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Neurocardiology is an evolving field focusing on the interplay between the
nervous system and cardiovascular system that can be used to describe and
understand many pathologies. Acute ischemic stroke can be understood
through this framework of an interconnected, reciprocal relationship such that
ischemic stroke occurs secondary to cardiac pathology (the Heart-Brain axis),
and cardiac injury secondary to various neurological disease processes (the
Brain-Heart axis). The timely assessment, diagnosis, and subsequent
management of cerebrovascular and cardiac diseases is an essential part of
bettering patient outcomes and the progression of medicine. Artificial
intelligence (AI) and machine learning (ML) are robust areas of research that
can aid diagnostic accuracy and clinical decision making to better understand
and manage the disease of neurocardiology. In this review, we identify some
of the widely utilized and upcoming AI/ML algorithms for some of the most
common cardiac sources of stroke, strokes of undetermined etiology, and
cardiac disease secondary to stroke. We found numerous highly accurate and
efficient AI/ML products that, when integrated, provided improved efficacy for
disease prediction, identification, prognosis, and management within the
sphere of stroke and neurocardiology. In the focus of cryptogenic strokes,
there is promising research elucidating likely underlying cardiac causes and
thus, improved treatment options and secondary stroke prevention. While
many algorithms still require a larger knowledge base or manual algorithmic
training, AI/ML in neurocardiology has the potential to provide more
comprehensive healthcare treatment, increase access to equitable healthcare,
and improve patient outcomes. Our review shows an evident interest and
exciting new frontier for neurocardiology with artificial intelligence and
machine learning.
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1 Introduction

1.1 Neurocardiology

Neurocardiology is an evolving field with particular focus on the

interplay between the nervous and cardiovascular systems (Figure 1).

Most frequent clinical scenarios include hemorrhagic and ischemic

stroke secondary to cardiac pathology (the Heart-Brain axis), and

cardiac injury secondary to various neurological disease processes (the

Brain-Heart axis) (1–4). This framework suggests an interconnected,

reciprocal relationship between the two systems, whereby cardiac

dysfunction can result in various scenarios of ischemic or

hemorrhagic stroke, and conversely, intracranial disorders can impact

cardiac function and physiology (5–10). Various biological

mechanisms have been implicated in this reciprocal relationship of

pathophysiology, ranging from autonomic dysregulation to systemic

inflammation affecting both systems (5–7, 11).
1.2 The heart-brain axis: cerebrovascular
disease secondary to cardiac pathology

The heart-brain axis is of significant relevance to the

ischemic stroke population (12–14). Up to 25% of adults will
FIGURE 1

Basics of neurocardiology.
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suffer from at least one stroke in their lifetime and it

represents the second-leading cause of death worldwide and

the third-leading cause of disability (15–19). These numbers

have consistently increased over the past 20 years, with stroke

recurrence rates reportedly as high as 54% in Acute Ischemic

Stroke (AIS) outcomes (16, 20–24). Functional outcomes,

stroke recurrence, and secondary stroke prevention vary widely

depending on stroke etiology (15, 25). Based on the

recommendations of the 2021 American Heart Association/

American Stroke Association Guidelines, the Trial of ORG

10172 in Acute Stroke Treatment (TOAST) classification is

widely used to classify the etiology of AIS (Table 1) (26, 27).

Within the TOAST classification system, stroke secondary to

emboli of cardiac origin (cardioembolism) represent the largest

subgroup of stroke patients at 30%, with embolic strokes of

undetermined source (ESUS) at 25% (26, 28). Moreover, various

reports suggest that ESUS, traditionally categorized as

cryptogenic strokes, can be often diagnosed as cardiac in origin

with comprehensive cardiac workups (21, 28–36).

Cryptogenic stroke represents a category of stroke not

attributable to any of the other four major TOAST subtypes

(Table 1), accounting for approximately 20%–30% of all

ischemic strokes. Recent studies have introduced the concept
frontiersin.org
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of ESUS as a specific subtype within cryptogenic strokes, aimed

at identifying patients who may benefit from enhanced imaging

studies or treatment such as anticoagulation even in the absence

of documented atrial fibrillation (AF) (37, 38). Rarely,

hemorrhagic stroke can also be caused cardiac dysfunction,

such as in infective endocarditis and myocardial infarction

(39–42).
1.3 The brain-heart axis: cardiac disease
secondary to cerebrovascular pathology

The bidirectional nature and interconnected pathophysiology

of the nervous and cardiovascular systems are also evident by the

high prevalence of cardiac abnormalities following different types

of ischemic stroke, giving credence to the notion of a “brain-

heart axis” (2–5, 7, 9, 12–14, 43, 44). The pathologies of the
TABLE 1 The trial of Org 10172 in acute stroke treatment
(TOAST) classifications.

1. Large-Artery Atherosclerosis (embolus/thrombosis)
2. Cardioembolism (high-risk/medium risk)
3. Small-Vessel Occlusion (lacune)
4. Stroke of Other Determined Etiology
5. Stroke of Undetermined Etiology (two or more identified, negative evaluation,

incomplete evaluation)

FIGURE 2

Heart-brain and brain-heart axis of acute ischemic stroke.
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brain-heart axis most notably include neurogenic stress

cardiomyopathy (including Takotsubo cardiomyopathy),

arrhythmias, and acute myocardial injury, and can be seen as

early as 24 h following stroke (5, 7, 14, 45). Moreover, post-

stroke cardiac injury is associated with higher mortality rates,

more adverse long-term outcomes, and increased rates of stroke

recurrence (14, 20, 26, 43, 46–49).

The mechanisms behind cardiac dysfunction after central

nervous system (CNS) injury may be rooted in a maladaptive

stress response causing acute injury and prolonged structural

changes (Figure 2). Autonomic dysfunction is among the most

significant disease processes underlying the heart-brain axis.

Heart rate variability can be used to assess both general

autonomic regulation and cardiac autonomic stability (7, 13, 50,

51). Heart rate, heart rate variability, and ratio of high frequency

to low frequency bands can indicate the levels of sympathetic vs.

parasympathetic activity and may therefore be used as a

predictor for outcomes and mortality (7, 52–56).

Within the central nervous system, the deleterious effects of an

infarct on specific brain structures can alter the interpretation of

cardiac response/stress. For instance, the insular cortex, supplied

by the middle cerebral artery (MCA) and commonly injured in

AIS, is associated with cardiorespiratory interoception and

autonomic responses (12, 57, 58). Furthermore, its connection to

structures such as the amygdala also demonstrates its role in the

response to emotional stress and to a patient’s interpretation of

cardiac changes such as heartbeat variability (12, 58, 59).
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Emotional stress is also implicated in “mental stress-induced

myocardial infarctions” with alterations in catecholamine release

also contributing to cardiac alterations and microinfarcts (60–62).

In addition to pathological changes within the brain, these

changes in structure and response to stress also manifest

downstream in the heart, through direct electrical cardiac

alterations, endothelial disruptions, and cardiac remodeling. One

such example is Takotsubo syndrome, which manifests in part

due to emotional stress, but also commonly occurs in patients

with co-existing neurological disorders, with a prevalence ranging

from 6% to 17% (63–65). Takutsubo syndrome has conferred

worse functional outcomes and increased in-hospital and long-

term mortality rates for patients with neurological disease (64,

65). Similarly, the suspected disease processes in this

syndrome consist of an aberrant autonomic stress response

secondary to injury to brain structures associated with

regulating autonomic function, including the amygdala,

hippocampi, the right putamen, and the left superior temporal

pole. This leads to perturbations in connectivity among these

structures, a dysregulated sympathetic response, and increased

catecholamine release leading to myocardial insult and cardiac

dysfunction (63, 64, 66–69).
1.4 The role of artificial intelligence in
clinical applications of neurocardiology

The need for timely assessment, diagnosis, and subsequent

intervention in this patient population is essential to optimize

patient outcomes. The evolution of artificial intelligence (AI) and

machine learning (ML) has provided a potentially

groundbreaking avenue to develop useful clinical tools to

optimize the detection, prognosis, and treatment of

cerebrovascular diseases (70–72).

In brief, AI entails the use of a machine to simulate human

intelligence to solve tasks (73). Within AI is machine learning

(ML), which encompasses the iterative training of machines

using large volumes of data to detect patterns and generate

problem-solving models which can be applied to future data sets

(73). Deep learning (DL) is a subclassification of ML which

entails the use of interconnected neural networks to simulate the

process of learning in humans (73).

Utilizing trained algorithms, AI often has high accuracy for

diagnosis, prognosis of disease progression, and treatment

suggestions, while also integrating historical data and

personalized patient information (74). Several AI programs have

been approved by the Food and Drug Administration (FDA) and

have been implemented in many hospital systems worldwide for

the detection of cerebrovascular accidents (CVAs), utilizing

imaging modalities such as MRI, CT scans, computed

tomography angiography (CTA) and computed tomography

perfusion (CTP) scans, and to assess the cerebral vasculature and

blood flow (70, 75, 76).

We have previously reviewed the growing applicability and

implementation of AI/ML algorithms in the diagnosis,

management, and prognostication of cerebrovascular diseases
Frontiers in Cardiovascular Medicine 04
(70). Most pertinent to neurocardiology is ischemic stroke, for

which these algorithms have shown a high degree of diagnostic

efficacy, utilizing CTAs to detect large vessel occlusions (LVOs)

and in using CTP scans to estimate perfusion mismatch and core

infarct volumes (70). Moreover, AI/ML algorithms have also

proven to be highly effective.

The prognostication for stroke patients can be performed using

grading systems such as the Alberta Stroke Program Computed

Tomography Score (ASPECTS). This score is used to predict

stroke severity and clinical outcomes based on the anatomical

distribution of stroke and the division of the MCA affected in

cases of LVO (70). For what ordinarily is a cumbersome process

of tabulation for humans, AI/ML provides an expedited means of

tabulating these scores, which is crucial in the acute setting of

ischemic stroke in which time is of the essence (70). These

algorithms have either outperformed or matched the accuracy of

human radiologists, are now increasingly implemented into

routine clinical practice for ischemic stroke. Commercial

platforms such as RapidAI and Brainomix are now regularly

used as a supplementary tool for clinical decision-making for

stroke teams (70).

The use of AI/ML applications in stroke assessment has

therefore already shown clinical significance due to their ability

to rapidly combine and analyze large volumes of patient input

information when compared to manual computation or

assessment (77–81). While this technology yields its highest

accuracy in the diagnosis of cardioembolic strokes, its accuracy

for the diagnosis of ESUS is also improving with further

iterations of AI/ML algorithms (80). AI/ML has also been used

as a predictive tool for cerebrovascular and cardiovascular

disease. This is of particular importance from the perspective of

neurocardiology, in which modifiable, preventable comorbidities

such as atherosclerosis are heavily interconnected and implicated

in the pathophysiology of both systems.

In addition to their utility for clinical decision making, AI

algorithms are also efficient analytical tools, can reduce human

error, and can identify trends otherwise missed by the human

eye or standard calculations (75, 80, 82). This is particularly

essential in acute disease processes such as stroke, where

accuracy and speed can drastically affect patient outcomes.

The implementation of automation can also reduce physician

fatigue when used correctly for personalized care and decision

making (83, 84). AI may also be able to help patients receive

more equitable stroke management by providing accessible

and personalized care options to reduce geographical,

socioeconomic, and ethnic health disparities (82, 85, 86).

However, the literature consistently notes that the benefits of

AI applications are inherently limited by the ability to

standardize its implementation and train clinicians to

effectively use it (82).

Therefore, it is imperative for clinicians to be familiar with

current and future stroke evaluation modalities in a rapidly

evolving, technological landscape. In this review, we will evaluate

the role of AI and ML in the heart-brain relationship in stroke,

focusing both on the most common cardiac causes of stroke and

the most common post-stroke cardiac complications.
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2 The heart-brain axis: AI/ML
applications in cardiac sources of
stroke

2.1 Atrial fibrillation

According to the American Heart Association (AHA)/

American Stroke Association’s 2021 Guideline for the Prevention

of Stroke in Patients with Stroke and Transient Ischemic Attack,

atrial fibrillation (AF) is the most common arrhythmia in adults,

and the leading cause of acute ischemic stroke (75). Initially

diagnosed by electrocardiogram (EKG), AF confers an increased

risk of future stroke, with the need for anticoagulation to

mitigate this stroke risk determined by the CHA2DS2-VASc risk

score (87). Despite up to 40% of AF patients being

asymptomatic, these patients are at a higher risk of mortality

than even symptomatic patients (87). This is likely due to

treatment nonadherence and insidious disease progression while

asymptomatic. One AF subtype, paroxysmal AF, has an

intermittent and unpredictable presentation, requiring longer

diagnostic monitoring, and is often missed during hospital

admissions during stroke. Certain risk models, such as the

CHARGE-AF score, is often implemented to identify high risk

patients based on clinical factors without the need for EKG data

(88). While AF is the most common cause of the cardioembolic

TOAST subcategory, it may also represent up to 15% of all

cryptogenic strokes (26, 32, 79).

2.1.1 Diagnostic electrocardiography
AF diagnosis with EKG is one of the most widely studied

implementations of AI in AIS/neurocardiology diagnosis and

identification to stroke risk stratification and treatment options

(Figure 3). This includes several FDA-approved programs such as
FIGURE 3

Implementation of AI for in-hospital EKG evaluation and diagnosis of atrial
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Cardiomatics and AccurKardia (89, 90). Certain AI/ML models

have been shown to outperform validated tools such as

CHA2DS2-VASc in stroke prediction (91, 92).

While normal sinus rhythm on initial EKG may point

clinicians away from a diagnosis of AF, Attia et al. recently used

over 20 years of EKG data from the Mayo Clinic to assess the

ability of AI to identify AF from a normal sinus rhythm on EKG

(93). This study demonstrated area under the curve (AUC) of

0.87 for correctly diagnosing AF among patients who had

previously recorded AF rhythms. However, this AUC increased

to 0.90 when predicting AF in undiagnosed patients, notably if

EKG was obtained up to 31 days prior to the first EKG-recorded

AF episode (93). This AI apparatus was then compared to the

validated CHARGE-AF score for AF risk prediction and

performed with a similar degree of accuracy (94). These

measures have also been used in the assessment and diagnosis of

AF in the setting of cryptogenic stroke (95). Additionally, Weil

et al. investigated the predictive value of an AI-generated EKG

score of AF risk, noting that a higher AI-EKG-AF score

correlated with the subsequent development of cerebral infarcts

on MRI, therefore demonstrating the value of such AI-algorithms

in predicting cerebrovascular disease even with EKG data

alone (96).

Based on these findings, Raghunath et al. subsequently

developed their own deep neural network (DNN), while also

including a 1-year predictive factor for future-onset AF for a

sample of 430,000 patients over 30 years. This DNN

demonstrated a final AUC of 0.85 and a sensitivity of 69% in a

simulated deployment scenario (97). The authors analyzed their

study cohort and noted that 62% of patients with predicted AF

subsequently suffered from stroke within 5 years of the study, a

greater accuracy than currently approved protocols (97). Kim

et al. also followed a similar 12-lead EKG model mainly using
fibrillation.
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ResNet blocks, but also incorporated an attention analysis for the

model using Grad-CAM with convoluted neural network (CNN)

feature map gradients (98). The authors noted that sinus rhythm

EKGs with prolonged QRS compared to a specific point between

the T and P waves correlated with an AI-diagnosis of AF (98).

Most of these studies also found that monitoring close to an AF

event provided better results and eliminated the indication for

long-term monitoring in this population (97, 98). New models

are continually being created to improve diagnostic efficacy and

risk prediction (99, 100).

2.1.1.1 Mobile electrocardiography
Mobile EKGs (mEKGs) are an increasingly popular mode of

cardiac evaluation through commonly worn devices with FDA

approval, such as Apple Watch single-lead EKGs, and approved

monitoring tools such as the KardiaMobile with 6-lead EKGs

(101–106). These novel assessment tools allow for close

monitoring at the outpatient, community level, which may

improve the rate of detection and therefore allow for early

preventative measures for stroke (106–108). Screening measures

with clinicians using automated AI with mEKGs have yielded

sensitivities as high as 98.5% and specificities up to 91.4% (108).

The use of AI with this mEKG modality has also provided a

means of easing clinician workload and overcoming restrictions

during the height of the COVID-19 pandemic (106, 109).

Furthermore, mEKGs may also be vital in the diagnosis of

paroxysmal, asymptomatic AF through providing a means of

extended cardiac monitoring.

Raghunath et al. have also utilized KardiaMobile data using

over 260,000 mEKG recordings to test their own AI and DL

algorithm utilizing a combination of CNN-based ResNet layers,

gated recurrent unit (GRU), and standardized dense neural

network layers that built upon Attia et al.’s 2019 model using

classic 12-lead EKGs (93, 104). They assessed for paroxysmal AF

events, noting a high positive predictive value when the

algorithm was trained within 2 days of an event (104). This

ability to accurately predict future AF events could drastically

change medical management in asymptomatic patients.

For an ischemic stroke population, in-hospital use of this

technology may capture an additional AF event and provide

more accurate diagnosis during admission. When comparing this

data to 12-lead EKG AI models or the CHA2DS2-VASc risk

score, these technologies have tended to outperform risk measure

scales but have demonstrated reduced accuracy than 12-lead

EKGs even with similar algorithm priorities (103, 104).

Regardless, this technology provides an accessible and reliable

alternative for monitoring patients at high-risk for AF and

subsequent stroke.

2.1.1.2 Electrocardiography patch
Continuous EKG monitoring may also be conducted through a

patch, such as the FDA approved iRhythm Zio and BioTel

MCOT Patch (106, 110). The clinical use of these AI algorithms

with immediate monitoring has demonstrated high accuracy in

diagnosis of AF and has led to earlier initiation anticoagulation

to mitigate the risk of thrombus formation and subsequent
Frontiers in Cardiovascular Medicine 06
embolization to the brain (110, 111). Various studies have also

demonstrated that the patch yielded slightly improved rates of

detection compared to classic Holter monitors which have

limited long-term ambulatory functional use (112–116).

Therefore, there is a growing role for AI not just in the

emergency setting, but also in providing an invaluable means of

cardiac monitoring at home or outpatient for paroxysmal AF (117).

2.1.2 Diagnostic photoplethysmography
Photoplethysmography (PPGs) are light-based sensors for

blood flow measurement utilized both in the inpatient and

outpatient settings in wearable devices such as smartwatches. The

WATCH AF trial was among the first studies demonstrating the

feasibility of AF diagnosis and observation in PPG-enabled

devices, citing an accuracy of 96.1% (118). A recent systematic

literature review found 24 cohort studies mostly assessing AF

detected by smartwatches showing its significant growth and

popularity in recent years, with several studies pointing to the

easy implantation of these tools (119–122). PPG technology may

also be used as a mobile phone application, such as with

FibriCheck and SMARTBEATS, applications which have yielded

high diagnostic accuracy, with sensitivity and specificity rates of

>95% when compared to the diagnostic ability of single-lead

EKGs (123–125).
2.2 Valvular disease

Valvular heart disease (VHD), a major cause of morbidity and

mortality worldwide, has been recognized as an underlying risk

factor for ischemic stroke. Both mitral and aortic valve stenosis

have been associated with cardioembolic events, and the

prevalence of VHD has been steadily increasing with an aging

population (126). AI platforms may potentially enhance

diagnostic capabilities, ease workflow, and potentially improve

the outcomes of the patient with VHD and ischemic stroke. The

role of AI in diagnosing valvular heart disease has been explored

through assessing EKGs, phonocardiograms, and echocardiograms.

2.2.1 Diagnostic electrocardiography
AI-enabled electrocardiogram models have been developed,

utilizing CNNs to assist in the early detection of significant

aortic stenosis (AS) (127). Using a sample of over 258,000 of

EKGs to train, validate and test the model, researchers at Mayo

Clinic, Rochester developed an AI-EKG system capable of

predicting moderate to severe AS with impressive sensitivity,

specificity and accuracy (127).

2.2.2 Diagnostic transthoracic echocardiography
Since echocardiography is the primary modality for diagnosis

and evaluation of VHD, the primary focus of AI research in

valvular heart disease remains on the review and interpretation

of echocardiograms. AI can assist in the segmentation of valves

and cardiac structures for automated analysis. Using image

recognition algorithms, aortic and mitral valve disease states have

been directly detected from the images themselves. Several AI-
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https://doi.org/10.3389/fcvm.2025.1525966
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Basem et al. 10.3389/fcvm.2025.1525966
enabled algorithms have been developed to diagnosis mitral

valvular disease via quantitative analysis of 3-dimensional (3-D)

echocardiography. These include Mitral Valve Quantification

(Philips Medical Imaging, Andover, MA), eSie Valve (Siemens

Healthcare, Mountain View, CA, USA), Mitral Valve Navigator

(Philips Medical Systems), Auto Valve Analysis (Siemens;

California, USA), and eSie PISA Volume Analysis (Siemens

Medical Solutions USA, Inc., Mountain View, CA) (128).

Measurements obtained during echocardiographic valvular

assessment have been integrated with other clinical data to

identify novel aortic valve disease subgroups and describe new

predictors of aortic valve disease progression (129).

Similarly, another FDA-approved AI-apparatus is iCardio.ai,

which has been cleared for use in the detection of AS This

apparatus was developed through training and testing CNNs to

use two-dimensional (2D) TTE to diagnose AS, with an AUC of

0.96 (130). Since severe aortic stenosis is a known risk factor for

ischemic stroke, screening of at-risk populations with timely and

efficient AI-enabled tools can be valuable.

2.2.3 Cardiac magnetic resonance imaging
AI applications can provide a more rapid analysis of cardiac

MRI data, automated and quantitative evaluations of the valvular

structures, and a proper appraisal of patient prognosis in the

setting of disease (131, 132). This information is essential in

gauging disease severity and stroke risk.

2.2.3.1 MRI segmentation
A study by Alabed et al. demonstrated that DL algorithms for

cardiac MRI segmentation and measurement have similar or

better efficiency as compared to manual measurements (133). In

their multicenter dataset, intraclass correlation coefficients (ICCs)

ranged from 0.94 to 0.99 for left ventricular (LV) and right

ventricular (RV) volumes respectively, with similarly high ICCs

for ejection fractions (LV: 0.93, RV: 0.94), and ventricular mass

(LV: 0.95, RV: 0.92). Comparing dice analysis of their internal

and external test cohorts showed significant concordance

between manual and AI measurements (133).

These findings are further supported by Bai et al. with their fully

convolutional network (FCN) based cardiovascular resonance

(CMR) image analysis (134). The team found that the

performance of the FCN-based automated analysis was on par

with human inter-observer variability for metrics such as LV and

RV end-diastolic volume (EDV) with a mean absolute difference

of 6.1 ± 5.3 ml and 8.5 ± 7.1 ml, respectively. MRI has also been

successfully quantified using AI algorithms based on the proximal

isovelocity surface area (PISA) method, with phenotyping studies

demonstrating promising results in the detection and

quantification of AS and mitral regurgitation (MR) (135–137).

These results support the notion that automated methods

based on AI-modeling and proper dataset training can improve

performance and predictability of multiple modalities.

2.2.3.2 MRI flow imaging
AI models have also been integrated into difficult workflows such

as four-dimensional (4D) flow magnetic resonance imaging for
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capturing temporal changes of blood flow patterns. Aortic

regurgitation onset and severity can be measured with 4D flow

MRI, however, the metrics obtained are extremely sensitive to

spatial resolution. Long et al. used deep-learning upscaling the

increase resolution by a factor of four. Building upon the existing

4DFlowNet model, they devised three architectures 4DFlowNet-

Res, 4DFlowNet-Dense, and 4DFlowNet-CSP, all of which

outperformed the baseline model in root mean square error

(RMSE), structural similarity index (SSIM), and relative speed

error (RE) showing how AI-integration can improve existing

assessment workflows (138).

2.2.4 Diagnostic phonocardiography
DL algorithms have also been utilized in digital stethoscope

platforms capable of automated cardiac auscultation and murmur

detection. AI-assisted cardiac auscultation in practice refers to

the auto-interpretation of phonocardiograms, within the domain

of signal processing. Various algorithms can diagnose severe AS

with sensitivity and specificity of over 90% (139). Chorba et al.

developed and tested a deep CNN model that classifies

phonocardiograms in 3 categories: heart murmur, no murmur,

or inadequate signal. To determine the accuracy of the signal

quality and murmur detection performance, the algorithm output

was compared with annotations from three cardiologists. This

algorithm yielded a sensitivity and specificity for detecting

murmurs of 76.3% and 91.4%, respectively. The study also used

the gold standard echocardiogram to detect clinically significant

(deemed as moderate or greater) AS and MR, with moderate

success. Detection of AS was 93.2% sensitive and 86.0% specific,

and detection of MR was 66.2% sensitive and 94.6% specific (139).

AI-platforms can be useful in screening for valvular heart

disease through auscultation. One such AI-apparatus recently

approved by the FDA is the Eko Murmur Analysis Software

(EMAS), a “smart” stethoscope which can detect and characterize

even asymptomatic murmurs in both pediatric and adult patients

(140). This valuable tool which can be used on a daily basis

during physical exams, can assist with early diagnosis of valvular

heart disease such as aortic and mitral valve stenosis which are

among known risk factors for ischemic stroke.

2.2.5 Stroke prediction
Artificial intelligence and machine learning have emerged as

powerful tools to aid clinicians in predicting stroke and related

outcomes. These models have demonstrated equal or superior

performance to traditional statistical methods, prompting further

investigation into the potential for AI/ML integration into risk

assessment and prognostic prediction for stroke across various

cardiovascular conditions.

Zhou et al. utilized machine learning algorithms to predict

stroke and mortality in patients with mitral regurgitation (141).

They found that a gradient boosting machine (GBM) method

significantly outperformed many traditional statistical methods in

predicting adverse outcomes of TIA/stroke and all-cause

mortality. For prediction of TIA/stroke, the GBM model achieved

an AUC of 0.8084 in comparison to 0.4128 for logistic regression

(LR), 0.5528 for decision tree (DT), 0.7202 for random forest
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(RF), 0.7429 for support vector machine (SVM), and 0.7533 for

artificial neural network (ANN). For prediction of all-cause

mortality, the GBM model achieved an area under the receiver

operating characteristic curve (AUC) of 0.7962 in comparison to

0.4063 for LR, 0.5490 for DT, 0.7132 for RF, 0.7354 for SVM,

and 0.7702 for ANN (141).

Extending this research, Rauf et al. applied a similar GBM

model to patients with mitral stenosis with atrial flutter (142).

Their results further confirm the GBM model’s efficacy, with an

AUC of 0.8037 for TIA/stroke risk prediction and 0.8388 for all-

cause mortality risk prediction, significantly outperforming

traditional statistical methods with AUC ranging from 0.4392 to

0.6976 for TIA/stroke and 0.4719 to 0.6174 for all-cause

mortality (142).

In context of AS, Shimoni et al. trained a random survival

forest (RSF) model using data from an AS registry to assess

prognostic characteristics with an AUC of 0.83 (0.80–0.86) for

1-year outcome and 0.83 (0.81–0.84) for 5-year outcome (143).
2.3 Congenital heart disease

Congenital heart disease (CHD) encompasses structural

cardiac abnormalities manifesting from birth, with significant

impacts on lifetime health such as increased stroke risk at a

younger age (144, 145). The presence of a patent foramen ovale

(PFO) is among the most common congenital abnormalities seen

in 25% of the population. This is characterized by a persistent

aperture between the right and left atria of the heart. Atrial

septal defect (ASD) is another cause of intra-cardiac shunting

and accounts for 10%–15% of all CHD. Both PFO and ASD

create a conduit for paradoxical thromboembolisms to the brain,

placing CHD among the most common cardiac etiologies of

AIS (146–149).

2.3.1 Stroke prediction
Several predictive scales have been developed to assess the risk

associated with congenital abnormalities, particularly PFO, and

their subsequent risk for AIS. The Risk of Paradoxical Embolism

(RoPE) score and the PFO-associated Stroke Causal Likelihood

(PASCAL) risk stratification system are the most widely utilized

risk scales (148, 150). The RoPE score consists of age,

hypertension, diabetes mellitus, smoking history, previous stroke,

or transient ischemic attack (TIA), and neuroimaging findings to

estimate the likelihood of a stroke occurring due to a PFO.

Higher RoPE scores indicate a greater probability of a stroke

occurring due to a pathologic PFO, but conversely, are associated

with a lower risk of recurrent stroke (148, 149, 151). The

PASCAL risk stratification system categorizes patients into

subgroups based on the presence of high-risk PFO features, such

as a large shunt or atrial septal aneurysm, in conjunction with

the RoPE score (148, 149).

There have been several studies utilizing ML algorithms for

stroke risk in patients with documented CHD. Bai et al.

constructed a RF ML algorithm in which they established the

relationship between cryptogenic stroke and predictor variables,
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including morphologic and functional characteristics of PFO, as

detected by transthoracic and transesophageal echocardiogram

(TTE/TEE) (146). Traditional algorithmic approaches such as

SVM and ANN have been considered. However, the high

dependence on database accuracy and time efficiency rendered

these approaches suboptimal.
2.3.2 Recurrent stroke prediction
Luo et al. constructed their random forest survival (RFS) model

under supervised machine learning and used random forest

variable importance (VIMP) to select variables such as fasting

blood glucose, thickness of interventricular septum, ratio of

mitral peak early (E) to late (A) diastolic filling velocity, left

ventricular end-systolic dimension, body mass index, systolic

blood pressure, and thickness of the posterior wall from a

population of patients with post-closure PFO diagnosed by TTE/

TEE (148). Compared to the concordance index (C-index) of

0.54 in the traditional Cox proportional hazard regression model,

the RFS model had a C-index of 0.87. RFS analysis supported

traditional risk factors and identified the ratio of mitral peak

early to late diastolic filling velocity and the thickness of the

interventricular or posterior wall in post-closure PFO patients as

predictive values to prevent stroke recurrence.

In another study in adult patients with CHD by Chiriac et al.,

two ML models (RegCOX and XGBoost) were constructed as

prediction models for stroke and systemic embolism (SSE) (144).

Both models were compared against and significantly

outperformed the traditional CHA2DS2-VASC score among the

ACHD population with AUC at 5 years of 0.80 for RegCOX,

0.79 for extreme gradient boosting (XGBoost), and 0.74 for

CHA2DS2-VASC. Both ML models included the CHA2DS2-VASC

score as part of their regression in addition to history of

cerebrovascular disease, ASD, and the Charlson comorbidity

index as the other high-risk variables.

PFO size has been implicated with increased mortality rates in

AIS patients and clinical studies have shown varying efficacy for

PFO closure vs. medical therapy for secondary stroke prevention

with high-risk PFO. Factors such as age and size of PFO have

been considered in past clinical trials to support the closure of

high-risk PFO and increasing data has supported PFO closure to

significantly reduce the risk of stroke or TIA. The analysis by

RFS in Luo et al. supported continued targeting of high-risk

groups even post-PFO closure (148). ASD, as identified by the

RegCOX and XGBoost models of Chiriac et al. has been

identified as a significant risk factor for late morbidity and

mortality with normal survival reported following early ASD

closure. The PASCAL risk stratification has shown in a recent

meta-analysis that high-risk PFO features and RoPE score

together yield strong predictive value of recurrent ischemic stroke

in closure with a 90% relative risk reduction in the PROBABLE

group, 62% in the POSSIBLE group, and no significant difference

in the UNLIKELY group (149). While the closure of PFO holds

promise as a therapeutic intervention for recurrent ischemic

stroke, challenges and questions regarding optimal timing of PFO

closure, prophylactic PFO closure in adults with CHD, long-term
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durability of closure devices, potential risks and patient safety

factors are still yet to be studied (149).
2.4 Heart failure

Heart failure (HF) can manifest as a sequela of progression of

any cardiovascular pathology. HF affects at least 26 million people

globally with a high morbidity and mortality, and imposes a

significant medical and financial burden on patients and

hospitals (152). HF is among the leading causes of

hospitalization in the U.S. alone, with at least 1 million

admissions with HF as a primary diagnosis annually (152, 153).

The prevalence of HF is anticipated to grow further due to

increasing life expectancy coupled with increased incidence in

cardiovascular risk factors such as obesity, diabetes,

hyperlipidemia, and myocardial infarction (MI) (154). Specific to

neurocardiology, HF confers a two to three-fold increase in the

risk of ischemic stroke, largely due to the risks of cerebral

hypoperfusion and thromboembolism (155).

The diagnosis and management of HF entails assessing

myocardial pump function through various imaging modalities.

Echocardiography remains the cornerstone in assessing cardiac

function. Decreased cardiac pump function occurs due to a

variety of underlying pathophysiologies and is diagnosed by two-

dimensional (2D) echocardiography or myocardial strain analysis

by Speckle-tracking echocardiography (STE). Decreased cardiac

function leads to impairment of cardiac output (CO) and

presents HF symptoms. This state of decreased CO in turn can

cause cerebral hypoperfusion and is associated with increased

risk of ischemic stroke. Moreover, stasis of blood in

dysfunctional cardiac chambers increases the risk of thrombus

formation which is a known risk factor for embolic strokes (156).

As a novel echocardiographic technique, myocardial strain

analysis can detect even subclinical myocardial dysfunction.

Strain parameters are measures of myocardial deformation

throughout the cardiac cycle. Strain analysis can be applied to

various cardiac chambers to assess their function, including left

atrium (LA) and LV. Global longitudinal strain (GLS) of LV and

LA longitudinal strain are among the most studies and validated

strain parameters.

LA strain analysis has been the center of attention lately.

Abnormal LA strain parameters have been studied as potential

independent risk factors for AIS, regardless of the presence of AF

(156). This relationship is multifactorial and includes fibrotic

remodeling of the left atrial walls leading to reduced output, and

increased risk of thrombus formation, particularly in the left

atrial appendage (Figure 4). This risk is particularly increased

among patients with chronic atrial fibrillation and atrial flutter.

While LV function can be assessed by LV strain analysis, left

atrial strain is also associated with, and may be a proxy for LV

dysfunction. In patients with reduced cardiac pump function,

known as heart failure with reduced ejection fraction, (HFrEF),

the hypokinesis of the ventricular walls leads to the risk of blood

stasis, a key tenet of Virchow’s triad, and further increases the

risk of thrombus formation within LV cavity (157). AI/ML
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applications have been promising in timely detection of cardiac

dysfunction, and therefore, allow for optimization of medical

management to pre-empt the sequelae of thromboembolic events

and AIS.

Therefore, access to AI-enabled tools for the early detection of

cardiac dysfunction among high-risk patients and the timely

diagnosis and management of HF may mitigate the risk of

subsequent AIS. The recent advancement in AI applications has

allowed for a growing role in the use of various algorithms for a

myriad of cardiac conditions (158–160). Various AI/ML

algorithms have been developed and implemented to utilize data

from echocardiograms and EKGs for risk stratification, diagnosis,

and prognostication for HF patients, particularly with respect to

the heart-brain axis. As this technology continues to develop and

be further incorporated into commercial use, it provides the

opportunity to further revolutionize and increase the efficiency of

detection and prognostication of HF. Moreover, its potential in

detecting subtle cardiac abnormalities allows for the early

screening and management of other cardiac conditions, which

itself may prevent progression to HF and ultimately mitigate a

risk factor of AIS.

2.4.1 Diagnostic electrocardiography
The cardiac remodeling seen in HFpEF often manifests as EKG

changes, a modality critical to the assessment of HF (161, 162).

However, these subtle changes are often difficult to detect, which

is why EKGs had not previously been an optimal screening

mechanism for HF. Various studies have generated AI networks

based on waveforms from EKGs to detect cardiac pathology

ranging from ejection fraction to valvular disease, each

implicated either directly or indirectly to HF (160, 163). The

rationale is such that deep learning algorithms and neural

networks could be “trained” with enough data to detect the

otherwise subtle EKG abnormalities associated with the

pathological cardiac remodeling seen in HF.

Akbilgic et al. developed an EKG-AI model using a deep

residual CNN based on standard 12-lead EKGs (164). The

authors noted that this model could predict HF with moderately

high accuracy, with the authors noting an AUC comparable to

AUCs from notable HF risk calculators from the Framingham

Heart Study (FHS) and Atherosclerosis Risk in Communities

(ARIC) study (164).

Other CNNs have been developed to detect HFrEF (with an EF

of 40% or lower) with 12-lead EKGs data, with the capacity to

“retrain” to utilize single-lead EKG input alone during routine

examination, one of which is AI-EKG (165). Utilizing an EKG-

enabled stethoscope, this deep learning system was able to detect

HFrEF with an AUC of 0.81, a sensitivity of 91.9% and

specificity of 80.2% (165). Kwon and colleagues also developed a

deep learning model to predict HFpEF, based on an ensemble

network using 12-lead, 6-lead, and single-lead EKGs. The

authors noted a high level of predictive value (AUC 0.866) in

detecting HFpEF using both 6-lead and 12-lead EKGs and noted

that this model outperformed already-implemented screening-

tests for other medical conditions, such as mammography for

breast cancer (161).
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FIGURE 4

Left atrial appendage thrombus on TTE and TEE. (A) TEE image of a small LAA thrombus * in patient with AF. (B,C) 2D and 3D TEE reconstruction of a
large thrombus protruding from LAA into the left atrium in a patient with factor V Leiden and AF. (D) TTE image of an apical LV thrombus *, detaching
from the LV apex in a patient with acute myocardial infarction. TEE, transesophageal echocardiography; TTE, transthoracic echocardiography; LAA, left
atrial appendage; LV, left ventricle; AF, atrial fibrillation.
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2.4.1.1 Vision transformer algorithms
Investigators have built on the above findings to generate vision-

based transformer models such as HeartBEiT ® for EKG

waveform analysis (166). Transformer based neural networks

(TNNs) allow for the use of input (tokens) to develop

relationships within and between data sizes (166). The

development of Bidirectional Encoder representation from Image

Transformers (BEiT) allows for the use of an input image to

generate these tokens for input to be used to “train” the

transformer, akin to words of a sentence for a language model.

These tokens are used to generate downstream derivatives and

output such as MI, left ventricular ejection fraction (LVEF), and

hypertrophic cardiomyopathy. HeartBEiT ®, using these TNNs,

has yielded a significantly higher performance in diagnosing the

above conditions compared to standard CNNs, even with low

sample sizes (166). The use of vision transformers presents a

novel avenue of AI which warrants further investigation for its

use in predicting and diagnosing HF.
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2.4.2 Diagnostic transthoracic echocardiography
In the HF care field, wearable sensors coupled with ML

analytics may potentially improve clinical outcomes and reduce

hospitalizations. One HF-specific, AI-powered platform which

has recently gained approval from the FDA is the EchoGo®

Heart Failure platform by Ultromics, based in the United

Kingdom (UK). This platform applies AI via CNN to detect

HFpEF using just a single 4-chamber TTE image. This apparatus

was able to successfully reclassify HF among 73.5% of previously

non-diagnostic results, with an accuracy of 90%, and a sensitivity

and specificity of 87.8% and 83.0%, respectively (167). Moreover,

Us2.ai, a Singapore-based medical technology firm has received

FDA clearance for their automated decision support tool for

echocardiography (168). LVEF is among the twenty-three

validated parameters which can be used to assess cardiac systolic

function. Such platforms allow for the accurate acquisition of

cardiac measurements even without human input and may better

optimize the screening and diagnosis of heart failure. There has
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also been an investigation done in the prediction of LAT using TEE

vs. TTE images. Piezko et al. have done the most substantive

investigation of AI in predicting LAT using TTE and clinical

data compared to TEE prior to cardioversion or ablation (169).

Their AI model accurately predicted LAT (AUC 0.85),

outperforming other risk factors (LVEF and CHA2DS2-VASc),

and would have avoided TEE in 40% of patients (169). While

reducing TEE burdens, this also provides a means of significantly

mitigating the risk of ischemic stroke in the future from said

thrombi, particularly in an ever-growing cohort of patients with

AF and atrial flutter.

With regard to myocardial strain analysis, motion estimation is

the critical task to obtain GLS, which is a measure of LV function.

This has conventionally been done using speckle tracking

algorithms. Using echocardiograms, Salte and colleagues

generated a deep learning AI pipeline consisting of 4 ANNs

trained for motion estimation and compared this to semi-

automated speckle-tracking (170). This pipeline was “taught” to

detect patterns in consecutive images to obtain an optical flow

vector field to predict local velocities, perform timing of cardiac

events, and to visualize cardiac motion (170). Without any

human input, this pipeline was able to successfully classify

cardiac views, estimate motion, and ultimately measure GLS

within 15 s, with accuracy comparable to conventional speckle-

tracking methods (170). Therefore, the role of AI applications to

assess cardiac function by performing myocardial strain analysis

without human input, provides another means of expedited,

more efficient detection of HF, and warrants further investigation.
2.5 Cardiac tumors

While cardiac tumors are a comparatively less common form of

cardiac pathology, they still confer significant morbidity and

mortality if not detected. Within neurocardiology, this is

especially relevant in the setting of cardiac myxomas and

papillary fibroelastomas which can embolize from the left atrium

or the valvular endocardium and cause large-vessel occlusions

(LVOs) in the brain (171). Various imaging modalities are used

to evaluate and diagnose cardiac tumors (171). These include

TTE, TEE, cardiac MRI, cardiac CT, and positron-emission

tomography (PET) scans (172). The imaging modality of choice

depends greatly on tumor characteristics such as whether the

tumors are primary vs. metastatic lesions and of tumor location

(right heart vs. left heart) (172). To this point, the current

literature surrounding the role of AI and ML for diagnosing

cardiac tumors is relatively limited. To date, there are no studies

which have demonstrated efficacy for the utilization of AI in

cardiac tumor evaluation.

2.5.1 Diagnostic parallel computing
One avenue of potential inquiry in the context of detecting

cardiac tumors using AI is that of parallel computing to identify

cardiac tumors. Parallel computing entails the use of computers

to perform multiple tasks simultaneously to break a multi-faceted

problem into individual tasks to be solved (173, 174). In the
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context of cardiac tumors, this would involve segmenting the

various radiographic features of the tumor across multiple

imaging modalities and incorporating this data to generate a

single diagnosis (173). Computing may be supplemented and

enhanced by AI and ML algorithms to improve the sensitivity

and specificity of current imaging modalities for diagnosing

cardiac tumors (174, 175). In the realm of neurocardiology, this

is particularly pertinent with respect to myxomas which may

embolize and lead to LVOs and infarcts (176).

2.5.2 Stroke prediction
AI models have increasingly been used to predict the risk of

stroke amongst patients with specific comorbidities (177, 178).

Despite the elevated risk of stroke with cardiac tumors such as

myxomas and papillary fibroelastomas, there are currently no

studies evaluating the risk of stroke in patients with any form of

cardiac tumors. This represents an important gap in the

literature and should be an area of focus in future studies

evaluating the role of AI in stroke prediction.
2.6 Infective endocarditis

Infective endocarditis (IE) is a sequela of systemic bacterial

infection spreading to the endocardium, the inner lining of

cardiac muscle and valves. IE can have severe systemic effects on

a myriad of organ systems, with the nervous system being the

second most affected (179). The neurological manifestations of IE

from embolism of valvular vegetations include embolic stroke,

cerebral hemorrhage often in the setting of mycotic aneurysms,

and the spread of infection leading to meningitis, brain abscesses,

and toxic encephalopathy (172, 180).

Among the most common causes of morbidity and mortality in

the setting of IE is ischemic stroke. Strokes secondary to cerebral

emboli represent up to 42% of neurologic complications in IE

patients (181). Vegetations on cardiac valves have a propensity to

embolize into large cerebral arteries and disrupt perfusion to

various parts of the brain (182). Therefore, timely diagnosis and

treatment of IE can reduce the risk of embolization to the brain

and LVOs which would otherwise require mechanical

thrombectomy. According to the literature, there is a threefold

decrease in stroke risk within the first week of treating IE with

antibiotics (182, 183). Therefore, early detection and treatment of

IE even before overt systemic manifestations is essential, with at

least 30% of IE patients developing subclinical neurological

manifestations such as silent cerebral emboli (184).

2.6.1 Diagnostic 18f-fluorodeoxyglucose PET/CT
18F-Fluorodeoxyglucose (FDG) PET/CT involves injecting a

radiolabeled glucose analog into the patient and evaluating its

uptake throughout the endocardium, myocardium, and other

cardiac structures. Radiotracer uptake is higher in metabolically

active tissues, as in the case of IE where FDG PET/CT can

visualize infected valvular structures with high uptake (185). This

technique is most useful to rule out IE in prosthetic heart valves,

where other imaging modalities including echocardiography may
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be extremely limited. However, the lack of standardized metrics of

uptake and the difficult distinction between infection and

inflammation has limited its use (185, 186). The integration of

AI enabled better differentiation among various cardiac

pathologies such as valvular abscesses, intracardiac fistulae, and

pseudoaneurysms seen in IE, as opposed to reactive

inflammatory changes seen either postoperatively or in the

setting of chronic valvular disease.

In 2016, Godefroy et al. assessed AI and ML algorithms with

FDG PET/CT in the setting of IE (187). Using a sample of 68

patients with a known prior history of IE, the authors developed

an AI and ML algorithm model that could be applied to 40

patients with suspected IE in their study (187). The model was

combined with the European Society of Cardiology’s 2015

criteria for suspected IE. The AI model demonstrated higher

rates of accuracy, sensitivity, and specificity when compared to

expert clinicians alone (183). Unfortunately, few studies

analyzing AI and ML for imaging in IE have been published

since, which has stymied the advancement of AI and ML as

diagnostic tools for IE patients.

2.6.2 Stroke prediction
Resende et al. developed a log-linear ML model which was able

to predict higher rates of inpatient mortality amongst IE patients

undergoing surgery compared to patients who received

conservative management (188). Another study by Luo et al. had

similar results with a ML model that predicted early mortality

and risk of stroke after surgery better than pre-existing logistic

regression models and the well-established European System for

Cardiac Operative Risk Evaluation model (189).

However, while there have been very few investigations

focusing specifically on AI/ML applications for neurological

sequelae, the prospective use of AI/ML serves as “proof of

principle” that prevention is better than cure. Neurological

conditions are among the most common manifestations of

systemic IE, and therefore, the focus of using AI/ML technology

in the realm of neurocardiology for IE patients is best suited to

detection of infective cardiac pathology before the neurological

pathologies manifest.
3 AI/ML applications in strokes of
undetermined etiology

3.1 Cryptogenic stroke

Cryptogenic stroke (CS)/ESUS remains a significant clinical

challenge not only due to its complex and multifactorial etiology,

but also due to its burden of comprising 20%–30% of all

ischemic strokes in the TOAST classification. While technically

termed due to its inability to locate a clear etiology, possible

sources of cryptogenic stroke include pathologies such as

paroxysmal atrial fibrillation, paradoxical emboli through PFO,

non-stenotic carotid plaques and atrial cardiopathy (37, 38, 77,

190). Many studies report these diagnoses can be found with

comprehensive or extended cardiac monitoring instead of
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standard evaluation protocols (21, 28–38) For example, AF may

comprise up to 15% of all cryptogenic strokes and the prevalence

of PFO is reportedly as high as 57% (26, 32, 79, 147).

Currently, cryptogenic stroke is largely a diagnosis of exclusion

during comprehensive neurocardiology workup. These include

neuroimaging studies such as MRI or CT, cardiac monitoring in

the form of standard 12-lead EKG, Holter monitoring or

extended cardiac monitoring such as implantable loop recorders

to detect occult AF, TTE, TEE to assess for embolic sources such

as intracardiac thrombi or PFOs, and blood tests to determine

coagulability status and the presence and severity other pre-

existing metabolic disorders (37, 38, 190, 191).

AI provides another avenue of investigation: reducing repeat

stroke events and future morbidity for stroke patients. For

example RESPECT and CLOSE trials have provided evidence

supporting the closure of PFO in selected cryptogenic stroke

patients and demonstrated significant reductions in recurrent

stroke rates compared to medical therapy alone (192, 193). These

trials underscore the importance of individualized treatment

approaches based on specific etiologic factors identified during

diagnostic evaluations.
3.1.1 Diagnostic electrocardiography
A four-year retrospective study conducted with patients

diagnosed with cryptogenic stroke from 4 Korean tertiary

hospitals found that an image-based AI model of EKG data had

excellent diagnostic performance in AF prediction. The AI-AF

risk score, derived from sinus rhythm EKGs, demonstrated

high predictive accuracy for AF, with an AUC of 0.806.

Incorporation of parameters such as left atrial volume index,

age, sex, BMI, atrial ectopic burden, and PR interval further

improved the model’s performance (AUC 0.880, p = 0.002).

There was also a significant temporal trend showing increased

AI-AF score with increased AF duration and as recorded EKG

time approached AF onset (37). This AI-based approach not

only aids in early AF detection, but also offers potential

timesaving and cost-effective advantages for timely

interventions to prevent recurrent strokes.

These platforms can utilize EKG data to retrospectively detect

undiagnosed AF in cryptogenic stroke patients. Even for patients

who already have suffered from cryptogenic stroke, AI can detect

AF as an etiology for cryptogenic stroke, thereby allowing for

secondary prevention of future ischemic strokes. Choi et al.

recently developed a transformer-based AI model trained to

analyze EKGs from cryptogenic stroke patients both to detect

and predict paroxysmal AF (37). This model demonstrated a

robust performance, with an AUC of 0.880, and a greater

accuracy in identifying longer duration AF episodes (37). Ho

et al.’s meta-analysis found multiple new wearable technology,

that includes those currently being used after cardioembolic

stroke, to be feasible options for diagnosis of paroxysmal atrial

fibrillation in cryptogenic stroke (194). However, they noted no

current significant difference of these modalities compared to

classic workup technology (such as Holter monitoring) and

emphasized the need for further studies.
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Comparing the efficacy of wearable technology for cardiac

monitoring after stroke found there were promising technologies

in EKG and PPG data as previously described for afib.
3.1.2 Diagnostic language processing
Investigators such as Garg et al. have demonstrated that ML

models with natural language processing (NLP) may provide an

avenue of automation for the classification of ischemic stroke

subtypes based on data from patient electronic medical records

(EMR), medical history, physical examinations, laboratory and

imaging results (77). These authors tested various ML models

such as K-nearest neighbors (KNN), random forests (RF), and

XGBoost and conducted a stacking process, whereby model

predictions are used to generate new models. They found an 80%

agreement between a stroke neurologist and the ML model using

stacking for logistic regression with kappa of 0.72 for TOAST

classification, with excellent subtype discrimination in all ML

models (c-statistic >0.8) aside from the KNN approach. This

study suggests that ML models can not only enhance scalability

of large-scale epidemiological studies and clinical trials, but also

remove a point of error in manual adjudication of disease

classification and investigator bias (77). For cryptogenic stroke,

ML models may help in analyzing etiologic phenotypes leading

to further subtyping for directed treatment.

Using AI tools such as the NLP machine learning model to

automate subtype classification in ischemic stroke can

significantly impact management strategy based on characteristics

found in various clinical studies (77). Management of

cryptogenic stroke currently focuses on secondary prevention to

reduce the risk of recurrence. Risk stratification tools, including

the AI-based models listed above, can guide physician decisions

on anticoagulation vs. antiplatelet therapy for patients with or

without identified sources of cardioembolism, such as AF or a

PFO (190).

Additionally, the CHA2DS2-VASc score, traditionally used to

predict stroke severity in patients with AF, is now being

considered in patients with cryptogenic stroke and underlying

congenital heart disease (CHD) (144).
3.1.3 Diagnostic imaging
Detection of congenital heart abnormalities in cryptogenic

strokes include the use of modalities such as TTE, TEE, cardiac

MRI, cardiac CT, and transcranial doppler ultrasound (TCD).

TEE with agitated saline injection remains the gold standard for

PFO diagnosis relative to intraoperative inspection, with a

weighted sensitivity of 89% (149). The presence of PFO in

cryptogenic stroke patients has been associated with various

morphologic and functional characteristics, including the size of

the PFO, mobility of the interatrial septum, and the presence of

a right-to-left cardiac shunt.

The CHALLENGE ESUS/CS registry, a multicenter registry of

cryptogenic stroke patients, utilized TEE to identify potential

embolic sources (147). While there are advantages to cardiac

MRI for detecting certain cardioembolic sources, a meta-analysis

showed a 29.3% (95% CI, 23.6%–35.0%) detection yield for
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CMRI compared to TEE at 53.7% (95% CI, 47.4%–49.9%)

(P < 0.001) (149).

For PFOs, Bai et al. found that, in cryptogenic stroke patients,

PFO size was significantly greater in systole [2.0 (1.5, 2.9) mm vs.

1.6 (1.1, 2.0) mm, p < 0.001] and diastole [1.7 (1.4, 2.2) mm vs. 1.3

(1.1, 1.8) mm, p < 0.001] than in non-CS patients and that large

PFO were also more common (p < 0.001) (146). ANN and SVM

were performed as comparisons with goodness of fit testing and

coefficient of certainty, with higher accuracy and reliability noted

with the RF model. The final test set accuracy was 70%, with an

AUC of 0.816 and a sensitivity and specificity of 73% and 65%,

respectively. Additionally, the frequency of right-to-left shunt was

significantly higher in CS patients (p < 0.001) (146). Supervised

RF learning is insensitive to noise with good generalizability,

making it suitable for the high-risk features of PFO.
3.2 Atrial cardiopathy

Atrial cardiopathy represents pathological structural changes of

the atria due to stretching from progressive cardiac stress. This

occurs in response to various stressors such as hypertension,

heart failure, obesity, valvular heart disease, etc. Atrial

remodeling then leads to degenerative changes such as atrial

dilation, fibrosis, and myocyte damage (195). The

pathophysiology of atrial cardiopathy both precedes and is

related to AF and its medical sequela (195). Specific to

neurocardiology, left atrial remodeling can induce thrombus

formation and subsequent embolization and strokes, even in the

absence of dysrhythmias such as AF (195). In fact, AF itself can

manifest secondary to this remodeling and perpetuate the risk of

cardioembolic strokes. Therefore, AF can be viewed as one

element of a larger overarching pathological cardiac disease

process of atrial cardiopathy (196). EKG analyses have shown up

to50% of stroke patients demonstrate atrial abnormalities on

EKG even without AF (197). Therefore, a more holistic

evaluation of atrial pathology, ranging from EKG findings such

as P terminal force in lead V1 (PTFV1), to echocardiographic

parameters such as atrial size, and biomarkers such as NT-

proBNP may allow for a more thorough assessment of embolic

stroke risk than AF alone (196).

3.2.1 Diagnostic electrocardiography
AI may facilitate the use of ML to analyze diagnostic modalities

for the early detection of atrial pathology, thereby mitigating the

risk of AF and of subsequent cardioembolic and cryptogenic

strokes. Additionally, it can allow for detection of undiagnosed

AF to reduce the risk for future cardioembolic events even for

patients who already suffered from strokes.

Studies into AI for atrial cardiomyopathy have recently been

conducted with the rationale that early progression of the disease

process can manifest as subtle EKG changes which can be

detected via ML. Investigators at the Mayo Clinic developed an

AI algorithm consisting of a CNN trained to screen for temporal

and spatial features on 12-lead EKGs to identify and stratify

atrial cardiomyopathy for patients with heart failure with
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preserved ejection fraction (HFpEF) (198). This algorithm was able

to identify structural heart disease in patients with higher AI-

probability for AF based on EKG findings, with these patients

demonstrating LVH, increased atrial filling pressures, and

reduced cardiac output (198).

Therefore, while AI is still in its relative infancy for use in atrial

cardiopathy, these algorithms provide a means of primary,

secondary, and tertiary prevention. The timely detection of subtle

cardiac structural and hemodynamic changes can allow for

clinicians to intervene before the manifestation of further cardiac

pathologies such as AF and subsequent stroke.
FIGURE 5

Utilizing neurocardiology to understand the pathophysiology of
Takotsubo syndrome.
4 The brain-heart-axis: AI/ML
applications in cardiac disease
secondary to stroke

4.1 Neurogenic stress cardiomyopathy
(takotsubo syndrome)

Neurogenic Stress Cardiomyopathy (NSC) is the manifestation

of catecholamine-mediated myocardial dysfunction in the setting

of acute brain injury, ranging from subarachnoid hemorrhage

(SAH) to stroke (199, 200). CNS pathology secondary to stroke

is posited to induce perturbations to the hypothalamic-pituitary-

adrenal (HPA) axis, leading to sympathetic activation and

downstream local and systemic inflammatory cascades (199, 200).

This leads to coronary microvascular spasm, oxidative stress,

myocardial inflammation, and myocyte injury. This manifests

diagnostically through EKG changes such as ST segment

changes, and QT prolongation, distinct patterns of LV wall

motion abnormalities and elevation in cardiac troponin and NT-

pro brain natriuretic peptide (BNP) levels (199, 200).

NSC is proof of concept of the heart-brain axis (Figure 5), with

authors referring to NSC as “Takotsubo syndrome secondary to

neurological disorders” (201). Takotsubo cardiomyopathy (TTC) is

recognized as a reversible LV dysfunction in the setting of stress,

named for the apical ballooning of the heart on ventriculography

which resembles a Japanese octopus trap pot (Figure 6) (202).

A common cardiac complication for patients with neurological

disorders in the intensive care unit (ICU), TTC closely mimics the

clinical presentation of acute coronary syndrome (ACS), with ST-

segment elevations on EKG with or without elevated troponins,

making initial diagnosis difficult. It is ultimately differentiated

from MI by excluding occlusive coronary artery disease (201, 202).

The role and duration of conventional guideline-directed HF

medical therapy is controversial in TTC. TTC often responds to

supportive medical management, however, occasionally may lead to

cardiogenic shock requiring hemodynamic support. Overall, with

timely and efficient medical management, outcomes from TTC are

generally favorable and the systolic dysfunction is often reversible

(203). Rare complications of TTC including fatal LV rupture and LV

thrombi have been reported, the latter cited in 5% of TTC patients

(204). LV thrombi in turn, can result in further cardioembolic

strokes. According to the literature, TTC complicated by LV thrombi,

is associated with very high risk of stroke of up to 23% (205).
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4.1.1 Diagnostic transthoracic echocardiogram
Echocardiography is the primary imaging modality, used to

diagnose TTC. However, initial differentiation between ACS/MI

and TTC remains challenging. Therefore, investigators have

sought to develop algorithms to utilize echocardiograms to

differentiate TTC from MI. Laumer and colleagues developed

and trained a DL algorithm using TTEs from 228 patients to

differentiate TTC from acute MI (206). They utilized a temporal

CNN to predict the probabilities of TTC and MI for the

respective patients and compared these findings to

echocardiographic evaluation by 4 cardiologists (206). This

algorithm demonstrated a superior performance to the

committee of cardiologists in differentiating TTC from acute MI,

with an AUC of 0.79 and an overall accuracy of 74.8%

(compared to an AUC 0.71 and an accuracy of 64.4% for the

cardiologists) (206).
4.1.2 Diagnostic cardiac MRI
While TTE has traditionally been a first-line imaging modality

for TTC, cardiac MRI is emerging as a gold standard, non-invasive

modality to differentiate TTC from acute MI. For instance,

T2-weighted imaging can detect myocardial edema, which

manifests in the acute phase of TTC and is indicative of

reversible myocardial injury (207). Other MRI criteria for TTC

include wall motion abnormalities and the relative lack of

contrast enhancement (208). Additionally, atrial and ventricular

strain parameters are of growing relevance to diagnosing TTC,

and MRI provides an ideal modality to conduct strain analyses.

Authors have also utilized ML with cardiac MRI protocols to

diagnose and differentiate TTC from other cardiac pathologies.

Cau et al. created a cardiac MRI-based ML ensemble model

using the Extremely Randomized Trees algorithm trained with
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FIGURE 6

Takotsubo syndrome. (A,B) 2D TTE images with echo-contrast agent of “Takotsubo cardiomyopathy” demonstrating a distinct pattern of left
ventricular wall motion abnormality known as “apical ballooning” in a patient with Subarachnoid hemorrhage (SAH).

Basem et al. 10.3389/fcvm.2025.1525966
MRI strain measurements and demographics to different TTC

from myocarditis. The authors noted a high degree of sensitivity

(92%) and specificity (86%) with an AUC of 0.94 in diagnosing

TTC (209). The authors also noted that strain rate and left atrial

conduit strain were the parameters that yielded the greatest value

for TTC identification (209).
4.1.3 Stroke prediction
Investigators have developed AI algorithms for stroke risk

prediction in TTC. De Filippo and colleagues analyzed patients

from the International Takotsubo (InterTAK) registry in a multi-

center study and designed their own ML model to predict in-

hospital mortality (210). This was a logistic regression-based

algorithm evaluated in internal and external validation cohorts

(210). This InterTAK model demonstrated a strong performance

in predicting mortality for the internal validation cohort, with an

AUC of 0.89, a sensitivity of 85% and a specificity of 76% in the

internal validation cohort (210). The model also yielded

satisfactory performance on the external validation cohort, with

an AUC of 0.82, a sensitivity of 74%, and a specificity of 79%

(210). The authors also showed the further applicability of ML:

AI for subsequent regression analyses to ascertain patient

characteristics also associated with mortality. They noted that

LVEF, atrial fibrillation, physical stress, leukocytosis, and age

were among the most relevant features associated with mortality.

From these ML-based analyses, the authors were able to cluster

patients into six risk groups based on short-term prognoses (210).

4.1.3.1 Cardiac MRI
In line with the growing use of cardiac MRI for diagnosis of TTC,

researchers have proposed the applicability of MRI with AI to

predict major adverse cardiac and cerebrovascular events

(MACCEs) in TTC patients (211). This potential application is
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part of a larger field of radiomics, in which algorithms are

generated to extract quantitative metrics from imaging. Within

this field, texture analysis (TA) can be used to evaluate the

texture of images to diagnose imaging abnormalities which

otherwise could not be seen by the naked eye (211). ML provides

a platform to scope through large volumes of data to detect

imaging patterns for prognostication. Mannill and colleagues

applied this concept using MRIs with cine sequences providing

visualization of cardiac wall abnormalities for 58 InterTAK

registry patients (278). From these images, they assessed 5-year

outcomes for MACCEs using various machine-learning classifiers

ranging from ANN Multilayer Percepton, to NaïveBayes (211).

NaïveBayes demonstrated the most robust performance, with an

AUC of 0.88, sensitivity of 82.9%, and a specificity of 83.7% (211).

While these studies face the inherent caveats of small sample

sizes and being retrospective in nature, they do provide proof-of-

concept of the applicability of AI for TTC, both as an effective

diagnostic and prognostic tool, avenues which requires further

investigation. Being able to obtain prompt diagnoses and risk

stratification for TTC can minimize the risk of future ischemic

stroke events and subsequent cardiac pathology secondary to the

perturbation of the bidirectional heart-brain axis.
4.2 Post-stroke arrythmias

While AF is one of the most common causes of AIS, AF also

reflects the reciprocal relationship of the heart-brain axis as AF

may itself develop secondary to AIS. Since AF commonly

presents following a prior stroke, the question is whether this

trend reflected previously undiagnosed AF (cardiogenic AF) or

manifested due to new-onset myocardial injury as a sequela of

cerebrovascular insult (neurogenic AF) (7, 9, 75, 212). Newly
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diagnosed atrial fibrillation (NDAF) after AIS has been reported to

be found in 7%–25% of poststroke patients and is thought to be

secondary to both autonomic dysregulation and inflammation

resulting in reentry circuits and atrial remodeling (213–217).

This is an additional area in which improved methods of

diagnosis and monitoring, particularly by using AI to more

accurately predict high risk patients, will likely increase rates of

detection and incidence (218, 219).

4.2.1 Diagnostic clinical analysis
There have been few validated scores developed to predict

NDAF with a high degree of external validity, two of which

include the CHASE-LESS and AS5F scores (220–224). However,

various ML algorithms are currently being developed to provide

a higher accuracy prognostic modality in this role (225–228).

Sung et al. designed an ML algorithm to utilize stroke hospital

admission data in the EMR to predict newly diagnosed AF early

in patients’ hospital courses (227). This model utilized common

EMR data fields and clinical free text information. It

outperformed standard prediction methods (as shown by a

higher C-index) (227). This type of automated risk predictor

allows clinicians to treat cerebral ischemia while understanding

the full clinical picture of the patient, encompassing the broader

heart-brain axis.

AI models have also been generated using other markers, such

as BNP, neuroimaging, and genetics. A 2022 study by Pang et al.

developed and evaluated an integrated nomogram model for

post-stroke AF based on variables such as prior TIA, BNP levels,

CRP levels, and National Institute of Health Stroke (NIHSS)

scores. This integrated model provided enhanced benefit

predicting the incidence of post-stroke AF, identifying higher-risk

patients who were candidates for extended monitoring (217).
4.3 Coronary artery disease

Coronary artery disease (CAD) is among the leading causes of

death and disability worldwide, accounting for up to 31% of global

mortality from non-communicable disease (229).

Given the inextricable link between cardiovascular and

cerebrovascular disease in the heart-brain axis, ischemic stroke

patients and patients with intracranial atherosclerotic disease

(ICAD) are invariably at increased risk for concordant CAD and

its potentially fatal manifestations such as MI (MI) (230). The

Prevalence of Asymptomatic Coronary Artery Disease in

Ischemic Stroke Patients (PRECORIS) study noted that almost a

fifth of patients with ischemic stroke or TIA also had at least

50% obstructive coronary artery disease, even if asymptomatic

(231). Therefore, the detection and prediction of silent CAD in

stroke patients can facilitate timely medical management to

prevent the progression to severe coronary artery disease and ACS.

Acute MI represents the most severe manifestation of CAD.

The diagnostic protocol for suspected acute MI includes a

standard 12-lead EKG, and while ST-elevation MI (STEMIs) can

often be diagnosed quickly, non-ST elevation MIs (NSTEMIs)

can demonstrate subtle changes on EKG in up to 30% of patients
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that may be missed even by the experts (232). Currently even the

application of new generation high-sensitivity cardiac troponin

assays, it might still take between 1 and 3 h to demonstrate a

diagnostic rise or fall pattern on troponin levels which is

necessary for diagnosis of acute MI (232). Therefore, there has

been a growing enthusiasm in investigating the role of AI in

EKG analyses as an adjunct to biomarkers for the timely

diagnosis of AMI.
4.3.1 Diagnostic electrocardiogram
Cho et al. developed a DL algorithm to use 6-lead EKGs to

diagnose MIs, with reasonable accuracy (sensitivity 84.4%,

specificity 88.5%) and high negative predictive value (97.5%)

(233). This has undergone iterative development to extend to

12-lead EKGs. One Taiwanese retrospective study investigated a

DL model trained detect STEMI through analysis of 100,000

EKGs and compared its performance to cardiologists. The

authors noted a superior performance of the DL algorithm, with

a high AUC of 0.997, sensitivity of 98.4%, and specificity of

96.9% (234).

Moreover, the Rule-Out Acute Myocardial Infarction Using

Artificial Intelligence Electrocardiogram Analysis (ROMAIE) trial

is among the major prospective clinical trials currently underway

to validate a DL-based 12-lead EKG algorithm (235). This study

will allow for real-time substantiation and further application of

AI in a clinical setting for AMI.

There are relatively few studies to date which have analyzed

AI algorithms in the detection and prognostication of CAD

specifically in stroke patients. One such study was conducted by

Heo et al., who obtained multidetector coronary CTAs for

patients who suffered acute ischemic strokes without a known

history of CAD (236). The authors obtained demographics,

laboratory results, NIHSS scores, blood pressure, and carotid

stenosis to generate an ML model to predict CAD (236). They

noted a satisfactory performance in predicting CAD, with an

AUC of 0.763 in predicting CAD of any degree, and an AUC of

0.714 to predict obstructive CAD (236). Other investigators

have developed models to incorporate both DL and ML

algorithms using a combination of EKG, clinical, and laboratory

data to predict obstructive CAD, with similar results (AUC of

0.767) (237).

However, the results of AI investigations for broader patient

cohorts have demonstrated the potential of AI as a diagnostic

and prognostic tool for CAD. Kang et al. developed an SVM-

based learning algorithm to utilize coronary CTAs to diagnose

coronary artery stenosis and compared this algorithm to three

expert readers of CTA imaging (238). This model showed a

superior performance to the human readers with a high degree

of accuracy (AUC 0.94, sensitivity of 93%, sensitivity of 95%)

(238). While this model did not specifically focus on stroke

patients, it demonstrates the potential of such algorithms as tools

for diagnosis and prognostication of CAD which can be applied

specifically for ischemic stroke patients in future studies.
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5 Limitations and future directions:
AI/ML applications in neurocardiology

5.1 Practical limitations

AI/ML provides a highly beneficial tool for disease

prediction, identification, and prognosis through utilization of

multiple data modalities for augmentation and personalization

of clinical decision making. In neurocardiology, these tools are

essential for identification of pathology between the nervous

and cardiovascular systems and may facilitate better

optimization and more timely management of modifiable

comorbidities. AI/ML can improve speed of care and

personalized assessment while also reducing human error and

physician burnout (75, 80, 82–84).

However, with these potential benefits, the AL/ML tools reviewed

here have several inherent limitations in the creation of their

respective algorithms. Firstly, physician input is always required to

ensure accuracy and to check algorithm training. This is often a

tedious process and is a rate-limiting step in the progression of this

technology. Secondly, most of these programs are designed with

one specific outcome variable, such as the presence of atrial

fibrillation or the risk of stroke recurrence. There are very few

options currently available that can analyze multiple modalities of

diagnostic imaging and generate diagnoses and prognoses for a

broader differential of neurological and cardiovascular conditions.

Therefore, these tools are still in their relative infancy and are no

substitute for sound human clinical judgment.

Furthermore, physicians also encounter patient populations

with varying degrees of digital literacy and access to technology

which can directly impact health equity (239, 240). Sieck et al.

have recently deemed digital inclusion to be a social determinant

of health (241). As reliance on technology increases, so does the

potential for disparities in access to care using this technology.

This provides practical limitations of AI/ML options that involve

patient interaction and challenges providers to be able to engage

in community programs or provide equivalent patient care

through different modalities (241–243).

While AI can serve to bridge this gap through user friendly

technology and personalized assistance with ML, these tools also

possess the potential for patient bias that may disadvantage

certain populations (244). This problem can often be caused by

the limited generalizability of single center studies along with

observed racial biases in algorithms due to different healthcare

needs and trends for various patient populations (244, 245, 274).

Another significant limitation in the application of AI/ML in

healthcare is physician willingness both to be educated in its use

and to incorporate it into broader clinical practice. Many studies

have looked at physician and technician perspectives on the

integration of this technology. While most studies cite at least

70% approval from the physician community, there remains a

sizable contingent who are more reticent to incorporate AI into

their practice. This hesitancy is multifactorial, ranging from

ethical concerns to insufficient understanding of how to use the

technology (246–249). However, the greatest concern among

physicians is the fear of overreliance on AI which may be to the
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detriment of clinical judgment, as well as medical error liability

secondary to errors in automation (246–248, 250, 251).

Health care providers and students would therefore require proper

training in using AI/ML. While the rigor of this training may vary

depending on the AI application, there is significant support for

formal training programs at all education levels (247, 252–255).

Karaca et al. have suggested the use of a psychometric measurement

tool called the Medical Artificial Intelligence Readiness Scale for

Medical Students (MAIRS-MS) to guide assessment in education on

AI (256). There has also been research regarding the creation of

ethics and public health-based AI education for students and

providers (257). The literature notes that while AI has many

benefits, those are limited by the ability to standardize its

implementation and train clinicians to effectively use it (82).
5.2 Ethical implications

The ethical implications of AI/ML use in healthcare raises

several questions, such as the limitations of its use mentioned

above, privacy/confidentiality of data, creation of federal standards

and guidelines, and both physician and patient transparency in the

process (258, 259). Preserving the confidentiality of data is an

ongoing challenge since the use of electronic health records, with

concerns such as hacking and data breaches. However, some risks

unique to AI have been mitigated with local generative models

and federated learning models (258, 260, 261).

The first set of international guidelines for clinical trials using

AI was developed in 2021 with the SPIRIT-AI and CONSORT-AI

guidelines to help standardize development and reporting methods

of new algorithms for disease detection and diagnosis (258, 262).

Most recently in 2024, the World Health Investigations (WHO)

released their recommendations on suggested governance for AI

models in medicine (263).

The “Black Box problem” with AI/ML describes the lack of

understanding in the general population for the actual decision-

making process that occurs in the algorithm (258, 264, 265). One

solution to this is the creation of “explainable AI” that provides

more user-friendly algorithms with explanations for the decision

(265–270). While these may provide a better integration of

human interaction within the algorithm, it also means it is more

labor intensive and may not provide the same efficiency as AI

nor the rapid growth and adaptability of ML (270).

Xu et al. note the underestimation of the possible malpractice

and harm that could come to patients from AI in the forms of

lack of proper informed consent and increased psychological and

financial burden of these systems (265). The authors cite the

need for physicians to understand where and how AI should be

implemented, its limitations, and the continued development of

quality control measures to ensure standardization (265).

While these ethical concerns are important to both health care

workers and patients, it is also important to recognize the clinical

value of AI/ML which has been iteratively integrated into clinical

practice over the last several decades. The advancement of this

technology has continued to drive the evolution of modern

medicine. With proper regulatory oversight, patient-focused
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approaches, and training to understand the benefits and limitations

of AI, this technology may potentially revolutionize how we assess

and manage patients in both neurocardiology and medicine overall.
5.3 Future directions

5.3.1 Future clinical applications
There have already been substantive investigations conducted

in assessing the use of AI/ML, DL, or CNN algorithms for the

timely detection and prognostication of acute ischemic stroke,

cardiovascular diseases, and neurological pathologies. These

studies have demonstrated an iterative increase in accuracy,

speed, and applicability of this technology within diverse settings.

The recent algorithms discussed have also proven their strong

statistical power in evaluating complex datasets and identifying

trends that may otherwise elude traditional statistical analysis.

These advancements in clinical use originate from the ability to

incorporate anatomic analysis, functional and hemodynamic

parameters, clinical factors, and imaging modalities. Mobile

devices and other widely sold technologies continue to provide

greater ease of monitoring, more timely diagnosis, and therefore,

more timely treatment. Simply having increased accessibility to

continuous monitoring may also increase the predictive value of

them. These uses thereby may improve patient outcomes and

reduce the overall burden on the healthcare system.

As well as its application in standard clinical decision making,

future directions using AI/ML include improving access to more

equitable healthcare to underserved communities (82, 85, 86).

This may be accomplished through increased digital access to

diagnostic tools, improving efficient clinical decision making for

disease escalation, and reducing physical or cultural barriers

through access to high quality care with telemedicine (86, 244,

271). Some of these goals are already evident with common

technology today, through systems such as broadened Medicare

coverage for telestroke (272). Technology can also provide greater

autonomy to patients with managing their own health needs,

such as the tools above which allow for cardiac monitoring even

at home or in clinic (273). Furthermore, substantive research has

been conducted to address the limitations of bias evident in AI

algorithms with suggestions of improvement including careful

cohort selection, cultural awareness and expertise in developing

algorithms, and joint multicenter data (271, 274–277).

There is a clear demand for expanded clinical use of these AI-

enabled platforms and algorithms. Robust validation of these ML/AI

models is required for future clinical use, as well as ensuring data

privacy and security, addressing algorithm bias and interpretability,

and future studies on multi-center populations. The widespread

incorporation of these models may also offer an avenue to accelerate

the development of better diagnostic and predictive technology.

5.3.2 Future research directions
There is an evident difference in the depth of AI/ML research

conducted between certain neuroradiology pathologies. Of note,

the investigation of this technology remains limited for cardiac

tumors, the detection and prognostication of CAD in stroke
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patients, and in the neurological sequelae of infectious

endocarditis, such as meningitis, abscesses, mycotic aneurysms,

and intracerebral hemorrhage. Further studies are warranted to

expand on the prospective benefits of AI/ML applications in these

and other related cardiovascular and cerebrovascular conditions.

The future of AI/ML in neurocardiology is promising,

particularly in the development of future investigations that may

provide further diagnostic and prognostic value for stroke

patients, better elucidate the sequelae of presenting and

developing diseases, and improve patient care with its increased

efficacy. As AI/ML becomes more commonly incorporated into

clinical practice, the knowledge base, algorithmic training, and

accuracy of models will continue to improve.
6 Conclusion

The heart-brain and brain-heart axes encompass the many

clinical features and interconnected pathophysiology between

cardiac and cerebrovascular diseases. Assessment and

management of stroke patients should take place within the

larger framework of neurocardiology, through initial stroke

prevention for patients with cardiac disease, cardiac evaluation

for stroke patients, and secondary stroke prevention for patients

with newly diagnosed, post-stroke cardiac disease. However,

diagnostic workup during admission does not always lead to

effective diagnosis, often making these personalized treatment

approaches challenging. Artificial intelligence is a robust area of

research that is advancing diagnostic accuracy and aiding clinical

decision making. With further iterations and implementation

into clinical practice, this technology provides an efficient adjunct

that can provide essential diagnostic and prognostic value in

managing patients impacted by pathology of the heart-brain axis.
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Glossary

ACS acute coronary syndrome
AF atrial fibrillation
AHA American Heart Association
AI artificial intelligence
AIS acute ischemic stroke
ANN artificial neural network
ARIC atherosclerosis risk in communities
AS aortic stenosis
ASD atrial septal defect
ASPECTS Alberta stroke program computed tomography score
AUC area under the curve
BNP brain natriuretic peptide
CAD coronary artery disease
CHD congenital heart disease
CMR cardiovascular resonance
CNS central nervous system
CO cardiac output
CS cryptogenic stroke
CT computed tomography
CTA computed tomography angiography
CTP computed tomography perfusion
CVA cerebrovascular accident
DL deep learning
DT decision tree
EDV end diastolic volume
EKG electrocardiogram
EMR electronic medical records
ESUS embolic strokes of undetermined source
FCN fully convolutional network
FDA food and drug administration
FDG PET/CT 18f-fluorodeoxyglucose PET/CT
FHS Framingham heart study
GBM gradient boosting machine
GLS global longitudinal strain
HF heart failure
HFrEF heart failure with reduced ejection fraction
HPA hypothalamic-pituitary-adrenal axis
ICAD intracranial atherosclerotic disease
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ICC interclass correlation coefficients
IE infective endocarditis
LA left atrium
LR logistic regression
LV left ventricular
LVEF left ventricular ejection fraction
LVO large vessel occlusion
MACCEs major adverse cardiac and cerebrovascular events
MCA middle cerebral artery
MI myocardial infarctions
ML machine learning
MR mitral regurgitation
MRI magnetic resonance imaging
MRI-VPD magnetic resonance plaque analysis system
NDAF newly diagnosed atrial fibrillation
NLP natural language processing
NSC neurogenic stress cardiomyopathy
NSTEMI non-ST elevation mi
PASCAL PFO-associated stroke causal likelihood
PET positron-emission tomography
PFO patent foramen ovale
PISA proximal isovelocity surface area
PPG photoplethysmography
RE relative speed error
RF random forest
RMSE root mean square error
RoPE risk of paradoxical embolism
RSF random survival forst
RV right ventricular
SSIM structural similarity index
STE speckle-tracking echocardiography
STEMI ST elevation mi
SVM support vector machine
TCD transcranial doppler ultrasound
TEE transesophageal echocardiogram
TNN transformer based neural networks
TOAST trial of ORG 10172 in acute stroke treatment
TTC takotsubo cardiomyopathy
TTE transthoracic echocardiogram
VHD valvular heart disease
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