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Correlation between CT-derived
fractional flow reserve and
myocardial strain in ischemic
heart disease patients with single
coronary artery stenosis assessed
based on CCTA
Ruichen Ren, Wenting Li, Qingyuan Zhao, Chengcheng Qi,
Xiaoxue Zhang, Mingyu Peng, Duwang Su, Pei Han and
Yang Zhang*

Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
Purpose: We aimed to investigate the correlation between CT-derived fractional
flow reserve (CTFFR) and myocardial strain in patients with single coronary artery
stenosis and to investigate the diagnostic value of CTFFR in identifying impaired
myocardial strain.
Methods: We selected 89 patients, categorized into three groups based on the
affected coronary artery: 36 with left anterior descending (LAD), 23 with left
circumflex (LCX), and 30 with right coronary artery (RCA) stenosis, along with
25 healthy controls. We investigated correlations between CTFFR and both
global and regional myocardial strain parameters. Additionally, we assessed the
ability of the CTFFR to detect impaired myocardial strain in these patients.
Results: In this study, no significant difference was found in overall myocardial
strain between the patient and control groups. However, regional longitudinal
strain (LS) and circumferential strain (CS) in the myocardial areas supplied by
stenotic coronary arteries was significantly lower in each patient group
compared to the others (P < 0.001). The CTFFR exhibited a strong negative
correlation with both regional and global myocardial strain, with a stronger
association for regional strain. Particularly in group LAD, CTFFR in optimal
diastole phase (CTFFR-D) was negatively correlated with Endo-LS (r=−0.66,
P < 0.001). Receiver operator characteristic curve (ROC) analysis indicated that
CTFFR were effective in diagnosing impaired myocardial strain, particularly LS.
Conclusion: There is a strong correlation between CTFFR, which is a functional
measure for assessing coronary artery stenosis, and myocardial strain. CTFFR can
identify impaired myocardial strain and can be used as an indirect indicator of
myocardial ischemia.
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1 Introduction

The main cause of ischemic heart disease is atherosclerosis

(1, 2), on the basis of which the lumen narrows or even

occludes as the extent of the lesion increases, leading to long-

term myocardial ischemia, myocyte injury, necrosis, and

myocardial fibrosis, resulting in structural changes in the heart

and a decline in cardiac function (3, 4). Conventional

Coronary Computed Tomography Angiography (CCTA)

provides only anatomical information about the coronary

arteries and often overestimates the degree of stenosis, leading

to unnecessary invasive coronary angiography (5). CTFFR has

emerged as a computational fluid dynamics method for

assessing the severity of functional coronary stenosis without

the need for additional radiation and loading medications (6,

7). CCTA-derived myocardial strain can identify early changes

in myocardial function when conventional cardiac function

markers are still in the normal range (8). The results are

highly consistent with those of echocardiography and cardiac

magnetic resonance imaging (CMR) (9). It has now been

shown that patients with coronary artery stenosis present with

early impaired cardiac function (10, 11). However, the

correlation between functional coronary stenosis and impaired

myocardial function has not been studied. Therefore, we chose

CTFFR as a functional index of coronary artery to investigate

the correlation with myocardial strain.
2 Methods

2.1 Study population

This study retrospectively analyzed patients with diagnosed

coronary heart disease with single coronary stenosis who

underwent CCTA between March 2023 and March 2024 at

Qilu Hospital of Shandong University. Coronary stenosis was

visually assessed by a cardiovascular radiologist (Y.Z.) with

over 20 years of experience in cardiovascular imaging. Stenosis

was defined as the presence of luminal narrowing caused by

coronary plaque observed on CCTA. This study was approved

by our institutional review board (Ethical Approval No. KYLL-

202208-057) and the informed consent requirement was

waived due to its retrospective nature. We grouped the

patients according to the location of the stenosis into LAD

group, LCX group, RCA group.

The inclusion criteria were: (1) patients diagnosed with single

coronary stenosis; (2) clinically confirmed subjects aged between

30 and 80 years; and (3) no wall motion disorder on

echocardiography. The exclusion criteria were: (1) a history of

myocardial infarction (MI) or Q-waves on ECG; (2) known MI,

congestive heart failure, heart valve disease, or structural heart

disease; (3) atrial fibrillation; (4) arrhythmias; (5) history of

coronary intervention, including coronary artery bypass grafting

(CABG) and/or percutaneous coronary intervention (PCI); and

(6) poor CCTA image quality that cannot be assessed.
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2.2 CT scanning protocol and
postprocessing

All examinations were performed using a third-generation

dual-source CT scanner (SOMATOM Force CT, Germany).

A retrospective ECG-gated scanning mode was used to control

for cardiac-related motion artifacts. Scanning range: starting 1 cm

below the tracheal eminence and extending down to the

diaphragmatic surface of the heart, covering all coronary arteries.

Scanning parameters were as follows: tube voltage, 70–120 kV;

tube current was automatically adjusted to the patient’s size by

an automatic exposure control system (CARE Dose4D, Siemens

Healthineers, Germany). Nonionic contrast agent (Iopromide

370, Bracco) in a dosage of 0.7 ml/kg body weight at 5 ml/s was

injected by double-barrel high-pressure syringe following with

40 ml sanitary saline at the same rate. The CT system

automatically reconstructed the data for optimal diastole and

optimal systole. We reconstructed 20 phases in 5% steps of the

R-R interval within the full window. The data construction

section thickness was 0.75 mm, with an increment of 0.5 mm,

and the reconstruction kernel was Bv40 heart view smooth.
2.3 Assessment of the CTFFR of coronary
artery

The optimal systolic and diastolic images were transmitted to

the Shukun Artificial Intelligence Coronary Diagnostic Aid

(skCT-FFR version v0.7.1, Beijing, China) to obtain CTFFR

values. This software combines CCTA images with

computational fluid dynamics to determine coronary pressures

and flow velocities, generating color-coded 3D coronary trees

with numerical values (Figure 1). CTFFR values were measured

approximately 2 cm distal to the plaque in optimal systolic

(CTFFR-S) and diastolic phase.
2.4 Computed tomography feature tracking
analysis

Raw multiphasic CCTA images were imported into

commercially available post-processing software (Medis Suite

version 4.0, Leiden, the Netherlands). The entire measurement

process similar to zhang et al. (12) involves five steps: (1)

evaluating CCTA image quality; (2) reconstructing two-

dimensional cine images, including two-, three-, and four-

chamber long-axis and stacked short-axis views; (3) manually

drawing the endocardial and epicardial contours at the end-

diastolic and end-systolic phases; (4) automatically tracking left

ventricular (LV) myocardial motion throughout the entire

cardiac cycle; and (5) confirming the feature-tracking quality and

adjusting the end-systolic location. Longitudinal strain (LS) was

derived from long-axis (LAX) cine images, while circumferential

strain (CS) and radial strain (RS) were derived from both LAX

and short-axis (SAX) cine images. The following strain
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FIGURE 1

A 59-year-old woman presented with calcified plaque in the proximal wall of the LCX and moderate luminal stenosis. (A) Curved planar reformation of
CCTA showed calcified plaque in LAD with moderate luminal stenosis. (B) The CTFFR tree with numerical markers. (C) and (D) measurements of
circumferential strain of the left ventricular endocardium in short-axis views.
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parameters were derived: (1) global longitudinal strain (GLS) and

global circumferential strain (GCS) of the endocardium and

myocardium, and global radial strain (GRS) of the myocardium;

and (2) territory strain based on the American Heart Association

16-segment model. Segments 1, 2, 7, 8, 13, and 14 were defined

as the territory supplied by the left anterior descending artery

(LAD), segments 5, 6, 11, 12, and 16 as the territory supplied by

the left circumflex artery (LCX) (Figure 1), and segments 3, 4, 9,

10, and 15 as the territory supplied by the right coronary artery

(RCA). The segmental strain of the endocardium and

myocardium were averaged. In addition, obtaining volumetric

and functional parameters of the left ventricle: LV end-diastolic

volume (LVEDV), LV end-systolic volume (LVSDV), ejection

fraction (EF). All images were evaluated and measured by two

observers who were blinded to the patients’ information.
2.5 Statistical analysis

The distribution normality of continuous data was assessed

using the Shapiro-Wilk test. Data was expressed as

means ± standard deviations for normally distributed variables,

medians (interquartile ranges) for non-normally distributed

variables, and frequencies (percentages) for categorical variables.

Comparisons between two groups utilized independent sample

Student’s t-tests for normal data and Mann-Whitney U tests for

non-normal data. Chi-square tests were employed for categorical
Frontiers in Cardiovascular Medicine 03
variables. Clinical characteristics and CT findings across different

coronary artery groups were analyzed using one-way ANOVA

with Bonferroni post hoc tests or the Kruskal-Wallis H test.

Pearson’s correlation was used for normally distributed variables,

while Spearman’s correlation was applied for non-normally

distributed data. Diagnostic performance of stenosis severity and

CTFFR for strain was evaluated using ROC analysis. Area under

curve (AUC) comparisons followed the method of DeLong et al.

(13). Repeatability between observers was assessed with the

Bland-Altman test in 20 randomly selected patients. Statistical

analysis was conducted using SPSS 26.0 and GraphPad Prism

10.0.2, with significance set at P < 0.05.
3 Results

3.1 Clinical characteristics of the study
population

A total of 89 patients were included. Among them, 36 patients

were diagnosed with LAD stenosis, 23 patients were diagnosed with

LCX stenosis, 30 patients were diagnosed with RCA stenosis.

Additionally, 25 healthy subjects were included as controls

(Figure 2 Study flow chart). The patients’ demographics and

clinical characteristics were summarized in Table 1. Patients with

coronary stenosis were predominantly male who were older and

had a higher systolic blood pressure. There were no statistically
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FIGURE 2

Study flow chart.

TABLE 1 Clinical characteristics of the study population.

Variable Group LAD (n = 36) Group LCX (n= 23) Group RCA (n = 30) Control (n = 25) P value
Male (n, %) 24 (66.7) 13 (56.5) 17 (56.7) 11 (44) 0.392

Age (years) 56 ± 9 59 ± 10 57 ± 11 51 ± 7** 0.013*

BMI (kg/m²) 25.3 ± 4 25.0 ± 3 25.5 ± 2 23.3 ± 2 0.063

Hypertension (n, %) 20 (55.6) 11 (47.8) 18 (60) – 0.683

SBP 141 ± 16 137 ± 20 140 ± 16 126 ± 13 0.003*

DBP 82 ± 8 84 ± 10 84 ± 10 83 ± 10 0.813

Diabetes mellitus (n, %) 11 (30.6) 5 (21.7) 5 (16.7) – 0.413

Smoking history (n, %) 10 (27.8) 7 (30.4) 8 (26.7) 4 (16) 0.667

Hyperlipidemia (n, %) 13 (36.1) 6 (26.1) 9 (30) – 0.713

CCTA heart rate (beats/min) 64 ± 12 69 ± 14 66 ± 12 71 ± 15 0.248

Total cholesterol (mmol/L) 5 4.7 4.8 – –

Creatinine (umol/L) 65.3 65.7 70 – –

Creatine kinase (U/L) 66.4 78 79 – –

Troponin I (ng/L) 9.1 4.1 11.4 – –

LAD, left anterior descending; LCX, left circumflex; RCA, right coronary artery; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; CCTA, coronary computed
tomography angiography.

*P < 0.05 between groups.

**P < 0.05 compared with group LCX.
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significant differences between the all groups with respect to BMI

and smoking history, and no statistically significant difference in

the hypertension, diabetes mellitus and hyperlipidemia among

the patients’ groups.
3.2 Comparison of CTFFR and CT strain in
the study groups

The patients’ CT parameters of CTFFR and CT strain were

shown in Table 2. The CTFFR of diastole and systole in the

patient groups were significantly reduced comparing to the

control group (P < 0.001). There were no statistically significant

differences in global strain among groups.
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However, LS regional strain was significantly decreased

(absolute value, same below) in the donor regions of stenotic

coronary artery in group LAD and LCX (P < 0.001). RS regional

strain was decreased in the LAD donor region in group

LAD (P = 0.005).
3.3 Comparison of strain between stenosis
coronary territory and non-stenosis
coronary territory in the patients’ group

These results are shown in Figure 3. In the Patients group

(group LAD+LCX+RCA), Endo-LS (P < 0.001), Myo-LS

(P < 0.001) and Endo-CS (P < 0.001) in the stenotic coronary-
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TABLE 2 Cardiac CT parameters of the study population.

Observation indicators Group LAD (n= 36) Group LCX (n = 23) Group RCA (n = 30) Control (n = 25) P value

CTFFR
CTFFR-D 0.75 ± 0.11 0.80 ± 0.06 0.80 ± 0.10 0.90 ± 0.04**, ***, **** <0.001*

CTFFR-S 0.75 ± 0.11 0.80 ± 0.06 0.80 ± 0.08 0.90 ± 0.04**, ***, **** <0.001*

CT strain (%)

Global
EndoGLS −25.8 ± 3.7 −27.0 ± 3.3 −27.1 ± 3.7 −28.1 ± 3.1 0.101

MyoGLS −23.3 ± 2.8 −23.8 ± 3.0 −24.7 ± 2.3 −25.0 ± 2.6 0.058

EndoGCS −30.6 ± 5.0 −31.8 ± 5.1 −31.9 ± 5.1 −32.7 ± 4.6 0.437

MyoGCS −26.0 ± 5.6 −23.5 ± 6.7 −24.9 ± 6.7 −25.9 ± 6.7 0.468

GRS 83.5 ± 16.8 87.3 ± 18.6 91.8 ± 16.4 92.2 ± 12.8 0.117

EF 68.5 ± 5.9 69.0 ± 6.3 70.1 ± 4.8 69.5 ± 5.9 0.701

LVEDV 131.5 ± 26.2 126.8 ± 29.2 134.0 ± 34.2 127.8 ± 31.4 0.802

LVESV 42.8 ± 13.9 41.0 ± 14.3 45.0 ± 14.4 40.0 ± 2.9 0.571

Territory-LS
LAD −18.7 ± 3.5 −25.4 ± 4.5** −23.1 ± 2.3** −25.3 ± 2.6** <0.001*

LCX −23.1 ± 4.0 −19.2 ± 3.3** −23.8 ± 3.4*** −25.5 ± 4.3*** <0.001*

RCA −22.0 ± 3.2 −20.16 ± 3.7** −22.0 ± 3.9*** −22.1 ± 5.3*** 0.269

Territory-CS
LAD −24.4 ± 6.5 −23.0 ± 6.7 −25.8 ± 7.5 −26.1 ± 7.1 0.397

LCX −21.0 ± 7.2 −22.7 ± 6.6 −23.6 ± 7.3 −24.2 ± 6.3 0.590

RCA −25.5 ± 5.9 −22.9 ± 8.3 −25.1 ± 7.2 −26.5 ± 8.5 0.056

Territory-RS
LAD 55.1 ± 12.7 62.1 ± 18.5 60.5 ± 16.7 74.9 ± 38.0** 0.005*

LCX 55.8 ± 23.3 53.7 ± 14.2 57.9 ± 18.1 63.8 ± 19.2 0.189

RCA 53.4 ± 18.0 57.5 ± 15.6 55.0 ± 17.5 64.9 ± 11.0 0.113

CTFFR, computed tomography fractional flow reserve; CTFFR-D, computed tomography fractional flow reserve in optimal diastole phase; CTFFR-S, computed tomography fractional flow
reserve in optimal systole phase; LAD, left anterior descending; LCX, left circumflex; RCA, right coronary artery; EndoGLS, global longitudinal strain of endothelia; MyoGLS, global

longitudinal strain of myocardium; EndoGCS, global circumferential strain of endothelia; MyoGCS, global circumferential strain of myocardium; GRS, global radial strain; EF, ejection

fraction; LVEDV, left ventricular end diastolic volume; LVESV, left ventricular end systolic volume; LS, longitudinal strain; CS, circumferential strain; RS, radial strain.

*P < 0.05 between groups.
**P < 0.05 compared with groups LAD.

***P < 0.05 compared with groups LCX.

****P < 0.05 compared with groups RCA.
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supplied region were decreased compared with in the non-stenotic

coronary-supplied region. Specifically, in the LAD group, Endo-LS

(P < 0.001), Myo-LS (P < 0.001) and Endo-CS (P = 0.013) in the

LAD-supplied territory were significantly decreased. In the LCX

group, Endo-LS (P < 0.001) and Myo-LS (P < 0.001) in the LCX-

supplied area were significantly decreased. In the RCA group,

Endo-CS (P = 0.044) was significantly decreased in the RCA-

supplied myocardium. RS in the stenotic coronary-supplied

region was not significantly different from that in the non-

stenotic region in group LAD, LCX, RCA and Patients.
3.4 Correlations between CTFFR and CT
strain in patients group

The correlations between CTFFR and CT strain in group LAD,

LCX, RCA and Patients were shown in Figure 4. Overall, CTFFR

was negatively correlated with LS, CS of stenotic coronary-

supplied (P < 0.05) and not significantly correlated with RS. The

correlation between CTFFR and regional myocardial strain was

greater than that of global strain. The correlation between
Frontiers in Cardiovascular Medicine 05
CTFFR-D and myocardial strain was greater than that of

CTFFR-S. There was no significant correlation between CTFFR

and ejection fraction and left ventricular volume. In the group

LAD, CTFFR and strain in the non-stenotic coronary-supplied

also showed a correlation. In the group LCX, CTFFR showed a

correlation only with the strain in regions of stenotic

coronary-supplied.
3.5 Diagnostic performance of the CTFFR to
recognize impaired myocardial strain

Since the consensus on normal myocardial strain values has

not been established due to differences in post-processing

algorithms, we mixed the control group with group Patients,

LAD, LCX and RCA. We performed ROC curve using the

median of each strain parameter as a diagnostic criterion in

order to investigate the diagnostic performance of CTFFR for

impaired myocardial strain, respectively. The results (Figure 5)

showed that CTFFR-S and CTFFR-D had diagnostic value for

impaired Myo-GLS, Endo-GCS, and Myo-GRS in all enrolled
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FIGURE 3

(A) The differences in LS and CS between stenotic coronary-supplied myocardium and non-stenotic myocardium in the patient groups. (B–D) The
differences in LS and CS between stenotic coronary-supplied myocardium and non-stenotic myocardium in the LAD, LCX, and RCA groups,
respectively. (E) The differences in RS between stenotic coronary-supplied myocardium and non-stenotic myocardium within the patient
population as a whole and within each subgroup.
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populations (P < 0.05), and the diagnostic performance was higher

for Myo-GLS (AUC of CTFFR-S = 0.6933, AUC of CT-FFR-

D = 0.6952). In the LAD-Control group, CTFFR had diagnostic

value for impaired Endo-LS, Myo-LS and Endo-CS (P < 0.05),

with higher diagnostic performance for Myo-LS (AUC of

CTFFR-S = 0.9207, AUC of CT-FFR-D = 0.9267). In the LCX-

Control group, CTFFR had diagnostic value for Endo-LS and

Myo-LS (P < 0.05), with higher diagnostic performance for Endo-

LS (AUC of CTFFR-S = 0.8678, AUC of CT-FFR-D = 0.8800). In

the RCA-Control group, CTFFR had diagnostic value only for

Endo-LS (AUC of CTFFR-S = 0.7447, AUC of CT-FFR-

D = 0.7626, P < 0.05). Overall, CTFFR had the best diagnostic

performance for impaired LS compared with CS and RS. CTFFR

had the greatest diagnostic value for myocardial strain in the

LAD-supplied area compared with the LCX-Control and RCA-

Control groups. Supplementary Table 1 provides the specificity,

sensitivity, and 95% confidence intervals (CIs) for each ROC

analysis performed in the study.
3.6 Intra- and interobserver reproducibility
of LV global strain

There was good intra- and interobserver agreement in the

assessment of global strain in the LV myocardium. The GRS had

a relatively low reproducibility (Table 3).
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4 Discussion

The major findings of study were as follows: (1) In patients

with single coronary stenosis, regional longitudinal strain in

stenotic coronary-supplied myocardium was already significantly

impaired compared with controls before global strain was

significantly reduced. (2) Endocardial and myocardial

longitudinal strain and circumferential strain were impaired in

stenotic coronary-supplied myocardium compared with non-

stenotic coronary-supplied regions. (3) CTFFR was negatively

correlated with myocardial strain, and the correlation with

regional strain was greater than that with global strain. (4) Using

the median strain of patients and normal subjects as a diagnostic

criterion, CTFFR have good diagnostic value for myocardial

strain, especially for LS.

Ample evidence exists that endothelial dysfunction in

resistance coronary vessels is an important contributor to CMD

(14). With the development of atherosclerosis, the vascular

endothelium becomes dysfunctional, and the vasodilator response

to pharmacological and physiological interventions is attenuated.

This results in a frank reduction in blood flow (15), leading to

myocardial ischemia and a decrease in myocardial diastolic

function. CCTA is a widely used modality in clinical practice to

screen and detect cardiovascular disease. Conventional CCTA

provides only anatomical information about coronary stenosis,

while functional information related to the stenosis remains
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FIGURE 4

The correlation between CTFFR and strain in the patients group (A), group LAD (B), group LCX (C), and group RCA (D).

Ren et al. 10.3389/fcvm.2025.1525807
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FIGURE 5

Diagnostic performance of the CTFFR to recognize impaired myocardial strain in group Patients-control, group LAD-control, group LCX-control and
group RCA-control.

Ren et al. 10.3389/fcvm.2025.1525807
elusive. This leads to an increased referral rate for invasive coronary

angiography (ICA) (16, 17). Functional damage to the vessel often

precedes structural changes (18). Therefore, we used CTFFR for the

assessment of functional stenosis in coronary arteries. CTFFR

values demonstrates a high level of agreement with invasively

measured FFR, especially from 0.49 to 0.90 [with an average
Frontiers in Cardiovascular Medicine 08
difference of 0.01 (95% CI, 0.21 to −0.24)] (19). When the

CTFFR is >0.90, it can rule out hemodynamically significant

coronary artery disease. Lesions with an FFR ≤0.80 are

recommended for revascularization, while the lesions with an

FFR >0.80 are recommended for optimized medical therapy. The

interpretation of CTFFR results is consistent with the invasive
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TABLE 3 Intra- and interobserver reproducibility of LV global strain.

Strain Intra-observer Inter-observer

ICC CV ICC CV
EndoGLS 0.888 17.2% 0.773 14.1%

MyoGLS 0.820 13.6% 0.593 12.5%

EndoGCS 0.852 19.4% 0.629 14.4%

MyoGCS 0.897 21.6% 0.890 19.9%

GRS 0.647 16.8% 0.297 23.3%

ICC, intraclass correlation coefficient; CV, Coefficient of variation.
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FFR recommendation (20, 21). Therefore, CTFFR can be an

important adjunct to CCTA and is critical for avoiding

unnecessary interventions as well as saving costs in the

healthcare system.

Although left ventricular ejection fraction (LVEF) is the

conventionally used index for assessment of LV function, it

largely reflects the pump function rather than the mechanical

function. Myocardial strain has been shown to be an effective

parameter for assessing mechanical function, and strain can

detect subtle changes in myocardial function compared with

LVEF, especially regional strain (22, 23). Regional strain has

rarely been used in prior studies due to a belief in current

echocardiographic guidelines that assessment of regional strain is

not as robust and reliable as overall strain (24). We analyzed

patients’ strain with single coronary artery stenosis. The results

showed that longitudinal strain in the region of the stenotic

coronary artery supplying myocardium was significantly impaired

before global strain was significantly impaired. This was true for

the LAD, LCX, and RCA stenosis groups. Other studies have

shown that global and regional longitudinal myocardial strain is

significantly lower in patients with severe stenoses in the LAD

(25). Norum et al. used echocardiography for strain analysis in

patients admitted for chest pain and initial negative/slightly

elevated troponin, and found that regional strain changes detected

severe coronary artery disease (CAD) (26). These confirm the

clinical significance of assessing local myocardial strain.

Our study demonstrated that CTFFR was correlated well with

regional and global strain, especially with longitudinal and

circumferential strain. The ROC curves further showed that

CTFFR had a good diagnostic performance for identifying

impaired strain. The LV heart wall comprises three layers: the

oblique endocardial, the circular mid-myocardial, and the oblique

epicardial layer. Since the endocardial-layer fibers are mainly

oriented in the longitudinal direction, and endocardial

myocardial fibers account for 15% of cardiomyocytes yet are

required to produce more than 50% of the ejection fraction

in myocardial contraction (27). Longitudinal strain is therefore

most impaired in coronary stenosis and is of high value for

disease risk assessment and prognostic prediction. Global

longitudinal peak strain at rest evaluated using 2-dimensional

echocardiography is an independent predictor of severe coronary

disease and significantly improves the diagnostic performance of

exercise tests (28). 2D STE-derived longitudinal strain may help

to identify a significant proportion of patients with critically

narrowed LAD and subclinical regional LV dysfunction not
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appreciated by visual assessment (25). In contrast, short-axis

function assessed by circumferential shortening is largely

determined by circumferential fiber contraction. It has been

shown that circumferential strain rate predicts ventricular

remodeling in patients with high-risk myocardial infarction and

that preserved circumferential function contributes to the

suppression of ventricular enlargement after myocardial

infarction (29). In this study, radial strain of myocardium in the

donor area of stenotic coronary arteries was not significantly

different from that of myocardium in the non-donor area, and

CTFFR was not significantly correlated with radial strain. The

lower reproducibility of radial strain measurements may account

for the variability not observed in this study. It may be caused by

the quantification of the radial strain, which depends on the

simultaneous motion of the endocardium and epicardium. The

density contrast at the epicardial border is less pronounced than

at the endocardial border. Moreover, there are more myocardial

trabeculae in the apical region. The compression and drainage of

blood from the trabeculae at the end of systole alter the voxel

appearance in this region, making accurate tracking challenging (23).

Previous studies have reported significant correlations between

coronary stenosis degree, CAD-RADS scores and myocardial

strain. Gu et al. (30) used CT strain to assess local LV strain in

patients with LAD stenosis and showed that strain in the LAD

region decreased with increasing stenosis severity. Shi et al. (31)

used CT feature tracking to assess myocardial strain in patients

with different CAD-RADS and showed that as the CAD-RADS

level increased, the GCS, GLS and GRS of the left ventricle based

on CT gradually decreased. Our findings are generally consistent

with these, both showing a progressive decrease in the absolute

values of GLS, GCS, and GRS with decreasing CTFFR. In this

study, no significant difference was found between diastolic and

systolic CTFFR among the groups, but heat maps, ROC curves

and delong tests showed higher correlation and diagnostic value

of CTFFR-D with myocardial strain. This may be because

diastole, which comprises the majority of the cardiac cycle, is

optimal for coronary image acquisition and reduces motion

artifacts (32). Additionally, the vessel lumen may appear more

“normal” during diastole, making diastolic FFR a more suitable

approach for assessing the hemodynamic significance of

myocardial bridging (33). Lv et al. (34) analyzed CTFFR in

diastole and systole using FFR as the reference standard. Their

findings indicated that CTFFR-D had higher diagnostic accuracy

and sensitivity, with a smaller absolute difference between

CTFFR-D and FFR at FFR≤ 0.7. Therefore, we recommend

using diastolic CTFFR for the hemodynamic assessment of

coronary arteries.

In this study, we used the median myocardial strain in patients

and normal group as a diagnostic criterion. The absolute values less

than the median were considered to be impaired strain. This is

because there are no standardized criteria for the normal range

of myocardial strain for CT tracing. Some of the studies on the

range of myocardial strain in normal populations have shown

different results because of differences in calculation software and

measurement methods. McVeigh et al. (35) developed an

automated technique, CT SQUEEZ, to measure localized
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endocardial strain in patients with normal left ventricular function

using 4D-CT cine images, and found that the average endocardial

strain values in the basal, mid, and apical left ventricular segments

were (−32 ± 1)%, (−33 ± 1)%, and (−36 ± 1)%, respectively, with

the absolute value of strain increasing from the basal to the

apical segment. Li et al. (36) analyzed CT myocardial strain in 87

normal subjects, and GRS of the left ventricle in normal subjects

was (74.5 ± 15.2)%, and GCS was (−22.7 ± 3.0)%, and GLS was

(−26.6 ± 3.2)%. In a study of CT strain values of four cardiac

chambers in 101 healthy adults, Yang et al. (37) found that the

normal ranges of GLS, GCS, and GRS in the left ventricle were

−20.2 ± 2.7%, −27.9 ± 4.1%, and 49.4 ± 12.1%, respectively. More

consistently, however, healthy males have lower longitudinal and

circumferential strain with less negative value (37, 38). In

contrast, they have higher radial strain with a significant age-

dependent positive correlation (36). The reason may be that age-

related left ventricular stiffness and decreased diastolic function

need to be compensated by increased systolic wall thickness (39).

Our study demonstrated significant correlations between

CTFFR and myocardial strain, particularly longitudinal and

circumferential strain. However, our patient population included

individuals with hypertension and diabetes mellitus, which could

introduce variability in the results. Furthermore, CTFFR was

analyzed as a functional metric independent of anatomical

stenosis severity. While these comorbidities may influence

myocardial strain and coronary physiology, our findings suggest

that CTFFR provides valuable functional information beyond

anatomical assessments. Future studies with larger, stratified

cohorts are needed to further explore the interplay between

CTFFR, strain, and specific comorbid conditions.

This study has several limitations. First, the retrospective

design and small data sample from a single center limit the

generalizability of the conclusions. Second, the patients were not

validated by CAG, as invasive testing is not appropriate for

patients without a history of myocardial infarction. Third, the

heart rates of some patients during CCTA examination were

higher than 60, potentially influencing strain assessment.
5 Conclusion

Our study demonstrated a strong correlation between CTFFR and

myocardial strain. In patients with a single coronary artery stenosis,

the longitudinal strain and circumferential strain of the

myocardium corresponding to the stenotic coronary artery were

significantly reduced in absolute values compared to the non-

stenotic region. As an index for assessing functional stenosis of

coronary arteries, CTFFR can be used to indirectly reflect impaired

myocardial function in the corresponding blood supply region.
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