REVIEW article

Front. Cardiovasc. Med.

Sec. Cardiovascular Biologics and Regenerative Medicine

Volume 12 - 2025 | doi: 10.3389/fcvm.2025.1538546

Cell cycle arrest of cardiomyocytes in the context of cardiac regeneration

Provisionally accepted
Xiang  AoXiang Ao*Qingling  XuQingling XuXinhui  ChenXinhui ChenChunyige  ZhaoChunyige ZhaoYing  LiuYing LiuJianxun  WangJianxun WangWei  DingWei Ding
  • Qingdao University, Qingdao, China

The final, formatted version of the article will be published soon.

The limited capacity of adult mammalian cardiomyocytes to undergo cell division and proliferation is one of the key factors contributing to heart failure. In newborn mice, cardiac proliferation occurs during a brief window, but this proliferative capacity diminishes by 7 days after birth. Current studies on cardiac regeneration focused on elucidating changes in regulatory factors within the heart before and after this proliferative window, aiming to determine whether potential association between these factors and cell cycle arrest in cardiomyocytes. Facilitating the re-entry of cardiomyocytes into the cell cycle or reversing their exit from it represents a critical strategy for cardiac regeneration. This paper provides an overview of the role of cell cycle arrest in cardiac regeneration, briefly describes cardiomyocyte proliferation and cardiac regeneration, and systematically summarizes the regulation of the cell cycle arrest in cardiomyocytes, and the potential metabolic mechanisms underlying cardiomyocyte cycle arrest. Additionally, we highlight the development of cardiovascular disease drugs targeting cardiomyocyte cell cycle regulation and their status in clinical treatment. Our goal is to outline strategies for promoting cardiac regeneration and repair following cardiac injury, while also pointing toward future research directions that may offer new technologies and prospects for treating cardiovascular diseases, such as myocardial infarction, arrhythmia and heart failure.

Keywords: cardiomyocyte, proliferation, Cardiac regeneration, cell cycle arrest, cardiovascular disease

Received: 03 Dec 2024; Accepted: 14 Apr 2025.

Copyright: © 2025 Ao, Xu, Chen, Zhao, Liu, Wang and Ding. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

* Correspondence: Xiang Ao, Qingdao University, Qingdao, China

Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Research integrity at Frontiers

94% of researchers rate our articles as excellent or good

Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


Find out more