted images, with manual adjustments as

necessary. Subsequently, the vessel diameters were measured to

determine the remodeling index. In this study, PR was evaluated

in the proximal, mid, and distal regions of each major coronary

artery, including the left anterior descending (LAD), left

circumflex (LCX), and right coronary artery (RCA). A patient

was considered to have PR if at least one PR was present in any

of these arteries. The reliability of observer agreement in

assessing positive remodeling has generally been reported as fair

(18). Figure 1 illustrates an example of paired CTCS and CCTA

images showing PR in the left anterior descending artery.
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FIGURE 1

A representative example of paired CTCS (A) and CCTA (B) images showing the presence of PR. PR was observed in all major coronary arteries,
including the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA). The total Agatston score was 3,027, distributed
as follows: left main, 43; LAD, 1,168; LCX, 633; and RCA, 1,183.
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2.4 Feature extraction

We examined 23 clinical, 12 Agatston score-derived, and 211

fat-omics features to predict the presence of PR.

(1) Clinical features: These included baseline characteristics (e.g.,

gender, BMI, age, cholesterol, family history, etc.), blood

tests (e.g., cholesterol levels), medications (e.g., statin, ACE

inhibitor, and Beta blocker), and more. Table 1 lists the

clinical features analyzed as predictors of PR.

(2) Agatston score-derived features: These included the Agatston

scores for all coronary arteries, the logarithms of the

Agatston scores (with 1 added to avoid infinite values), the

diffusivity index (19), and high coronary artery calcification

(CAC). The diffusivity index was calculated as 1 min the

ratio of the Agatston score of the most affected vessel to the

total Agatston score, indicating the distribution of coronary

artery calcification. A higher diffusivity index signifies a

more diffuse distribution, while a lower index indicates that

the calcification is concentrated in a single artery. High

CAC was defined as positive when the total Agatston score

exceeded 1,000. Table 2 lists the Agatston score-

derived features.

(3) Fat-omics features: We analyzed 211 handcrafted,

pathophysiological-inspired fat-omics features, divided into

morphological, intensity, and spatial categories (12). Using

our previously developed DeepFat method (20), we

segmented the epicardial adipose tissue regions within the

pericardium. Morphological features included measurements

such as volume, principal axis lengths, and epicardial fat

thickness. Intensity features included statistical metrics like
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the minimum, maximum, and mean Hounsfield units (HU),

skewness, and histogram bins. For spatial analysis, we

divided the heart area into four equally thick slabs of image

slices from top to bottom and four equidistant ribbons from

the outer to inner regions. Detailed descriptions of fat-omics

features are provided elsewhere (12).
2.5 Feature selection

We employed Elastic Net regression (21), which integrates the

properties of both Lasso (L1) and Ridge (L2) regularization, for

feature selection in our classification models. The mixing

parameter (α) was set to 0.5 to equally balance the effects of L1

and L2 regularization. A series of 100 regularization values (λ)

was automatically generated on a logarithmic scale, ranging from

a maximum value that results in all coefficients being zero to a

minimum value. To optimize these hyperparameters and avoid

overfitting, we utilized 5-fold cross-validation. During this

process, the data was divided into five subsets, with the model

iteratively trained on four subsets and validated on the remaining

one. This approach ensured the robustness and generalizability of

the model to new data.
2.6 Machine learning model

After identifying the optimal features with Elastic Net

regression, we trained a machine learning model using the

CatBoost algorithm (22). We optimized the CatBoost model
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TABLE 2 Agatston score-derived features of PR (+) and PR (−) groups.

Features PR (+)
(n = 429)

PR (−)
(n= 895)

p-value

LM Agatston Score 30.8 ± 84.1 4.1 ± 19.9 <0.00001

LAD Agatston Score 260.9 ± 324.8 49.4 ± 211.4

LCX Agatston Score 117.7 ± 289.0 21.5 ± 165.6

RCA Agatston Score 243.7 ± 559.9 31.4 ± 178.9

Total Agatston Score 653.2 ± 967.5 106.4 ± 480.2

Log (LM Agatston Score) 0.57 ± 0.84 0.13 ± 0.43

Log (LAD Agatston Score) 2.02 ± 0.75 0.55 ± 0.87

Log (LCX Agatston Score) 1.17 ± 1.03 0.26 ± 0.63

Log (RCA Agatston Score) 1.46 ± 1.10 0.35 ± 0.71

Log (total Agatston score) 2.38 ± 0.74 0.75 ± 0.98

High CAC 90/429 (21.0%) 19/895 (2.1%)

Diffusivity index 0.30 ± 0.21 0.08 ± 0.16

LM, left main; LAD, left anterior descending; LCX, left circumflex; RCA, right coronary

artery; PR, positive remodeling.

TABLE 1 Baseline clinical characteristics of PR (+) and PR (−) groups.

Features PR (+)
(n= 429)

PR (−)
(n = 895)

p-value

Male 316/429 (73.7%) 421/895 (47.0%) <0.00001

BMI 28.6 ± 4.7 30.1 ± 5.9 <0.00001

Age 60.5 ± 8.0 55.7 ± 9.6 <0.00001

BMI band (≥30 or <30) 142/429 (33.1%) 392/895 (43.8%) 0.0002

Age band (18–59 or 60–75) 239/429 (55.7%) 338/895 (37.8%) <0.00001

Diabetes Mellitus 53/429 (12.4%) 95/895 (10.6%) 0.35

Height 1.72 ± 0.09 1.69 ± 0.10 <0.00001

Weight 84.1 ± 15.1 86.0 ± 18.9 0.08

Cigarettes per day 2.9 ± 6.6 2.8 ± 7.3 0.77

Hypertension 171/424 (40.3%) 288/886 (32.5%) 0.005

Total cholesterol 5.04 ± 1.94 5.02 ± 1.82 0.86

HDL cholesterol 0.92 ± 0.66 1.06 ± 0.70 0.0006

CHD family history 190/425 (44.7%) 392/889 (44.3%) 0.90

Systolic blood pressure 140.4 ± 21.5 137.3 ± 25.0 0.03

Diastolic Blood Pressure 81.4 ± 12.0 81.1 ± 14.5 0.74

Chest pain (anginal vs.
non-anginal)

315/429 (73.4%) 479/895 (53.5%) <0.00001

Antiplatelet 360/429 (83.9%) 441/895 (49.3%) <0.00001

Statin 343/429 (80.0%) 394/895 (44.0%) <0.00001

Ace inhibitor 104/429 (24.2%) 126/895 (14.1%) <0.00001

Calcium blocker 50/429 (11.7%) 75/895 (8.4%) 0.057

Nitrates 158/429 (36.8%) 177/895 (19.8%) <0.00001

Betablocker 215/429 (50.1%) 248/895 (27.7%) <0.00001

Hyperlipidemia 321/429 (74.8%) 481/895 (53.7%) 0.001

PR, positive remodeling.
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through hyperparameter tuning using a grid search. The

hyperparameters tuned included the number of iterations (100),

learning rate (0.01), depth (6), L2 leaf regularization (3), random

subspace method (0.75), border count (64), loss function

(logloss), evaluation metric (F1), bootstrap type (Bernoulli),

subsample (0.6), and thread count (1). This grid search enabled

us to find the best combination of hyperparameters for our

dataset. The hyperparameter search ranges for each model are

provided in Supplementary Table S1.

We developed and trained three different models with varying

feature combinations: (Model 1) clinical features only, (Model 2)
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clinical features plus Agatston score-derived features, and (Model

3) clinical features, Agatston score-derived features, and fat-omics

features. Each model underwent the same hyperparameter

optimization process. All the employed codes, including DeepFat

(20), Elastic Net regression for feature selection, and CatBoost

machine learning models, are available in our GitHub repository

(https://github.com/Thefreak123TH).
2.7 Performance evaluation

To ensure the robustness and reliability of our model, we

employed 1,000 iterations of 5-fold cross-validation. This method

involved dividing the dataset into five subsets, training the model

on four subsets, and validating it on the remaining subset.

Repeating this process 1,000 times helped to average out

variability and prevent overfitting. The classification performance

was evaluated using conventional metrics such as sensitivity,

specificity, accuracy, and area under the receiver operating

characteristic curve (AUC).

To investigate performance variance, we compared the

optimized CatBoost model with three other established methods:

Support Vector Machine (SVM) (23), Random Forest (RF) (24),

and XGBoost (25). Detailed training information for all machine

learning models is provided in Supplementary Table S1. Each

model was trained and tested using the same dataset split to

ensure a fair comparison. This comprehensive evaluation allowed

us to identify the most effective machine learning approach for

our classification task.

In addition to conventional metrics, we conducted clinically

relevant assessments to evaluate the model’s utility in predicting

MACE. Following classification, we used Kaplan–Meier survival

analysis to estimate survival probabilities and stratify patients

based on predicted and actual PRs. Cox proportional hazards

models were then fitted using the predicted and actual PRs as

covariates to assess their association with MACE. The survival

predictions derived from these analyses were compared for

consistency and clinical relevance. MACE was defined as a

composite outcome of nonfatal myocardial infarction, nonfatal

stroke, cardiovascular death, and revascularization. For external

validation, we used a subset of the CLARIFY trial (ClinicalTrials.

gov. Unique identifier: NCT04075162), comprising 2,316 patients

who underwent both CCTA and CTCS.
2.8 Statistical analysis

Continuous variables were presented as mean ± standard

deviation, and categorical variables were reported as frequencies.

Comparisons between PR and non-PR groups were made using

Student’s t-test for continuous variables and the Chi-square test

for categorical variables. Normality of continuous variables was

assessed using the Shapiro–Wilk test. To evaluate the models’

performance, we used McNemar’s test (for sensitivity and

specificity) and the Delong test (for AUC) to compare Model 1

with Model 2 and Model 2 with Model 3. To predict MACE, we
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utilized Kaplan–Meier survival analysis and Cox proportional

hazard modeling, reporting hazard ratios (HR) and 95%

confidence intervals (CI). A p-value of less than 0.05 was

considered statistically significant. All statistical analyses were

conducted using R Studio software (version 2024.04.1,

R Foundation for Statistical Computing, Vienna, Austria).
3 Results

Among the 1,324 patients, PR was identified in 429 patients

(32.4%). The PR group had a significantly higher prevalence of

males, hypertension, chest pain, hyperlipidemia, and medications

(except for calcium blockers) than the non-PR group (p < 0.05).

Additionally, age, height, and systolic blood pressure were

significantly higher in PR group compared to the non-PR group

(p < 0.05). While there was no significant difference in total

cholesterol levels, HDL cholesterol was significantly lower in the

PR group (p < 0.05). The baseline characteristics of the study

population, comparing the PR and non-PR groups, are detailed

in Table 1. All the Agatston score-derived features were

significantly higher in the PR group compared to the non-PR

group (Table 2).

We selected the top 13 features for model 3 using Elastic Net

regression, which included four clinical features, three Agatston

score-derived features, and six fat-omics features (Figure 2C).

Among them, the top three were fat-omics (SR4_Pro_90_70,

SR3_Pro_170_150, and SR3_Pro_150_130), highlighting the
FIGURE 2

Variable importance plots of the three prediction models [(A) Model 1, (B) Mo
features were selected and used to train the CatBoost machine learning cla
feature. The actual CI ranges for SR4_Pro_90_70, SR5_Pro_90_70, SR3_Pr

TABLE 3 Classification results of each model obtained using 1,000 repeated

Model Sensitivity
Model 1 (Clinical) 46.3 ± 5.1

Model 2 (Clinical + Agatston score) 70.0 ± 4.6

Model 3 (Clinical + Agatston score + Fat-omics) 80.3 ± 1.7

The exact same training and testing data were used for each model, with hyperparameter optim
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significant impact of epicardial fat assessment. Notably, all

fat-omics features were derived from histograms of HU values

(Supplementary Figure S1 and Table S2). Such assessments are

related to fat inflammation, thought to be a driver of

cardiovascular risk (see Discussion). The best features for Models

1 and 2 were also determined by Elastic Net (Figures 2A,B).

Our method (Model 3) demonstrated excellent classification

performance for predicting PR, achieving a sensitivity of

80.3 ± 1.7%, a specificity of 89.7 ± 1.7%, an accuracy of

81.9 ± 2.5%, and an AUC of 88.7 ± 1.2% (Table 3). Model 1 had

the poorest classification performance, with the lowest values

across all metrics. The classification performance improved

significantly with the addition of Agatston score-derived features

(Model 2) (p < 0.05). Adding fat-omics to Model 2 further

improved sensitivity by 10% (from 70.0% to 80.3%) and specificity

by 4% (from 85.9% to 89.7%) in Model 3 (p < 0.05). Among the

four machine learning methods employed, the CatBoost method

exhibited the best classification performance (Table 4). Although

SVM showed higher sensitivity with much smaller standard

deviation (87.9 ± 0.4%), its specificity was very low (67.9 ± 1.0%)

compared to other methods. RF and XGBoost methods

demonstrated similar classification results. The classification results

of the Models 1–2 obtained using the other machine learning

methods are provided in Supplementary Tables S3, S4.

Our method demonstrated excellent prediction of MACE. In

Kaplan–Meier analyses, both actual and predicted PR

significantly differentiated between MACE and no-MACE groups

(p < 0.00001) (Figure 3). However, the predicted PR showed a
del 2, and (C) Model 3] selected by Elastic Net regression. For Model 3, 13
ssification model. The 95% confidence interval (CI) is provided for each
o_150_130, and SR3_Pro_170_150 were clipped for better visualization.

5-fold cross validation.

Specificity Accuracy AUC
76.3 ± 3.1 71.2 ± 2.7 70.5 ± 3.1

85.9 ± 2.3 81.6 ± 2.0 88.4 ± 1.8

89.7 ± 1.7 81.9 ± 2.5 88.7 ± 1.2

ization using grid search.

frontiersin.org

https://doi.org/10.3389/fcvm.2025.1543816
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 4 Comparison of the proposed method (CatBoost) against other
established machine learning approaches, including random forest (RF),
support vector machine (SVM), and XGBoost.

Model Sensitivity Specificity Accuracy AUC
RF 73.8 ± 3.5 87.2 ± 1.4 81.5 ± 2.0 87.8 ± 1.3

SVM 87.9 ± 0.4 67.9 ± 1.0 77.9 ± 0.6 88.0 ± 0.2

XGBoost 76.0 ± 4.7 87.9 ± 2.9 81.3 ± 2.0 88.0 ± 1.6

CatBoost 80.3 ± 1.7 89.7 ± 1.7 81.9 ± 2.5 88.7 ± 1.2

Results were obtained using 1,000 repeated five-fold cross validation. The exact same training and
testing data were used for each method, with hyperparameter optimization using grid search.
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much wider range of 95% CI compared to the actual PR. In Cox

proportional hazard analyses, the actual PR had a higher HR

(6.5; 95% CI: 4.8–9.0; C-index: 0.722; p < 0.00001) than the

predicted PR (4.5; 95% CI: 3.2–6.4; C-index: 0.578; p < 0.00001).

When applied to the external validation set (CLARIFY,

n = 2,316), our method significantly differentiated between

MACE and no-MACE groups (p < 0.00001) (Figure 4), with an

HR of 3.2 (95% CI: 2.5–4.0; C-index: 0.647; p < 0.00001).
4 Discussion

We built on our previous studies utilizing CT imaging (11, 12,

20, 26–31) and developed a novel machine learning model to

predict the presence of PR from CTCS scans. To the best of our

knowledge, this is the first study to examine CTCS imaging

features as predictors of the arterial remodeling. The proposed

study has several important contributions. (1) We utilized unique

feature sets consisting of clinical, Agatston score-derived, and

epicardial fat-omics features (12). The most relevant features were

then determined using Elastic Net regression. (2) We implemented
FIGURE 3

Kaplan-Meier survival curves between actual (A) and predicted (Model 3) (B) p
low-risk groups are split with the median risk. The x-axis represents survival t
actual and predicted PRs significantly differentiated between MACE and no-M
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various state-of-the-art machine learning methods and compared

their classification performance with different feature groups. This

comprehensive evaluation allowed us to determine the most

effective machine learning approach. (3) We further investigated

the clinical value of the proposed method for predicting MACE

using multi-center datasets (i.e., SCOT-HEART and CLARIFY).

Our fat-omics features had a significant impact on predicting

PR, highlighting the importance of epicardial fat assessment.

Epicardial fat is a visceral fat deposit located between the heart

and the pericardium that can potentially cause local inflammation

in the coronary arteries. This inflammation can directly contribute

to coronary atherosclerosis and influence arterial remodeling, the

process of structural changes in the coronary artery wall. Assessing

epicardial fat is crucial because it serves as an active endocrine

organ, secreting various adipokines and cytokines that can

exacerbate inflammation and promote atherosclerotic changes.

Additionally, the presence of epicardial fat has been associated

with increased risk of plaque formation, arterial stiffening, and

other adverse changes in the coronary arteries (32–34). In our

previous study (12), we developed an automated method for the

first time to quantitatively assess the epicardial fat deposition (fat-

omics) and demonstrated the importance of elevated HU values

for predicting MACE. Similarly, in this study, we found that the

probabilities of EAT voxels with elevated HU values in the outer

layers (e.g., SR4 and SR5) were potentially beneficial for prediction

PR. The SR4 and SR5 regions correspond to areas where coronary

arteries most likely located, which is why they were identified as

strong predictors for PR (SR4_Pro_90_70 and SR5_Pro_90_70).

The higher HU range (−90 to −70) is more indicative of lipid-

rich necrotic cores, fibrotic-lipid mixed plaques, and inflamed

pericoronary adipose tissue, all of which are strongly associated

with PR. In contrast, the lower HU range (e.g., −170 to −150) is
ositive remodeling (PR) obtained using five-fold cross-validation. High and
ime, and the y-axis represents the survival probability of patients. Both the
ACE groups (p < 0.00001). The colors are blue (no-MACE) and red (MACE).
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FIGURE 4

Kaplan-Meier survival curve on the external validation set consisting of 2,316 patients. For survival analysis, the CatBoost classification model (Model 3)
was trained using the entire SCOT-HEART data (n = 1,324) and applied to the external validation set. The output of the trained model was used for
survival analysis. The x-axis represents survival time, and the y-axis represents the survival probability of patients. The predicted positive remodeling
(PR) significantly differentiated between MACE and no-MACE groups (p < 0.00001). The colors are blue (no-MACE) and red (MACE).
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more reflective of adipose tissue, which may not directly contribute

to PR. Inflammation and proteolysis promote outward expansion of

the vessel wall, leading to PR. Since these processes are more strongly

linked to regions with higher HU values, this explains their

predictive importance.

The addition of Agatston score-derived features, particularly

the logarithmic total Agatston score and diffusivity index,

significantly impacted predicting PR. Higher Agatston scores

indicate a greater burden of calcified plaque, reflecting more

advanced and extensive coronary artery disease. This is

associated with both positive and negative arterial remodeling,

where the arterial wall undergoes structural changes in response

to plaque accumulation. Positive remodeling can initially preserve

the arterial lumen, while negative remodeling can lead to luminal

narrowing and increased risk of cardiovascular events.

Additionally, a higher diffusivity index indicates more diffuse

distribution of calcification across the entire coronary arteries,

suggesting that the spread of coronary calcification plays a crucial

role in arterial remodeling. The diffuse calcification distribution

may exacerbate the remodeling process, making it more

challenging to manage and treat coronary artery disease effectively.
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The CatBoost model demonstrated superior classification

performance compared to other machine learning methods,

including RF, SVM, and XGBoost. This enhanced performance

can be attributed to several unique features of CatBoost. First,

CatBoost is specifically designed to handle categorical features

effectively without requiring extensive preprocessing or one-hot

encoding, often necessary with other models. This results in better

utilization of clinical features, Agatston score-derived features, and

fat-omics features. Second, CatBoost employes an ordered boosting

technique, which mitigates the prediction shift commonly

encountered in traditional gradient boosting algorithms. This leads

to more accurate and stable predictions, particularly compared to

XGBoost. Additionally, CatBoost efficiently handles missing data

and incorporates robust feature importance mechanisms, further

enhancing its predictive capabilities. Its ability to manage data

with varying distributions and complexities makes it particularly

well-suited for medical imaging datasets, where such variability is

common. In contrast, SVM showed the highest sensitivity in our

experiments but suffered from very poor specificity, likely due to

its tendency to overfit on positive instances, resulting in a higher

false positive rate. Last, the model’s inherent resistance to
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overfitting, combined with minimal hyperparameter tuning, helped

improve classification performance.

Our method demonstrated high reproducibility, validated using

extensive multi-center datasets, including those from the SCOT-

HEART and CLARIFY trials. This evaluation across multiple

centers is crucial as it confirms that the model performs robustly

and is generalizable across various patient populations and imaging

conditions. Although minor differences were observed in HR and

C-index between the training and external validation sets (HR: 4.5,

C-index: 0.578 vs. HR: 3.2, C-index: 0.647), our approach effectively

predicted MACE (see Figures 3, 4). By employing datasets from

different centers for training and testing, we minimized the risk of

overfitting to a single-center dataset, enhancing the model’s

applicability in diverse settings. Our consistent classification

performance across multiple independent cohorts suggests its

reliability and potential for widespread clinical use in predicting

arterial remodeling from CTCS data. Such rigorous validation is

essential for establishing confidence in the model’s predictions and

ensuring its practical effectiveness in real-world clinical scenarios.

This study has a few limitations. First, the relatively small

sample size may limit the generalizability of the findings, and

results could vary with a larger cohort. Second, despite the full

automation of the fat-omics calculations, each CTCS scan

assessment required 15–20 min. Future improvements in software

automation could streamline this process and enable wider use.

Third, integrating additional quantified variables, such as

calcium-omics (11), could potentially enhance predictive accuracy.
5 Conclusion

We developed an innovative machine learning model to predict

coronary arterial remodeling from epicardial fat and calcification

features from low-cost or no-cost screening non-contrast CTCS

scans. The same model also predicted MACE. This suggests that

the vast number of CTCS scans available can support more

informed clinical decision-making and potentially reduce the

need for invasive and expensive tests in low-risk patients.
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