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Introduction: Myocardial infarction (MI) is a leading cause of death worldwide.
Immune cells play a significant role in the MI development. This study aims to
identify a marker related to neutrophil for the diagnosis and early progression of MI.
Methods: Key genes were screened using three machine learning algorithms to
establish a diagnostic model. A gene associated with the early progression of MI
was identified based on single cell RNA sequencing data. To further validate the
predictive value of the gene, the mouse models of MI were constructed.
Immunofluorescence (IF) analysis demonstrated the co-expression of the gene
with neutrophils. Immunohistochemistry (IHC) was performed to validate the
role of the gene in the progression of MI.
Results: Neutrophils were identified and verified as the key infiltrating immune
cells (IICs) involved in the onset of MI. A diagnostic panel with superior
performance was developed using five key genes related to neutrophils in MI
(AUC= 0.887). Among the panel, IL1R2 was found to early phase of MI, which
was further corroborated by IHC in mouse models of MI.
Conclusions: This study suggests that IL1R2, which is specific to neutrophils, can
predict the diagnosis and early progression of MI, providing new insights into the
clinical management of MI.

KEYWORDS

neutrophil, diagnosis, early progression, myocardial infarction, mouse model, single
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1 Introduction

A common consequence of coronary heart disease, myocardial infarction (MI), has

high morbidity and mortality rates, making it a detriment to global health (1). MI is

characterized by extensive myocardial damage and dysfunction caused by an abrupt

blockage of the bloodstream (2). There are several risk factors for MI including

smoking, alcohol intake, hypertension, dyslipidemia, and diabetes mellitus (3). In recent

years, with the development of serum biomarkers, electrocardiography, and

interventional therapies, survival rates of MI have increased by 15% (4). Serum markers

of MI commonly used in clinical diagnosis include cardiac troponin T (cTnT) (5),

cardiac troponin I (cTnI), cardiac myoglobin, and creatine kinase-MB (CK-MB) (6, 7).
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However, increased blood concentrations of cTnT only indicates

myocardial damage induced by ischemia and hypoxia and not

abnormal perfusion. Meanwhile, the sensitivity and specificity of

known markers are limited because increased levels of the markers

are found in other diseases such as heart and renal failure (8).

Simultaneously, revascularization can cause reperfusion injury which

contributes to up to 50 percent of post-infarction sequelae (9).

Furthermore, although approximately 90 percent of patients have

experienced chest pain, this discomfort was not indicative of MI

(10). Some patients with MI may not display evident symptoms,

and noticeable electrocardiogram (ECG) alterations may not be

present. Furthermore, potential biomarkers related to specific

molecular function have been identified for MI diagnosis (11).

Therefore, the identification of novel biomarkers and improvement

of early-MI diagnostic model efficiency are urgently needed.

Several studies have shown that immune cells play a critical role in

MI. Peripheral blood contains several types of immune cells including

neutrophils, lymphocytes, and macrophages. Many studies have

confirmed that neutrophils play a significant role in inflammatory

reactions and heart repair (12). Single cell RNA sequencing

(scRNA-seq) has improved the method to study the relationship

between immune cells and progression of illness. ScRNA-seq can

classify sequencing data to reveal difference in cell subpopulations

and their proportions (13). In our study, the cell types related to

pathogenesis of myocardial infarction were identified by scRNA-seq

technology. With the aggravation of myocardial infarction, changes

in the ratio of each cell type were quantified using scRNA-seq.

Immunofluorescence and immunocytochemistry were conducted to

reveal the co-expression of hub gene with key infiltrating immune

cells (IICs) and the progression of MI. Although gene tests can be

accomplished with 15 min as modern research advances, which can

reduce the time to diagnosis of MI, we have yet to identify a gene

with great specificity (14).

This study aims to identify a biomarker to predict the

clinical diagnosis and early progression of MI. To explore the

relationship between neutrophils and MI risk, we downloaded two

microarray datasets (GSE66360 and GSE48060) and a scRNA-seq

dataset (GSE163465) from the Gene Expression Omnibus (GEO)

database. Through a comprehensive analysis of the immune

microenvironment in MI, we identified neutrophils as key immune

cells that play a central role in the onset of MI. Three machine

learning techniques were employed to identify key genes predictive

of MI for constructing a diagnostic panel. Subsequently, scRNA-seq

was used to unveil the changes of neutrophil ratio and expression

of IL1R2 in neutrophil and all cells in all MI periods. Followed by

construction mouse models, IL1R2 was validated as a neutrophil-

specific marker through immunofluorescence. Finally, the

progression of MI was displayed with immunocytochemistry.
2 Materials and methods

2.1 Dataset collection

Three datasets were used to evaluate regulators of MI:

GSE66360, GSE48060 and GSE163465. The GSE66360 dataset
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was downloaded from the GEO database (http://www.nbi.nlm.

nih.gov/geo/) and included 49 MI and 50 healthy control

samples. The dataset was used to identify genes differentially

expressed in MI. The GSE48060, including 31 MI and 21 healthy

control samples, and GSE163465, a scRNA-seq dataset of mice,

were also obtained from the GEO database and used as

validation sets. The normalizeBetweenArrays function from the

“limma” package was used to normalize all raw expression data.

Gene expression values determined from datasets were

transformed into log2(X + 1) counts of reads. An overview of the

design of the study is presented in Figure 1.
2.2 CIBERSORT

“CIBERSORT,” a comprehensive algorithm, was used to

calculate relative proportions of IIC subtypes based on

normalized gene expression data. IICs include T cells, B cells,

macrophages, dendritic cells (DCs), natural killer (NK) cells,

monocytes, mast cells, eosinophils, and neutrophils.

Subsequently, the “corrplot” package was used to build a

heatmap for visualizing correlations among IICs, while the

“vioplot” package was used to draw violin plots comparing

IIC-related differences between MI and healthy samples using

GSE66360 and GSE48060 data. IICs identified with a confidence

level of p < 0.05 in both datasets were selected for further analysis.
2.3 Identification of DEGs

Genes differentially expressed between MI and healthy samples

in the GSE66360 dataset were identified using the “limma” package

in R. Fold changes (FCs) of each gene expression level were

calculated. Genes with |logFC| > 0.5 and adjusted p < 0.05 values

were considered differentially expressed genes (DEGs). The

“EnhancedVolcano” package was used to generate volcano plots.

The “pheatmap” package was used to obtain a heatmap based on

DEG data identified.
2.4 WGCNA analysis

The “WGCNA” package of R was used to construct a gene co-

expression network based on identified DEGs. First, any outliers

were assessed using “goodSamplesGenes” of the “WGCNA”

package. Outliers were removed after setting the cut height.

Secondly, the best soft thresholding power (β = 6) was screened

using the R function, pickSoftThreshold, to build an unsigned

network. To ensure network nonscaling, the adjacency matrix

was transformed into a topological overlap matrix (TOM).

Subsequently, genes with similar expression patterns were

grouped into independent modules via hierarchical clustering

(minModuleSize = 30, deepSplit = 2, mergeCutHeight = 0.15).

A heatmap was drawn to describe the relationship between co-

expression modules and the infiltration fractions of key immune

cells. Furthermore, we analyzed the correlation between the key
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FIGURE 1

A flow chart of the study protocol is shown.
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module and key IICs using gene significance (GS) and module

membership (MM). Resultant data were visualized using the

Cytoscape (version 3.7.1) network of module eigengenes. Genes

with GS > 0.6 and MM> 0.7 in the significant module were

identified as key genes. Then, the “NetworkAnalyzer” function in

Cytoscape was utilized to calculate node degree, with nodes >300

degrees in the WGCNA network selected for further analysis.

Finally, hub genes were identified by intersecting key genes with

selected nodes. A web tool (http://bioinformatics.psb.ugent.be/

webtools/Venn/) was used to create a Venn diagram for

identifying intersecting genes.
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2.5 Functional enrichment analysis

To investigate the biological functions of the key modules, the

R package “clusterProfiler” was used to perform Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

functional enrichment analyses. GO analysis included three

aspects: biological processes (BP), cell composition (CC), and

molecular function (MF). The “treemap” package was used for

visualizing KEGG function analysis, and the “GOplot” package

was used to diagram GO-related data. GO term and KEGG

pathways with adjusted p-values < 0.05 were considered
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statistically significant. Metascape (http://metascape.org) is an

emerging algorithm used for investigating biological processes

underlying transcriptome data and related signaling pathways.

Protein-protein interaction (PPI) analysis was performed in the

key module using Metascape. Function and hub clusters of the

PPI network were visualized using Cytoscape (version 3.7.1).
2.6 Identification of hub genes using
machine learning techniques

Key genes were identified using three machine learning

algorithms. To avoid the overfitting of intersecting genes, the

“glmnet” package was used to construct a least absolute

shrinkage and selection operator (LASSO) binomial logistic

regression. Then, support vector machine recursive feature

elimination (SVM-RFE) was performed to shrink the feature set

and minimize cross-validation error when identifying key genes

suing “e1071”, “kernlab” and “caret” packages. A random forest

algorithm was used to rank genes using the “randomForest”

package, with a threshold set to MeanDecreaseGini score >2

(ntree = 600). Finally, a Venn diagram was used to visualize

intersections between genes identified via the three methods

(LASSO, SVM-RFE, and random forest).
2.7 Evaluation of hub genes

GSE48060, containing 31 MI and 21 healthy control peripheral

blood samples, was used to verify expression patterns of hub genes.

To compare expression levels of key genes expressed in MI and

healthy control samples, box plots were drawn using the

“ggpubr” package. Then, the predictive accuracy of hub genes

was evaluated via receiver operating characteristic (ROC) curves

using the R package “pROC”. In addition, decision curve analysis

(DCA) was conducted to evaluate net benefit of each gene for

predicting MI at every probability threshold using the

“rmda” package.
2.8 Construction and validation of a
predictive nomogram

A nomogram integrating several diagnostic determinants was

constructed to improve the diagnosis of MI. The “rms” package

was used to build a nomogram based on genes identified via

machine learning algorithms to evaluate the risk of suffering from

MI. Harrell’s concordance index (C-index) and area under the

curve (AUC) assessments were applied to reveal the predictive

ability of the nomogram, with a C-index >0.9 considered highly

accurate. Meanwhile, a calibration plot comparing differences

between predictions and actual observations was drawn to evaluate

the performance of the diagnostic model using the “rms” package.

Furthermore, we used GSE48060 to validate the accuracy of the

nomogram model.
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2.9 Establishing the risk model

The regression coefficient was calculated via logistic regression

using the “rms” package, with the risk score determined, as follows:

Risk score ¼
Xn

i ¼ 1
Coef i � Expi,

where Coef represents the regression coefficient of each hub gene

and Exp represents the expression level of every gene.
2.10 Correlation between hub genes
and IICs

Spearman’s correlation analysis was used to reveal the relationship

between key genes and IICs. Then, a scatter plot was generated using

“ggpubr” and “ggExtra” packages in RStudio to visualize results.
2.11 Gene set enrichment analysis (GSEA)

GSEA (http://software.broadinstitute.org/gsea/index.jsp) was

used to identify significantly related signaling pathways that were

enriched in both MI and healthy control groups. The annotated

gene set list was selected from c2.cp.kegg.v7.2.symbols.gmt as the

reference gene set. After performing 1,000 permutations, cut-off

criteria of enriched gene sets were set to a false discovery rate

(FDR) q-value < 0.25 and nominal p-value < 0.05. GSEA (version

4.3.1) was used to screen for signaling pathways associated with

high-risk patients with MI. Then, the “clusterProfiler” package of

R was used to assess signaling pathways enriched in low-risk

patients with MI.
2.12 Identification of MiRNAs and
construction of a CeRNA network

MiRNAs potentially binding to key genes were predicted

using four databases: miRcode (http://www.mircode.org/),

miRWalk (http://mirwalk.umm.uni-heidelberg.de/), MicroT-CDs

(http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=

MicroT_CDS/index), TarBase v7.0 (http://diana.imis.athena-

innovation.gr/DianaTools/index.php?r=tarbase/index). A Venn

diagram is used to display the overlap between the prediction

results. The miRNAs that appeared in more than one database

were identified as key miRNAs. Finally, the key miRNAs and

genes were used to construct a ceRNA network using Cytoscape

(version 3.7.1).
2.13 Consensus clustering analysis

Based on expression levels of key genes in samples of patients

with MI, consensus clustering was applied to stratify patients into

discrete subgroups. The number of subtypes ranged from two to
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nine. The unsupervised clustering “km” method based on Euclidean

distance was repeated 50 times to guarantee the stability and

accuracy of subtypes using the “ConsensusClusterPlus” package of

R. The sample distribution of each cluster was revealed using

principal component analysis (PCA) and t-SNE method.

Subsequently, subtype-specific expression levels of hub genes were

visualized using boxplots and heatmaps created with “ggplot2”,

“ggpubr”, “pheatmap” packages. Finally, the “PupillometryR”

package was utilized to calculate neutrophil infiltration fractions,

immune scores, stromal scores, and estimate scores of the

subtypes, with the data displayed using violin plots.
2.14 Gene set variation analysis (GSVA)

GSVA was applied to estimate the enrichment of key signaling

pathways via a non-parametric and unsupervised method. In this

study, we divided patients with MI into two groups based on

genes related to neutrophils. The GSVA package in R was used

to comprehensively score all gene sets and analyze the differences

in biological functions between two subtypes.
2.15 scRNA-Seq analysis

The “Seurat” package was used to perform steps including

filtering samples, identifying normalized highly variable genes,

reducing dimensionality and clustering cells. The cells

expressing more than 200 genes, fewer than 2,500 genes, and

genes expressed in more than 3 cells were selected to remove

low-quality cells and possible doublets. Then, the highly

variable genes were identified with FindVariableFeature

function after normalizing data. Uniform manifold

approximation and projection (UMAP) and t-Distributed

stochastic neighbor embedding (t-SNE) were used to scale down

the dimension of all genes. Subsequently, the FindNeighbors

and FindClusters functions were conducted to determine the

subgroups of cells followed by annotating manually. The

expression of hub genes in each cell subgroup was calculated

using R package “scCustomize”.
2.16 Mice and myocardial infarction model

According to previous research, the progression of ischemic

cardiomyopathy is slowed down by estrogen, wild-type male

C57BL/6 mice which were eight weeks old were used in our

study (15, 16). The mice provided by Shanghai JieSiJie

Laboratory Animal Co., Ltd were divided into four groups at

random: sham group, 1d post-MI group, 3d post-MI group, 14d

post-MI group. With the approval of the Animal Care

Committee of Ruijin hospital, all animal experimental procedures

were conducted.

Permanent left anterior descending artery ligation was

conducted to construct MI models. Briefly, the mice anesthetized

with 1.5% isoflurane were intubated with 22-gauge tubes and
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placed on a heating pad to maintain the body temperature at

37°C. Then a horizontal incision between 3rd and 4th intercostal

spaces was made on the chest to expose the heart after

disinfection. An 8-0 silk suture was used to ligate the left

anterior descending (LAD) artery and 5-0 and 3-0 silk sutures

were utilized to close the chest and skin. Sham-operated mice

involved the same procedures except coronary artery ligation.
2.17 Western blotting (WB)

Total proteins were extracted from mouse heart tissue and the

protein concentration was determined using a BCA (Bicinchoninic

Acid) assay. Equal amounts of protein were separated by sodium

dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE,

7.5%–12% gels). Then the proteins were transferred to

polyvinylidene fluoride (PVDF) membranes. The membrane was

incubated overnight with the an anti-Il1r2 antibody (1:3000,

AF06912, AiFang, Shanghai, China) after blocking the membrane

with 5% bovine serum albumin (BSA). Following washing, the

membrane was incubated with a goat anti-rabbit secondary

antibody at room temperature for 1 h. Protein bands were

visualized using a Luminescent Image Analyzer detection system

(Fujifilm, LAS-4000). The level of Gapdh expression (1:20000,

HRP-6004, Proteintech) was used as an internal control.
2.18 Quantitative polymerase chain
reaction (qPCR)

Total RNA was extracted from heart tissue of myocardial

infarction (MI) mice using TRIzol reagent (Invitrogen, Carlsbad,

CA, USA). Then, cDNA synthesis was performed using

PrimeScriptTM RT reagent kit (Cat# 4368813, Thermo Fisher

Scientific). Quantitative polymerase chain reaction (qPCR)

analysis run in the Opticon Real-time PCR Detection System

(Bio-Rad) using SYBR Green master mix (Toyobo, Japan). We

used Primer software to design IL1R2, GAPDH primer. IL1R2:

Forward: 5’-TCAGGAAGTTGGTGCGGACAATG-3’ and reverse:

5’-TGTCGGAGTGAGGTGCCAAGG-3’. GAPDH: Forward:

5’-CAG-GGC-TGC-TTT-TAA-CTC-TGG-TAA-3’ and reverse:

5’- GGGTGG-AAT-CAT-ATT-GGA-ACA-TGT-3’. The relative

mRNA expression was normalized to GAPDH expression and

quantified using the comparative Ct (ΔΔCt) method.
2.19 Immunofluorescence

The paraffin sections of the mouse heart were used for

immunofluorescence to probe the expression of IL1R2. The 4%

paraformaldehyde (PFA) was conducted to fix the indicated

hearts at 4°C for 2 h after euthanizing the mice before MI, on

the first, third and fourteenth day after MI. The hearts were

buffered with 30% sucrose for 4 h after cryoprotection with 20%

sucrose. Then, through deparaffinization, hydration, antigen

retrieval with pH8.0 Tris-EDTA, the sections were blocked with
frontiersin.org
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3% hydrogen peroxide for 15 min at room temperature and

incubated with anti-Il1r2 (1:3000, AF06912, AiFang, Shanghai,

China) and anti-MPO (1:3000, Ab208670, Abcam, Shanghai,

China) antibodies at 4°C overnight. The phosphate-buffered

saline was utilized to wash the sections followed by staining with

CD31HRP-Polymer anti-rabbit IgG for 30 min at room

temperature. Finally, the nuclei of mouse heart section was

stained with DAPI for 10 min.
2.20 Immunohistochemistry

The heart cells were seeded in the culture plates. After washing

the cells three times with PBS at room temperature for 30 min, the

cells were permeabilized using 0.1% T riton X-100 (Beyotime

Biotechnology, Shanghai, China) for 15 min at 37°C.

Subsequently, antibodies mentioned earlier were used to incubate

the cells as immunofluorescence. Finally, the QuPath software

(v0.5.0) was conducted to calculate the percentage of positive cells.
2.21 Statistical analysis

R software (version 4.2.1, https://www.rstudio.com/) was used

to perform data analyses and visualization and Prism 7.0 was

used to visualize data comparing models of four articles. PCA

was performed to reduce the dimensionality and identify a

pattern based on GSE66360 data using the “scatterplot3d”

package. The Student’s t-test was used to compare paired data;

for example, those of MI and healthy control datasets. For all

analyses, values of p < 0.05 were considered statistically significant.
3 Results

3.1 Screening for Key IICs

The landscape of 22 IICs in MI and healthy control tissues was

shown using the CIBERSORT algorithm. Proportions of IICs in

each sample were determined based on GSE66360 and GSE48060

data and are shown in Supplementary Figures S1A,B,

respectively. Proportions of IICs in all samples ranked by

infiltration level are shown in Figure 2A; Supplementary

Figure S1C. The top four IICs in GSE66360 were CD4 memory

resting T cells, gamma delta T cells, memory B cells, and

neutrophils, while the top four IICs in the GSE48060 dataset

were neutrophils, gamma delta T cells, CD4 naive T cells, and

CD4 memory resting T cells. A correlation heatmap of 22 types

of IICs identified in the GSE66360 dataset revealed that

neutrophils were negatively correlated with T cells and CD4

memory resting cells, and positively correlated with activated

mast cells. GSE66360 dataset analysis revealed that gamma delta

T cells were negatively correlated with T cells and CD4 memory

resting cells, and positively correlated with activated mast cells

(Figure 2B). Correlations between 19 types of IICs were

determined using GSE48060 data and were shown in
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Supplementary Figure S1D, three IICs that had not infiltrated

were excluded. Neutrophils were significantly positively correlated

with m0 macrophages and negatively correlated with gamma

delta T cells. Gamma delta T cells were positively correlated with

T cells and CD4 memory activated cells, and negatively

correlated with neutrophils. Differences in immune cell

infiltration levels between MI and healthy control samples in the

GSE66360 dataset are shown in Figure 2C. Infiltration levels of

CD4 memory resting T cells (p < 0.001) and gamma delta T cells

(p < 0.001) were reduced, while those of mast cells (p < 0.001)

and neutrophils (p < 0.001) were increased vs. healthy control

samples. We explored whether expression levels of these genes

were associated with the 22 types of IICs found to be

overrepresented in MI. A heatmap revealed that expression levels

of genes upregulated in MI were positively correlated with IICs,

including neutrophils and activated mast cells. In contrast, these

genes were negatively correlated with CD4 memory resting and

gamma delta T cells (Figure 2D). Differences between IIC levels

within MI and healthy control tissues that were revealed using

GSE48060 data are shown in Figure 2E. A violin plot shows that

in MI samples, neutrophils (p = 0.003) exhibited increased levels

of infiltration, while gamma delta T cells (p = 0.003) and resting

NK cells (p = 0.010) infiltrated less vs. healthy control samples.

Finally, a heatmap created using GSE48060 data revealed that

expression levels of identified genes were associated with IICs

(Figure 2F). CD4 memory-activated T and gamma delta cells

were negatively correlated with gene expression levels, while

neutrophils were positively correlated.
3.2 Identification of DEGs

GSE66360 and GSE48060 datasets were downloaded from the

GEO database, both of which used the same platform. In total,

22,881 DEGs were identified when 49 MI and 50 healthy control

samples were compared using GSE66360 dataset. Thereafter,

1,047 significantly upregulated and 1,396 significantly

downregulated genes were identified. A volcano plot was

constructed to visualize gene expression distributions

(Supplementary Figure S2A). Expression levels of the 50 most

highly upregulated and downregulated genes were revealed using

a heat map (Supplementary Figure S2B). Genes in which

|logFC| > 0.5 and p < 0.05 were considered statistically significant

DEGs. PCA was used to compare differences in gene expression

patterns of MI and control groups using GSE66360 data

(Supplementary Figure S2C). The results revealed that genes

from MI and healthy control samples were distributed in distinct

clusters, suggesting that gene expression patterns in MI samples

differed from those of healthy control samples.
3.3 WGCNA-based identification of key
module genes

Identified DEGs were screened to find key modules and genes

associated with MI. First, hierarchical clustering analysis was
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FIGURE 2

Identification of key IICs associated with MI. (A) A box plot created using GSE66360 data shows proportions of IICs in MI and normal tissues.
(B) Coherence between 22 cell types present in GSE66360 data is shown in a heatmap. Red indicates high coherence, while blue indicates low
coherence. (C) A comparison of immune cell infiltration levels between MI and normal samples from GSE66360 data is shown. Red and blue
colors represent MI and normal samples, respectively. (D) A heatmap indicating the correlation between 22 IICs and samples within the GSE66360
dataset is shown. Red indicates a positive correlation and blue indicates a negative correlation. (E) A violin plot reveals proportions of 22 cell types
in MI and normal tissues based on GSE48060 data. (F) The relevance between IICs and tissues in GSE48060. Values of p < 0.05 were considered
statistically significant. IICs, infiltrating immune cells; MI, myocardial infarction.
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conducted to remove outliers (Supplementary Figure S3A). The

pickSoftThreshold function was used during WGCNA to assess

the topology of the network. A soft threshold parameter was set

at six, and a scale-free R2 of 0.85 was used to construct a scale-

free network (Figure 3A) with high-average connectivity

(Figure 3B). Relationships between identified modules were

mapped. The TOM of all DEGs was displayed using a heatmap

(Supplementary Figure S3B). Light colors indicate a low degree

of overlap and red represents a high degree of overlap. DEGs

with similar expression patterns were placed in an independent

module using average linkage hierarchical clustering. As shown

in a clustered dendrogram, seven modules were identified after

merging dynamic modules and setting minModuleSize to 30,

deepSplit to 2, and mergeCutHeight 0.15 (Supplementary
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Figure S3C). The gray module included non-expressed DEGs,

which were excluded from further analyses. The heatmap and

clustered tree indicated that expression levels of genes in each

module were relatively independent of those in the other

modules. We then clustered genes that could provide information

about between-module relationships to analyze connectivity. The

dendrogram and heatmap revealed that seven modules could be

divided into two clusters (Figure 3C, Supplementary Table S1).

Relatively high degree connectivity was observed between two

sets of modules: brown with red modules and green with red

modules. Subsequently, Spearman’s correlation coefficients of the

seven modules and clinical characteristics were calculated to

identify the most significant associations (Figure 3D). As shown

in the heatmap, brown module genes were significantly
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FIGURE 3

Identification of a key module via WGCNA. Scale-free index (A) and mean connectivity (B) analyses used to obtain various soft-thresholding powers
are shown. (C) A dendrogram, heatmap of module genes, and a (D) heatmap showing the correlation between different modules and traits are shown.
Every row stands for a module, and every column represents a trait. Spearman’s correlation and P values are represented by the numbers in each cell.
(E,F) A scatter plot analysis showing associations between GS and MM in the brown module is shown. Module genes with GS > 0.6 and MM > 0.7 values
were considered key genes. (G) A WGCNA co-expression network of brown module genes is shown. LncRNA are indicated by triangles and mRNA by
ovals. Degree of gene connectivity is indicated by the color of the nodes from low(green) to high(red). (H) A Venn plot revealing key genes is shown.
Values of p < 0.05 were considered statistically significant. GS, gene significance; MM, module membership; WGCNA, weighted gene correlation
network analysis.
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correlated with neutrophils (R = 0.79, p = 2e−22) and MI (R = 0.72,

p = 6e−17). Two scatterplots of module membership vs. gene

significance also showed that correlation coefficients between

genes in the brown module and neutrophils (Figure 3E,

cor = 0.86, p = 1.3e−99) and MI (Figure 3F; cor = 0.78, p =

5.6e−70) were high. The network of genes in the brown module
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is shown in Figure 3G. Sixty genes with GS > 0.6 and MM> 0.7

were identified for further analysis. Finally, we conducted the

“NetworkAnalyzer” function in Cytoscape to calculate the degree

of nodes in the network. A total of 112 nodes with degree >300

were selected based on their intersection with 60 genes, as is

depicted in the Venn plot shown in Figure 3H.
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FIGURE 4

Functional enrichment analysis based on brown module genes. (A) A Treeplot of the top 15 most significant KEGG pathways and the top 15 GO terms
identified via GO functional analysis is shown. (B) A chord diagram of CC, (C) circle graph of MF, (D) heatmap of BP are shown. (E) Underlying biological
processes and related signaling pathways enriched in the brown module were identified using Metascape. (F) A PPI network of brown module proteins
and (G) hub networks of the PPI network created using an MCODE plug-in are shown. KEGG, kyoto encyclopedia of genes and genomes; GO, gene
ontology; BP, biological processes; CC, cell component; MF, molecular function; PPI, protein-protein interaction; MCODE, molecular
complex detection.
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3.4 Functional enrichment analysis and
construction of PPI network

Functional enrichment analysis was performed to explore

potential biological functions and pathways of identified genes.

KEGG pathway enrichment analysis indicated that identified

DEGs were mainly involved in cytokine-cytokine receptor

interactions, neutrophil extracellular trap formation, lipid and

atherosclerosis, and the IL-17 signaling pathway, as shown in

Figure 4A. GO enrichment analysis was performed from the

following three perspectives: biological process (BP), cell
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composition (CC), and molecular function (MF). The top 15

GO terms associated with DEGs were shown in Figures 4B–D.

Identified GO terms included pattern recognition receptor

activity, immunoglobulin binding, IgG binding, immune

receptor activity, cytokine activity, carbohydrate binding, and

protease binding (Supplementary Table S2). The Metascape

algorithm was used to investigate immune-related pathways,

vessel-related pathways, and their interactions, including

neutrophil extracellular trap formation, neutrophil migration,

cytokine-mediated signaling pathways, and platelet-mediated

interactions with vascular and circulating cells, lipids, and
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FIGURE 5

Identification of hub genes by three machine learning algorithms and verification. (A,B) LASSO regression and (C) SVM-RFE algorithm analysis to
screen for genes involved in MI are shown. The blue dot reveals the number of genes with the smallest degree of cross-validation. (D) Random
forest analysis performed to calculate error rate based on the number of trees and (E) the mean decrease Gini are shown. (F) Genes identified
based on their identification via three distinct analyses are shown. (G–K) Expression levels of the five key genes identified via comparisons
between MI and normal samples, verified using GSE66360 data, are shown. Values of p < 0.05 indicated statistical significance. LASSO, least
absolute shrinkage and selection operator; SVM-REF, support vector machine recursive feature elimination.
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atherosclerosis (Figure 4E). Finally, an underlying regulatory

network was revealed via PPI analysis (Figure 4F), with hub

genes extracted from the PPI network using the MCODE

plug-in of Cytoscape (Figure 4G).
3.5 Selection of hub genes via machine
learning

After the intersection of the 112 nodes and 60 key genes, a total

of 59 genes were identified. Three machine algorithms were used to

identify hub genes, as follows: LASSO regression analysis, SVM-

RFE, and a random forest algorithm. Twenty-three genes were

selected from 59 genes using LASSO regression analysis

(Figures 5A,B), eight genes were identified by SVM-REF analysis

(Figure 5C), and six genes were selected using a random forest

algorithm (Figures 5D,E; Supplementary Table S3). Five genes

were identified by combining results of all three methods

(Figure 5F): interleukin 1 receptor type II (IL1R2), C-type lectin
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domain family 4, member D (CLEC4D), cytidine deaminase

(CDA), thrombomodulin (THBD), and nicotinamide

phosphoribosyltransferase (NAMPT).
3.6 Validation of hub genes

Using GSE66360 and GSE48060 data, we evaluated whether

the five hub genes were expressed differently in samples derived

from MI tissues vs. healthy controls. As shown in Figures 5G–K,

GSE66360 data revealed that expression levels of each of the five

genes from MI tissues were significantly higher than those from

healthy controls (p < 0.05). However, GSE48060 data revealed

that four of the five genes were more highly expressed in MI

samples than in healthy controls, while THBD was upregulated

in MI samples, though not significantly (p > 0.05; Supplementary

Figures S4A–E).
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3.7 Diagnostic accuracy of key genes

ROC curves were drawn to estimate the predictive accuracy of

the identified genes using the GSE66360 dataset. The area under

the ROC curve (AUC) values for CDA, CLEC4D, IL1R2,

NAMPT, and THBD were 0.893, 0.882, 0.887, 0.885, and 0.921,

respectively (Figures 6A–E). These values demonstrating that

each of the five genes had good predictive ability. To improve

the convenience of diagnosing MI, we constructed a nomogram

using the five genes, as shown in Figure 6F. C-index was used to

test the predictive ability of the diagnostic model, revealing a

C-index value of 0.953, a value indicating high accuracy.

Subsequently, strong consistency between predicted and observed

outcomes was demonstrated via the calibration curve of the

predictive nomogram used to determine risk associated with MI

(Figure 6G). ROC curves of all five genes and the nomogram are

shown in Figure 6H. DCA curves of key genes and the

nomogram were drawn to determine whether the key genes

could improve clinical decision-making regarding the diagnosis

of MI (Figure 6I). Furthermore, to verify the results, we used the

five key genes to build a nomogram to predict a risk score for

MI based on GSE48060 data (Supplementary Figure S5A) and a

calibration curve was constructed to assess the accuracy of the

predictive model (Supplementary Figure S5B). The diagnostic

accuracy of the nomogram model was better than that of

conventional methods. The AUC of the nomogram model was

0.953, indicating an excellent predictive ability for MI. A ROC

curve drawn using calculated AUC values of key genes identified

in four other articles revealed that the AUC of our model was

higher than those of other studies (Figure 6J). Finally, C-index

values of the key genes identified in the studies were calculated

and were shown in Figure 6K. We discovered that the C-index

value of our model was higher than those of other studies.
3.8 GSEA

GSEA based on GSE66360 data was used to identify molecular

mechanisms potentially involved in MI. Results revealed that in

patients at high risk of MI, pathways related to the chemokine

signaling pathway, B cell receptor signaling pathway, cytokine

receptor interaction, FC gamma R-mediated phagocytosis, leukocyte

transendothelial migration, and natural killer cell-mediated

cytotoxicity were enriched (Supplementary Figures S6A–F).

Supplementary Figure S6G showed pathways enriched in patients

with low-risk MI. These pathways included nucleotide excision

repair, oxidative phosphorylation, proteasomes, ribosomes,

spliceosomes, and ubiquitin-mediated proteolysis.
3.9 Comparison of hub gene and IIC risk
scores

The regression coefficients of each gene were calculated using

logistic regression. Spearman correlation analysis-based
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relationships between key genes and IICs were displayed in

Figures 7A–E. CDA was significantly and positively correlated

with neutrophils, activated mast cells, activated monocytes,

activated NK cells, and activated DCs (p < 0.05; Figure 7A).

CLEC4D expression was significantly and positively correlated

with activated neutrophils, mast cells, monocytes, and DCs

(Figure 7B). IL1R2 expression was positively correlated with

neutrophils, activated mast cells, and monocytes (Figure 7C).

NAMPT expression showed a significant, positive correlation

with neutrophils, activated mast cells, monocytes, and DCs

(Figure 7D). THBD expression was positively correlated with

activated neutrophils, mast cells, monocytes, and DCs

(Figure 7E). Expression of the five identified genes was negatively

correlated with gamma delta T cells and CD4+ memory resting

T cells. Nomogram risk scores revealed a significant, positive

relationship with neutrophils, activated mast cells, monocytes,

activated DCs, and activated NK cells, and a significant, negative

correlation with gamma delta T cells and CD4 memory resting T

cells (Figure 7F, Supplementary Table S4). As shown in

Figures 7G–L, CDA, CLEC4D, IL1R2, NAMPT, THBD, and the

nomogram were significantly positively correlated with

neutrophils (p < 0.05 for all, R = 0.77, 0.75, 0.62, 0.71, 0.64, and

0.76, respectively).
3.10 Consensus clustering analysis and
gene set variation analysis

Unsupervised clustering analysis was performed using data

from 49 MI tissues samples in the GSE66360 dataset to classify

patients into different clusters. A k value of two was selected

after estimating a consensus heatmap (Figure 8B), with relative

changes ranked according to the cumulative distribution function

(CDF). The CDF reached an approximate maximum of k = 2,

and the cluster analysis was more reliable (Figure 8A). We

identified two distinct MI patterns and thereby divided patients

into two corresponding clusters, as follows: 24 cases in

MI-related cluster 1 and 25 cases in MI-related cluster 2

(Supplementary Table S5). PCA and t-SNE analyses were used to

validate the independent distribution of MI-related subtypes

(Figures 8C,D). The boxplot and heatmap revealed that the

expression levels of the five hub genes were higher in cluster one

than those in cluster two (Figures 8E,F). A violin plot showed

that the infiltration fraction of neutrophils was higher in cluster

one than that in cluster two (Figure 8G). Subsequently, the

“PupillometryR” package was applied to calculate immune,

stromal, and estimate scores of subtypes. As violin plots showed,

immune (Figure 8H), stromal (Figure 8I), and estimated

(Figure 8J) scores of cluster one were high and those of cluster

two were low. Finally, we used the GSVA to evaluate the

differences of biological functions in two clusters. The heatmap

revealed that pathways related to immune and inflammations,

such as leukocyte transendothelial migration, B cell receptor

signaling pathway, T cell receptor signaling pathway were

enriched in cluster 1, while metabolism pathways were enriched

in cluster 2 (Figure 8K). Furthermore, to access the stability of
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FIGURE 6

Evaluation of hub genes, construction and validation of a predictive nomogram for MI and comparison of AUC and C-index values of this model vs.
those of other articles. ROC curves of CDA (A), CLEC4D (B), IL1R2 (C), NAMPT (D), and THBD (E) are shown. (F) Hub genes integration to establish a
diagnostic nomogram to predict risk of MI is shown. (G) A calibration curve comparing predicted and actual observations, (H) the predictive efficiency
of the nomogram and other hub genes evaluated via ROC, and (I) DCA curves of the nomogram and other hub genes are shown. The ‘none plot’
represents no patients were diagnosed and the ‘all plot’ represents all patients were diagnosed. (J) ROC curves of models from four prior studies
and our study and (K) C-index values from models of four prior articles vs. that of our model are shown. ROC, receiver operating characteristic;
DCA, decision curve analysis; AUC, area under the ROC curve.
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subtypes, the GSE48060 dataset was used for validation. The result

displayed that the clusters were independent of each other

(Supplementary Figures S7A–C). Meanwhile, we found the key
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genes and neutrophils were significantly distributed between the

two subtypes, demonstrating a high level of immune

heterogeneity (Supplementary Figures S7D–F).
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FIGURE 7

Correlation between 22 IICs and expression levels of hub genes using GSE66360 data. Lollipop plots indicating the relationship between IICs and CDA
(A), CLEC4D (B), IL1R2 (C), NAMPT (D), THBD (E), and risk score for MI (F) are shown. Scatter plots revealing the correlation coefficient between
neutrophils and expression levels of CDA (G), CLEC4D (H), IL1R2 (I), NAMPT (J), THBD (K), risk score of MI (L). Values of p < 0.05 were considered
statistically significant. IIC, infiltrating immune cell; MI, myocardial infarction.
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3.11 Identification of MiRNAs and
construction of CeRNA network in MI

To identify miRNAs that may bind to the five key genes, miRNAs

appearing in more than one database were considered (Supplementary

Figures S8A–E). Results showed that 230 miRNAs bind hub genes.

A ceRNA network was constructed to display potential interactions

between miRNAs and key genes (Supplementary Figure S8F).
Frontiers in Cardiovascular Medicine 13
3.12 Single-cell RNA sequencing analysis

Cluster analysis divided scRNA-seq cells into 14 clusters

(Supplementary Figure S9B). The 14 clusters were categorized

into 9 types of cells by markers (Figure 9A; Supplementary

Figure S9A). The Figure 9B revealed the expression of markers in

each cell. Then, the ratio and the absolute number of cells in

samples were displayed in Figure 9C. The stack plot showed the
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FIGURE 8

Consensus clustering analysis of genes identified from MI samples using GSE66360 data. (A) A CDF plot shows cumulative distribution functions for
differing values of k. The plot is used to identify the optimal value of k that improves the reliability of the clustering analysis by identifying the point at
which the CDF reaches its approximate maximum. (B) A heatmap of the consensus matrix reveals two clusters of patients. The “ConsensusClusterPlus”
package was used for clustering. Colors indicate the two MI subtypes. (C) A PCA of the two MI subtypes is shown. Red dots indicate cluster 1 and blue
dots indicate cluster 2. (D) The t-SNE of two MI clusters is shown. (E) Differing expression levels and a (F) heatmap displaying expression level
differences of key genes in each cluster are shown. Upregulated genes are shown in red and downregulated genes are shown in blue. (G) A violin
plot revealing the percentage of infiltrating neutrophils in each of the two clusters is shown. Violin plots of (H) immune, (I) stromal, and (J)
estimate scores of the two clusters are shown. (K) Heatmap shown the signaling pathways enriched between two subtypes. MI, myocardial
infarction. CDF, cumulative distribution function; PCA, principal component analysis; t-SNE, t-Distributed stochastic neighbor embedding.
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ratio of neutrophils was higher on the 7th day after MI. Interestingly,

on the 14th day after MI, the ratio of neutrophils decreased. As the

UMAP plot displayed, the expression of genes of each cell was

calculated in sham, day3, day7 and day14 post-MI groups

(Figure 9D). We found the genes of neutrophil increased on the

seventh day, and decreased on the fourteenth day after MI.
Frontiers in Cardiovascular Medicine 14
Subsequently, as the Supplementary Figure S9C revealed, the

expression of IL1R2 was higher in neutrophil than in other cells

and more concentrated in neutrophil compared to other hub genes.

The expression of IL1R2 increased on the 3rd day and decreased on

the 7th day after MI (Figure 9E). Finally, the ratio of IL1R2 in each

group was calculated, Sham: 0.087, D3: 0.228, D7: 0.111, D14: 0.195.
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1516043
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 9

Single-cell RNA sequence analysis. (A) UMAP visualization of 9 cell types in control and infarcted heart tissue from mice. (B) Dot plot shown the
expression of markers of each cell type. The percentage that every cell cluster expressed the marker genes was represented with dot size and the
expression level was represented with dot color. (C) Stack plots revealed the ratio and absolute number of different cell types in sham, 3 days, 7
days and 14 days after myocardial infarction groups. UMAP plots visualized the genes of each cell type (D) and the expression of IL1R2 (E) in
sham, day3, day 7 and day14 post-MI groups. UMAP, Uniform manifold approximation and projection; Sham, sham-operated.
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3.13 Immunofluorescence and
immunohistochemistry

We examined the distribution of Il1r2 in sham-operated group

and different stages of myocardial infarction, 1 day, 3 days, 14 days

after MI, and found Il1r2 was co-expressed with MPO, as the

fluorescent microscopy analysis displayed (Figure 10A). PCR

analysis revealed that the expression of IL1R2 was significantly

higher in MI tissues compared to normal tissues. IL1R2

expression peaked on the first day following MI and

subsequently decreased over time (Figure 10B). WB results

showed that, compared to the sham group, the expression of

Il1r2 was higher on both the first and third days after MI.

Additionally, the expression of Il1r2 on the third day post-MI

was higher than on the first day. Two weeks after MI, the

expression of Il1r2 was lower than on both the first and third

days post-MI (Figure 10C). Then, as the IHC staining showed,
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compared to sham group, the positive rate of Il1r2 was higher on

the first day (p < 0.05) and third day after MI (p < 0.001),

demonstrating the diagnosis value of Il1r2. Moreover, the rate of

Il1r2 was also higher on the third day after myocardial infarction

than the first day, which revealed the potential of Il1r2 in

predicting the progression of MI. Interestingly, two weeks after

MI, the Il1r2 expression level was lower than those on the first

day and third day after MI (Figures 10D,E).
4 Discussion

Although the development of therapies has led to

breakthroughs in MI treatment, the disease remains a leading

cause of death worldwide (17, 18). Currently, methods used to

diagnose MI are primarily based on serum biomarkers of

myocardial damage. However, these biomarkers cannot provide
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FIGURE 10

Detection of IL1R2 in control and infarcted murine heart tissue. (A) IF staining for IL1R2 (red) and MPO (green) with DAPI (4’,6-diamidino-
2-phenylindole) (blue) nuclear counterstain in normal and infarcted tissue. (B) The mRNA expression of IL1R2 from sham group and MI group was
detected by qPCR and normalized to GAPDH expression values were expressed as mean ± standard deviation (mean ± SD). (C) The protein
expression level of IL1R2 in the mice heart from sham group and MI groups were detected by WB. (D) IHC plot of IL1R2 positive cells in sham, D1,
D3, D14 tissue. The positive cells were represented by red circles. (E) The scatter plot revealed the difference of IL1R2 positive cells in sham, D1,
D3, D14 heart tissue. *p < 0.05; **p < 0.01; ***p < 0.001. IF, immunofluorescence; IHC, immunohistochemistry.
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sufficient warning of myocardial perfusion abnormalities in the

early stages of MI (19). Further, myocardial injury due to other

cardiomyopathies such as hypertrophic and Takotsubo

cardiomyopathies can interfere with the diagnosis of MI (20, 21).

In recent years, numerous biomarkers related to immune have

been identified for MI diagnosis and risk assessment, such as

S100 protein and Galectin-3 (Gal-3) (22). Moreover, point-of-

care (POC) testing of platelet was proved to improve the

diagnosis of AMI (23). Although some studies have confirmed

that IICs are involved in the development of many diseases

including Alzheimer’s and pediatric acute myocarditis (24, 25),

the role of IICs in MI remains unclear. Since we found that
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neutrophils play a key role in the occurrence of MI, we were

able to build a diagnostic model for MI using machine

learning algorithms. Through scRNA-seq analysis, we can

identify a gene with more specificity of neutrophil than other

genes of the model. Traditional types of MI including non-

ST-elevation MI (NSTEMI) and ST-elevation MI (STEMI) fail

to sufficiently classify patient risk associated with disease, and

the main diagnostic approach involving percutaneous coronary

intervention is invasive (17). Therefore, we defined two novel

subtypes of MI with independent immune heterogeneity that

may facilitate early intervention and the individualized treatment

of MI.
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Here, we describe a noninvasive MI screening approach that

uses machine learning algorithms to detect changes in neutrophils

of blood samples. To investigate the immune microenvironment of

MI, CIBERSORT and scRNA-seq analysis were used to reveal

infiltrating fractions of IICs in MI and non-diseased samples. We

found that neutrophils were significantly up-regulated in MI

samples in both training and validation sets, indicating that

neutrophils may play a significant role in the onset of MI.

Neutrophils, myeloid leukocyte cells accounting for 50%–70% of

all circulating leukocytes in humans, are a dominant arm of the

innate immune system that defends against pathogens. In chronic

obstructive pulmonary disease, neutrophilic inflammation is a

notable characteristic (26). In cardiovascular diseases (CVD),

neutrophils can induce macrophage transformation to another

phenotype, promoting angiogenesis. The process can facilitate the

generation of new blood vessels in the ischemic heart to repair

damage (12). This pathophysiological process is centered around

neutrophil-driven repair mechanisms. Neutrophils contribute to

the inflammatory response in CVDs through mechanisms such as

degranulation and the release of neutrophil extracellular traps

(NETs). NETs interact with endothelial cells and platelets,

promoting immune thrombosis, and are implicated in the

progression of various CVDs. NETs represent a promising

therapeutic target for anti-inflammatory strategies in CVD (27).

Neutrophils and platelets can be simultaneously activated in

various cardiovascular diseases, and their interaction may serve as

a potential target for novel therapeutic strategies in cardiovascular

diseases (28). A recent study found that inflammatory reactions

and microcirculatory disturbances associated with neutrophils that

protect the heart from ischemia-reperfusion injury are mediated

by PDE4B (29). Interestingly, scRNA-seq analysis revealed that the

neutrophil ratio in all cells initially increased and then decreased,

as shown by Jin. This is an important cellular mechanism to

alleviate the inflammation in ischemic heart tissue. Meanwhile, the

mechanism can activate the programs of anti-inflammation to

promote the transition from ischemia to reparative stage (30). In

acute coronary syndrome (ACS) patients, neutrophil count is

regarded as an independent predictor of disease progression on

admission (31). The number of neutrophils which is in circulation

is associated with infarct size (32). The identification of changes in

neutrophils in the peripheral blood is a potentially useful

therapeutic strategy.

Therefore, a module sensitive to neutrophils was screened via

WGCNA to explore the regulatory molecules that mediate MI.

GO and KEGG pathway enrichment analyses indicated that

neutrophil- and MI-related pathways such as neutrophil

migration, neutrophil extracellular trap, lipid and atherosclerosis

and NF-kappa B signaling were enriched in the brown module.

Atherosclerosis is a disease of the arteries that can lead to MI

(33). Neutrophil activation and degranulation can lead to plaque

erosion, contributing to MI (34). The NF-kappa B family plays a

crucial role in the process of inflammation by promoting the

expression of pro-inflammatory factors (35). NF-kappa B is also

considered a destabilizer of plaques (36). Machine learning

methods can be applied using general learning algorithms to

predict complex, large, and hard-to-tackle health problems (37).
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The application of machine learning algorithms can improve the

accuracy of disease susceptibility and outcome prediction

methods, both of which have improved significantly in recent

years (38). Key genes related to MI were identified using three

machine learning algorithms (LASSO regression analysis, SVM-

RFE, and the random forest method) and integrated into a

nomogram model to calculate and visualize risk associated with

MI occurrence via a relatively simple output. The diagnostic

accuracy of the nomogram model was demonstrated to be better

than that of conventional methods (39). Subsequently, DCA and

the calibration curve validated the stability of our nomogram

model. More importantly, the AUC and C-index of the

nomogram model were higher than those of the other four

articles (40–43), indicating an excellent predictive ability for MI.

Cluster analysis was used to divide the patients with MI into

two clusters. Subtype heterogeneity was observed when either the

infiltrating fraction of neutrophils or the expression levels of five

identified hub genes were considered. Notably, expression levels

of the five identified MI-related genes and neutrophil infiltration

percentage were elevated in cluster one vs. cluster two. In

addition, both immune and stromal scores of cluster one were

higher than those of cluster two. Also, the stability of the

immune subtypes was validated in a dataset. The identified

subtypes may allow for individualized MI therapy. Nonetheless,

molecular mechanisms underlying neutrophil-related changes

and risk models require further investigation.

As a high-throughput technology, scRNA-seq analysis can

quantify gene expression profile of particular cell group at the

level of single cell by RNA sequencing (44, 45). The analysis can

describe the specific gene expression pattern of the single cell

from tissues to reveal the cellular heterogeneity of the tissue (46).

Through scRNA-seq analysis, we found IL1R2 exhibited greater

specificity of neutrophil than other genes in the model. IL1R2 is

a member of the IL-1 receptor family and is associated with

immunity and inflammation (47). Some studies have shown that

IL1R2 plays a role in the progression, metastasis, and poor

prognosis of tumors (48, 49). In patient with coronary

atherosclerosis, the injury/inflammatory damage was prevented

by IL1R2 which mediated by miR-383-3p to inhibit the

inflammasome signaling pathway to active in endothelial cells of

coronary artery (50). In patients with STEMI, IL1R2 is associated

with left ventricular remodeling (51). IL1R2 may be involved in

the immune and inflammatory responses associated with

coronary artery disease (CAD). Because it significantly

overexpressed in peripheral blood mononuclear cells of patients

with CAD and its expression is positively correlated with the

SYNTAX score and oxidized low-density lipoprotein (52). In the

study, IL1R2 has been shown to inhibit cardiomyocyte apoptosis

during myocardial ischemia-reperfusion injury, suggesting its

potential as a therapeutic target for the prevention and treatment

of myocardial infarction (53).

Mouse model of MI was constructed to best investigate the

pathophysiology of ischemia heart disease. The paraffin sections

of MI tissue in different periods were selected to perform

following experiments. The protein targets were detected and

visualized with IF on each slide of section (54). IHC was an
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1516043
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Tang et al. 10.3389/fcvm.2025.1516043
important auxiliary tool for direct diagnosis and identification of

the cell linage (55). Here, as the IF shown, Il1r2 was co-

expressed with MPO. The WB analysis showed that, compared to

the sham group, the expression of Il1r2 was higher on both the

first and third days after MI. Additionally, the expression of Il1r2

on the third day post-MI was higher than on the first day. Two

weeks after MI, the expression of Il1r2 was lower than on both

the first and third days post-MI. The progression of MI was

revealed by IHC. With the early progression of MI, more and

more myocardial cells were injured and the rate of IL1R2

increased. The results validated that IL1R2 is specific to

neutrophils and might predict early progression of MI, which

could serve as a potential therapeutic target. The PCR analysis

revealed a reduction in the level of IL1R2 mRNA on the third

day post-MI. A decrease in mRNA levels does not necessarily

result in a corresponding reduction in protein expression. This

may be attributed to the cell compensating for the reduction in

mRNA by modulating translation efficiency, thereby maintaining

or even enhancing protein synthesis. However, there are some

limitations in the study. Firstly, our datasets and samples are

limited, which can cause deviation in the accuracy of biomarkers.

Secondly, our experiments are based on animals, not humans,

which only tentatively explain IL1R2 has potential value of

diagnosis and prediction of early progression of MI. The results

in this study should be verified by in vitro experiments in

future studies.
5 Conclusions

In conclusion, we found and verified that neutrophils

are key IICs that play a crucial role in the onset of MI.

The identification of IL1R2 related to neutrophils

facilitates the diagnosis of MI and prediction of the early

progression of MI. Furthermore, two distinct subtypes with

immune heterogeneity were identified. Immune infiltration

subtype classification could facilitate the development of

individualized MI therapies.
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