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Calcific aortic valve disease (CAVD) is a common cardiovascular condition in the
elderly population. The aortic valve, influenced by factors such as endothelial
dysfunction, inflammation, oxidative stress, lipid metabolism disorders, calcium
deposition, and extracellular matrix remodeling, undergoes fibrosis and
calcification, ultimately leading to stenosis. In recent years, long non-coding
RNAs (lncRNAs) have emerged as significant regulators of gene expression,
playing crucial roles in the occurrence and progression of various diseases.
Research has shown that lncRNAs participate in the pathological process
underlying CAVD by regulating osteogenic differentiation and inflammatory
response of valve interstitial cells. Specifically, lncRNAs, such as H19, MALAT1,
and TUG1, are closely associated with CAVD. Some lncRNAs can act as miRNA
sponges, form complex regulatory networks, and modulate the expression of
calcification-related genes. In brief, this review discusses the mechanisms and
potential therapeutic targets of lncRNAs in CAVD.
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1 Introduction

Calcific aortic valve disease (CAVD) is a prevalent heart valve condition, particularly

among the elderly, which is associated with high morbidity and mortality rates (1). This

disease is associated with significant economic and social burdens. The primary risk

factors for CAVD are bicuspid aortic valve (BAV) and advanced age (2). CAVD is

characterized by fibrous calcification of the aortic valve leaflets. In the early stages, the

disease presents with valve thickening and mild calcification that do not impair the

valve function. However, calcification exacerbates over time, resulting in aortic stenosis

(AS) (3). Severe AS is often accompanied by shortness of breath, angina, and syncope.

Treatment options for severe AS include surgical aortic valve replacement (SAVR) and

transcatheter aortic valve replacement (TAVR) (4).

Long noncoding RNAs (lncRNAs) are noncoding RNAs greater than 200 nucleotides

in length. As significant and widely used regulatory elements, they play important roles in

various cellular processes and development of numerous diseases (5–7). Initially, lncRNAs

were thought to be “transcriptional noise,” but they were later recognized to have precise

regulatory functions (8). As competitive endogenous RNA (ceRNA), lncRNAs exert gene

regulatory functions by sponging miRNAs, directly binding to proteins to alter their

function, or serving as scaffolds to recruit transcriptional inhibitors or activators (9, 10).

An increasing number of studies have shown that lncRNAs play critical roles in the

occurrence and development of cardiovascular diseases, including CAVD, acute
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myocardial infarction, and heart failure (5, 11). Specific biomarkers

may predict calcification progression or disease prognosis, thereby

aiding in diagnosis and treating CAVD. This article reviews the

research progress regarding lncRNAs in CAVD.
2 Pathogenesis of CAVD

Although CAVD pathogenesis is not fully understood, it is

believed to result from cellular dysfunction and dysregulation (12).

This highly regulated process occurs at the molecular and cellular

levels and involves various factors, such as endothelial dysfunction

and injury, inflammation, oxidative stress, lipid metabolism

disorders, calcium deposition, and extracellular matrix remodeling

(12–15). These factors ultimately lead to fibrosis and ossification

of valve interstitial cells (VICs), the main cellular components of

the aortic valve leaflets (16). Inactive VICs are usually activated

and undergo phenotypic transformation into osteoblast-like VICs,

which calcify the aortic valves (17). Valvular endothelial cells

(VECs) cover the valve surface to form an endothelial monolayer

and may undergo endothelial-to-mesenchymal transformation

(End-MT), expressing mesenchymal characteristics and plays a

pathological role in CAVD development (18, 19). During the

occurrence and development stages of CAVD, the abnormal

accumulation of different lipid types and increased expression of

inflammatory factors such as TNF-α and IL-6 promote osteogenic

processes and calcification of VICs (2, 20). Increasing evidence

suggests that various signaling pathways such as the NF-κB,

TGF-β, Wnt/β-catenin, Notch, and BMP pathways, are involved in

aortic valve fibrosis and calcification (21–25). These signaling

pathways interact with each other to regulate the occurrence and

development of CAVD.

In other cardiovascular diseases, certain lncRNAs have been

implicated in the regulation of inflammation, oxidative stress

responses and lipid metabolism (26). For example, H19 represses

oxidative stress to improve diabetic cardiomyopathy (27),

HOTAIR regulates oxidative stress and cardiac myocyte apoptosis

during ischemia-reperfusion injury (28), and MALAT1 is

involved in the regulation of lipid accumulation and chronic

inflammation in atherosclerosis (29). This suggests that lncRNAs

may interact with other associated factors to collaboratively

modulate the progression of CAVD.
3 Roles and molecular mechanisms of
lncRNAs in CAVD

3.1 HOTAIR

HOX transcript antisense intergenic RNA (HOTAIR) is a

2.2 kb lncRNA believed to regulate HOX expression (30). It can

bind to polycomb repressive complex 2 (PRC2) and inhibit the

transcription of specific genes by promoting epigenetic

modifications of H3K27me3 (30, 31). HOTAIR has received

widespread attention as a biomarker for tumor diagnosis (32).

Recent studies have shown that HOTAIR plays an important
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regulatory role in CAVD. Compared to the normal tricuspid

aortic valve (TAV), BAV leaflets are subjected to greater

mechanical stress, resulting in a significant decrease in HOTAIR

expression (33). This decreased expression increases the

expression of calcification genes such as ALPL and BMP2,

promoting calcification of the aortic valve (33, 34). The WNT/β-

catenin signaling pathway plays a crucial role in this process, and

mechanical stress can activate this signaling pathway, inhibiting

the expression of HOTAIR (33). However, further studies are

needed to determine whether HOTAIR directly regulates CAVD.
3.2 H19

H19 is another lncRNA involved in CAVD. Its mature product

has a total length of 2.3 kb, does not encode proteins but can act on

multiple gene regulatory levels to exert its biological functions

(35, 36). H19 is the first imprinted gene to be discovered and

shows parent-of-origin epigenetic signatures (37).

Hadji et al. found that the expression of H19 is significantly

increased in calcified aortic valves and can be upregulated in the

early stages of the disease (38). Its expression level is positively

correlated with the progression rate of aortic valve stenosis. In

CAVD tissue, the CpG methylation level in the H19 promoter

region is significantly reduced, which is the main reason for the

significant increase in H19 expression. Osteogenic genes, such as

RUNX2, bone morphogenetic protein-2 (BMP2), and osteocalcin

(BGLAP) are involved in calcification (39–41). In vitro

experiments have shown that H19 overexpression can promote

the BMP2 and RUNX2 expression, as well as the osteogenic

phenotype, in VICs (38). Notch1 signaling is an important

regulatory pathway for the transdifferentiation of VICs into

osteoblast-like cells (42, 43). H19 can inhibit the binding of

transcription factor p53 to the promoter region of Notch1,

upregulating the expression of the calcification-promoting genes

BMP2 and RUNX2 by inhibiting the Notch1 signaling pathway

and promoting the occurrence of CAVD (38).
3.3 MALAT1

The metastasis-associated lung adenocarcinoma transcript 1

(MALAT1) was initially identified in early non-small cell lung

cancer. Recently, MALAT1 has been shown to be involved

in the pathological regulation of cardiovascular diseases at

various levels (29).

Xiao et al. compared the MALAT1 expression levels in calcified

and adjacent normal tissues in 20 pairs of calcified aortic valves

(44). They found, for the first time, that MALAT1 expression is

significantly increased in the calcified leaflet tissue and shows a

gradually increasing trend after osteogenic induction in VICs.

The expression levels of MALAT1 and osteogenesis-specific genes

such as ALP and osteocalcin are highly positively correlated.

Further research has found that MALAT1 overexpression can

promote the osteogenic differentiation of VICs, whereas silencing

MALAT1 can inhibit ALP activity induced by the osteogenic
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medium, calcified nodule formation, and osteocalcin expression.

They also found that MALAT1 sponges miR-204, thereby

inhibiting its expression and activity. Smad4 is a direct target of

miR-204. Overexpression of MALAT1 upregulates Smad4 by

inhibiting miR-204 expression, thereby promoting the osteogenic

differentiation of VICs.
3.4 TUG1

Taurine-upregulated gene 1 (TUG1) is located on chromosome

22q12 and is approximately 7.1 kb in length (45). As a competitive

endogenous RNA (ceRNA), it regulates gene expression by

sponging miRNAs and is involved in the development of various

cancers (46). Increasing evidence indicates that TUG1 is involved

in the development and prognosis of cardiovascular diseases (47).

Yu et al. have reported the mechanism of action of TUG1 in

CAVD (48). They compared the expression levels of TUG1 in 40

pairs of calcified aortic valve and adjacent normal valve tissues

and found that its expression is significantly increased in calcified

valve tissues. In vitro cell experiments have shown that TUG1 is

significantly upregulated during the calcification of VICs and is

positively correlated with the expression levels of osteogenic

markers, including ALP, osteocalcin, and osteopontin. Silencing

TUG1 can inhibit the differentiation of VICs into osteoblast-like

cells and calcified nodule formation, whereas its overexpression

leads to the opposite result. The study also found that TUG1

interacts with miR-204-5p and promote RUNX2 expression by

regulating miR-204-5p. Additionally, the regulatory effect of

TUG1 on aortic valve calcification was confirmed in an ApoE−/−

mouse model. They also found that targeting of TUG1

significantly reduces high-cholesterol diet-induced aortic valve

calcification in ApoE−/− mice, which can provide evidence for a

therapeutic strategy in CAVD treatment.
3.5 OIP5-AS1

OIP5 antisense transcript 1 (OIP5-AS1) is highly expressed in

the nervous system and plays a crucial role in tumor

transformation (49). OIP5-AS1 also plays a regulatory role in

heart diseases. Hadji et al. performed RNA sequencing on 9

tricuspid valve CAVDs and 10 control non-calcified aortic valves

and found that, compared with the control non-calcified aortic

valves, OIP5-AS1 is significantly downregulated in calcified aortic

valves (38). Zheng et al. conducted further research on its

regulatory mechanisms (50). In vitro experiments have shown

that during the osteogenic differentiation of VICs, the expression

of OIP5-AS1 is significantly reduced, whereas the mRNA levels

of osteogenic differentiation markers, including ALP, osteocalcin,

and osteopontin, are increased. In addition, the overexpression of

OIP5-AS1 in VICs significantly decreased the levels of these

osteogenic differentiation markers. Mechanistically, further

experiments showed that OIP5-AS1 could alleviate the osteogenic

differentiation of VICs by upregulating TWIST1, the target gene

of miR-137.
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3.6 AFAP1-AS1

Actin filament-associated protein 1 antisense RNA 1 (AFAP1-

AS1) is a 6810-nt lncRNA transcribed from the antisense DNA

strand of AFAP1 (51). It is upregulated in various tumors and is

associated with tumorigenesis (52).

In terms of heart disease, Hadji et al. found that AFAP1-AS1

level in calcified aortic valves is significantly higher than those in

non-calcified aortic valves (38). Further research by He et al.

showed that the expression level of AFAP1-AS1 significantly

increased after calcification of the aortic valves and osteogenic

induction of human VICs (53). Additionally, overexpression of

AFAP1-AS1 promoted the osteogenic differentiation of VICs,

whereas knockdown of AFAP1-AS1 inhibited osteogenic

differentiation. Mechanistically, AFAP1-AS1 can sponge miR-

155, thereby increasing the expression of SMAD5 to promote the

osteogenic differentiation of VICs.

Moreover, compared to normal aortic valves, calcified ones are

often accompanied by a large amount of macrophage infiltration,

and the number of macrophages is positively correlated with the

degree of calcification and diseases severity (54–56). In addition,

studies by He et al. have shown that AFAP1-AS1 can aggravate

the osteogenic differentiation of VICs by promoting the

polarization of M1 macrophages, playing an important role

in CAVD (56).
3.7 SNHG3

Small nucleolar RNA host gene 3 (SNHG3) is located on

chromosome 1p35 and is mainly associated with the occurrence

and development of various malignant tumors (57). Chen et al.

found that SNHG3 is highly expressed in the calcified valves of

patients with CAVD and in VICs undergoing osteogenic

differentiation, and that SNHG3 expression is positively

correlated with CAVD progression (58). Silencing of SNHG3 can

inhibit ALP activity induced by the osteogenic differentiation

medium, calcium ion concentration, calcified nodule formation,

and protein levels of osteogenic differentiation markers.

Conversely, SNHG3 overexpression promotes the osteogenic

differentiation of VICs. In vivo experiments show that SNHG3

silencing ameliorates aortic valve calcification independent of

metabolic regulation in ApoE−/− mice. Further research

demonstrated that SNHG3 inhibits trimethylation of the BMP2

promoter by interacting with EZH2 (the core component of

PRC2) and activates the BMP2 signaling pathway, thereby

promoting the osteogenic differentiation of VICs.
3.8 FGD5-AS1

FGD5 antisense RNA 1 (FGD5-AS1) is a newly discovered

lncRNA that plays an important role in cardiovascular diseases,

including congenital heart diseases, myocardial ischemia/

reperfusion injury, acute myocardial infarction, and dilated
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TABLE 1 Mechanisms of lncRNAs in CAVD.

LncRNAs Mechanism Targets Species Ref
LncRNA HOTAIR Down – BAV vs. TAV (33)

LncRNA H19 Up NOTCH1 CAVD vs. HT aortic valve (38)

LncRNA MALAT1 Up miR-204/SMAD4 CAVD (calcified aortic valves vs. adjacent normal tissues) (44)

LncRNA TUG1 Up miR-204-5p/Runx2 CAVD (calcified aortic valves vs. adjacent normal tissues) (48)

LncRNA OIP5-AS1 Down miR-137/TWIST11 VICs isolated from normal aortic valves (50)

LncRNA AFAP1-AS1 Up miR-155/SMAD5 DCAVD (calcified aortic valves vs. adjacent normal tissues) (53)

LncRNA SNHG3 Up BMP2 pathway CAVD vs. HT aortic valve (58)

LncRNA FGD5-AS1 Down miR-497-5p/BIRC5 CAVD vs. AI aortic valve (63)

BAV, bicuspid aortic valve; TAV, tricuspid aortic valve; CAVD, calcific aortic valve disease; HT, heart transplantation; VICs, valve interstitial cells; DCAVD, degenerative calcific aortic valve
disease; AI, aortic valve insufficiency.

Shen et al. 10.3389/fcvm.2025.1522544
cardiomyopathy (59–62). Recently, Wei et al. found that the

expression levels of FGD5-AS1 and BIRC5 are decreased in

patients with CAVD, whereas the expression level of miR-497-5p

increased (63). In vitro cell experiments demonstrated that

osteogenic differentiation of VICs leads to increased ALP activity

and calcium nodules, with gradually increasing levels of

osteogenic differentiation markers (RUNX2 and OPN).

Subsequent results showed that overexpression of FGD5-AS1

results in decreased ALP activity and calcium nodules, as well as

expression of RUNX2 and OPN, thereby alleviating CAVD.

Further mechanistic studies revealed that FGD5-AS1 regulates

the osteogenic differentiation of VICs through the miR-497-5p/

BIRC5 pathway. In vivo experiments have shown that

enhancement of FGD5-AS1 effectively alleviates aortic valve

leaflet thickness and calcium deposition in ApoE−/− mice (Table 1).
4 Treatment of CAVD

Currently, apart from TAVR and SAVR, no effective drug

treatment is available to prevent or slow CAVD progression

(4, 64, 65). Identifying sensitive and specific biomarkers like

lncRNAs for the early detection of CAVD is crucial. Early

detection could enable the timely application of therapeutic

interventions, potentially slowing or halting the progression of

CAVD and preventing irreversible damage to the aortic valve

(24). Studies have demonstrated that the repression of TUG1 and

SNHG3, as well as enhancement of FGD5-AS1, can ameliorate

aortic valve calcification in mice, offering potential therapeutic

avenues for lncRNA-based treatment of CAVD (48, 58, 63).

Although no treatments directly targeting lncRNA have yet

reached clinical application, their therapeutic potential is

incontestable (66). The approaches to lncRNA targeting such as

antisense oligonucleotides (ASOs), small interfering RNAs

(siRNAs), and CRISPR-Cas9 may become novel treatment

strategies for CAVD (67). These techniques are frequently

employed in cancer research and treatment. For example, ASOs

targeting MALAT1 have been shown to effectively reduce tumor

growth and metastasis in lung cancer (68). Silencing HOTAIR

through RNA interference (RNAi) inhibits the invasion and

proliferation of human colon cancer cells (69). The CRISPR-Cas9

system facilitates targeted gene editing by generating double-strand

breaks (DSBs) in the DNA (70). Several approaches have been
Frontiers in Cardiovascular Medicine 04
developed to manipulate lncRNA expression using the CRISPR-

Cas9 system, including CRISPR interference (CRISPRi), CRISPR

activation (CRISPRa), and CRISPR-Cas9 mediated knockout (70).

Targeting MALAT1 by CRISPR/Cas9 technique inhibits the cell

proliferation and migration in prostate cancer (71). Targeting

lncRNAs with the CRISPR-Cas9 system may be a promising

strategy for developing novel therapeutic interventions.

The delivery system is crucial for the therapeutic potential of

lncRNAs. It must exhibit satisfactory specificity, stability, cell

permeability, and low immunogenicity (72). Nanoformulation-

mediated delivery and exosome-mediated delivery of targeted

lncRNAs are promising avenues (73). A study reveals the

therapeutic potential of lipid nanoparticles (LNPs) for targeted

OIP5-AS1 delivery in mitigating MI/R injury (74). In another

study, it was demonstrated that exosomes containing oxaliplatin

and lncRNA PGM5-AS1 can reverse oxaliplatin resistance in

colorectal cancer therapy (75). And exosome-mediated delivery

of CRISPR-Cas9 has been identified as a biocompatible delivery

system for gene editing in oncology (76).

However, the development of lncRNA-targeted therapeutics for

CAVD will encounter challenges such as off-target effects, delivery

specificity and stability. Modifications of Cas9 or sgRNA, along

with sgRNA truncation, are effective strategies to reduce off-target

effects (77–79). The chemical modification of ASOs may overcome

the challenges associated with poor stability (72). And before

proceeding to clinical trials, safety and toxicity studies must be

conducted. Therefore, further technological progress is required.
5 Discussion

CAVD is a common heart valve disease characterized by

multifactorial and multistep pathological processes including

endothelial dysfunction, inflammation, lipid metabolism disorders,

calcium deposition, and other complex biological mechanisms (12).

Currently, the research significance of lncRNAs has increased, and

growing attention has been focused on relationship between CAVD

and lncRNAs. As biomarkers, lncRNAs have certain advantages. In

a study published in Science in 2017, 499 lncRNA molecules with

important functions for cell growth were identified, of which 89%

functioned in specific cell types, indicating that lncRNA has strong

specificity (80). And lncRNAs can be detected in the early stages of

the disease, offering a potential basis for early diagnosis (38). In
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addition, the stability of lncRNA in the bloodstream makes it an ideal

candidate for non-invasive biomarkers (81).

In recent years, studies have gradually revealed the roles of

lncRNAs in regulating gene expression in CAVD. Some studies

have confirmed that lncRNAs regulate the osteogenic differentiation

of VICs or participate in valve calcification by sponging miRNAs.

However, the regulatory mechanisms of lncRNAs are complex, and

there may be multiple regulatory modes. For example, some

researchers have speculated that HOTAIR may improve CAVD by

sponging miR-29b (82), whereas MALAT1 may exacerbate CAVD

by sponging miR-195 (83). Additionally, MALAT1 participates in

osteogenic differentiation through MAPK and Wnt/β-catenin

signaling pathways in osteoporosis (84, 85) and H19 induces an

osteogenic phenotype in isolated human mesenchymal stem cells

via the Wnt pathway (86), indicating that they may also be

involved in aortic valve calcification. However, the proposed

mechanism requires further experimental validation.

In addition to the previously mentioned lncRNAs that have

regulatory effects on CAVD, other lncRNAs, such as myocardial

infarction-associated transcript (MIAT) and antisense non-coding

RNA in the INK4 locus (ANRIL), may regulate osteogenic

differentiation and inflammatory responses in various cells, suggesting

that they could have similar mechanisms in the aortic valve. MIAT is

closely related to cardiovascular disease and is involved in the NF-κB

pathway, promoting the expression of pro-inflammatory cytokines like

IL-6 and TNF-α, and influencing the osteogenic differentiation of

human adipose-derived and bone marrow mesenchymal stem cells

(87–92). ANRIL, associated with atherosclerosis, regulates osteogenic

differentiation in periodontal ligament and stem cells, and may also be

involved in the Wnt/β-catenin and NF-κB signaling pathways

(93–97). Therefore, both MIAT and ANRIL may play a role in the

valve calcification seen in CAVD; however, further research is needed

to clarify their specific contributions. We can identify novel lncRNAs

through high-throughput RNA sequencing and profiling as well as

bioinformatic analysis.

In summary, lncRNAs play crucial roles in the occurrence and

development of CAVD. The mechanisms of action of lncRNAs

in CAVD are complex and not fully understood, complicating

their translation to therapeutics. Further investigation of their

mechanisms of action will help elucidate the pathological

processes underlying CAVD and provide new insights to enable

early diagnosis and targeted therapy.
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