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Targeting gut microbiota to
regulate the adaptive immune
response in atherosclerosis
Despina Giakomidi1,2 , Ayoola Ishola1 and Meritxell Nus1,2*
1Cardiovascular Division, Department of Medicine, Heart and Lung Research Institute (HLRI), University
of Cambridge, Cambridge, United Kingdom, 2British Heart Foundation Centre of Research Excellence,
University of Cambridge, Cambridge, United Kingdom
Atherosclerosis, the leading cause of death worldwide, is a chronic inflammatory
disease leading to the accumulation of lipid-rich plaques in the intima of large
and medium-sized arteries. Accumulating evidence indicates the important
regulatory role of the adaptive immune system in atherosclerosis during all
stages of the disease. The gut microbiome has also become a key regulator of
atherosclerosis and immunomodulation. Whilst existing research extensively
explores the impact of the microbiome on the innate immune system, only a
handful of studies have explored the regulatory capacity of the microbiome on
the adaptive immune system to modulate atherogenesis. Building on these
concepts and the pitfalls on the gut microbiota and adaptive immune
response interaction, this review explores potential strategies to therapeutically
target the microbiome, including the use of prebiotics and vaccinations, which
could influence the adaptive immune response and consequently plaque
composition and development.
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1 Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally (1). In themajority

of cases the underlying cause is atherosclerosis, a complex arterial pathology with multiple

genetic and environmental risk factors. Atherogenesis is initiated in response to the trapping

of low-density lipoproteins (LDL) in the intima and their acquisition of immunogenic

properties through both enzymatic and oxidative modifications. The subsequent immune

response involves interactions between many vascular and circulating cells and mediators,

and frequently leads to a chronic inflammatory state due, at least in part, to defects in

counter-regulatory mechanisms. Extensive evidence supports the inflammatory theory of

atherosclerosis (2), and innate and adaptive immune cells have been shown to participate in

all stages of the disease from its initiation to progression and plaque rupture or erosion (3).

Moreover, atherosclerosis is a metabolic inflammatory disease, sensitive to changes in diet

and strongly influenced by the intestinal microbiota.

Microbiota, refers to the collective microbial community inside and on the surface of

the human body and plays a very important role in immune homeostasis and

atherosclerosis. Several studies have determined the innate immune system as a link

between gut dysbiosis and atherosclerosis, but less is known about the contribution of

adaptive immunity to the process. In this review we are going to focus on how the

gut microbiota influences the adaptive immune response and atherosclerosis, and how

it could be modulated and targeted to alter the adaptive immune response to

treat atherosclerosis.
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1.1 Atherosclerosis and adaptive immune
system

The adaptive immune response is a specialized response activated

through molecules (antigens) recognized by specialized, highly

selected and clonally developed receptors, like immunoglobins (Ig)

in B cells and T cell receptors (TCR) in T cells. Innate immune

cells, mainly macrophages and dendritic cells (DC), act as antigen

presenting cells (APC) and initiate the adaptive immune response.

They drive the polarization of naïve CD4+ and CD8+ T cells to

effector and/or memory cells of specialized T helper (Th) or

T regulatory (Tregs) -cell subsets through exposure of antigenic

peptides on major histocompatibility complex (MHC) class I or II

molecules, along with the engagement of co-stimulatory pathways

and the action of different cytokines in secondary lymphoid organs

(4). While Tregs have been proposed to have an atheroprotective

role, Th cells exhibit different roles depending of the subtype (5).

Th1 are atherogenic cells, while Th2, Th17 and Tfh may play

contextual dependent atherogenic or atheroprotective roles. All

types of CD4+ T cells have been found in atherosclerotic plaque

lesions or the adventitia as well as in the blood of patients with

atherosclerotic lesions (6).

Similarly, B cells are also important players in the adaptive

immune response in atherosclerosis. There are different B cell

subsets with different pro-atherogenic or atheroprotective functions

depending on the main antibody type or the cytokine they secrete

[reviewed in detail in (7)]. In general B1 (8, 9) and B2-Marginal

Zone B cells (MZB) (10–12) cells protect from atherosclerosis by

secreting IgM antibodies in a T independent or dependent manner

respectively. While B2-Follicular B (FOB) cells are considered

atherogenic for promoting the formation of the Germinal Centre

(GC) (13) response and atherogenic class switched IgG antibodies.
1.2 Gut microbiota

The human body contains a broad number of microorganisms

(∼4 × 1013 microbial cells) including bacteria, viruses, protozoa,

archaea and fungi, which constitute the commensal microbiota

that mainly resides in the gut. This commensal flora is unique to

each individual and has a mutualistic relationship with its host.

On one hand, it benefits from a constant supply of host substrates

and in return, the host also benefits from bacterial activities that

are important to keep a homeostatic physiological body balance

(14) like fermentation of non-digestible substrates (i.e., dietary

fibres); production of certain vitamins (i.e., vitamin E);

maintenance of the correct functioning of the immune system;

protection against infections; as well as, controlling the gut-brain

communication network between the enteric and the central

nervous system. Gut microbiota express over 3 × 106 of genes

producing millions of metabolites with diverse functions in the

host. Collectively, these genes expressed by the microbiota

constitute the microbiome (15, 16). There are several factors that

can modulate gut microbiota like host genetics, age and diet.

Based on the Twins UK study (17) less than 10% of the gut

microbiota taxa may exhibit a heritable trait, thus in general
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environmental factors like diet are more important determinants

of the microbiota composition. Several mouse and human studies

have reproducibly shown that a more diverse gut microbiota is

associated with a “healthy gut”, conversely, a dramatic imbalance

in the composition and function of these microorganisms, termed

as gut dysbiosis, leads to a decreased microbial diversity that

translates into a “leaky gut” and systemic inflammation causing

obesity, autoimmune diseases, type 2 diabetes and cardiovascular

diseases (18). Many studies have demonstrated that a diverse gut

can be achieved with a diverse diet (19), but other environmental

factors like medication and blood clinical markers also have an

important role. For example, in a recent large-scale human study

integrating microbiota profiles with clinical blood markers, diet

and medication, blood LDL levels were strongly negatively

associated with gut diversity (20).

There are five major bacterial phyla in the intestinal flora:

Bacteroidetes (includes genera like Bacteroides and Prevotella);

Firmicutes [includes genera like Clostridium (∼95%), Lactobacillus,
Bacillus, Enterococcus, and Ruminicoccus]; Actinobacteria (includes

genera like Bifidobacterium); Proteobacteria; Fusobacteria and

Verrucomicrobia (21) that have distinct functions and are

predominantly located in specific regions along the gut. In the lower

intestine anaerobic bacteria are the predominant type particularly

Bacteroides, Bifidobacteria, Fusobacteria and Peptostreptococci, while

anaerobes and facultative aerobes such as Enterobacteria and

Lactobacilli are present at moderate density (22). In homeostasis,

more than 90% of bacteria in both mice and human consist of

Bacteroidetes and Firmicutes (23). An increased Firmicutes/

Bacteroidetes (F/B) ratio has been associated with obesity (24) and

CVDs (25), so for many years, this ratio has been widely considered

to be a marker of gut health. However, this concept has been

challenged by more recent studies on obesity [reviewed in (26, 27)]

and the same may apply to CVD, which has been lesser studied than

obesity but further experiments are necessary to corroborate this.
1.3 Gut microbiota and atherosclerosis

Gut microbiota does regulate the risk factors (dyslipaemia,

hypertension, obesity etc) [extensively reviewed in (28–30)] and

the regulators (immune and inflammatory cells and mediators)

[extensively reviewed in (31)] that lead to atherosclerosis. Thus,

there is no surprise that studies in germ-free animals (GF) have

shown that the gut microbiota plays a prominent role in

atherosclerosis. Unexpectedly, GF ApoE−/− mice, with higher

plasma and hepatic cholesterol levels, developed less

atherosclerosis than conventionally raised (Conv) ApoE−/− fed a

control diet (early atherosclerosis model) (32, 33). Conversely,

there were no significant differences when feeding a high fat high

cholesterol (HF HC) diet for 12 weeks to the same mice models

(33) or for 16 weeks to Conv and GF LDLr−/− (advanced

atherosclerotic models) (34). These experiments suggest that gut

microbiota may play a more significant role in early

atherosclerosis, a time-point in which the adaptive immune

response plays a more prominent role (35). Thus, further

experiments are necessary to explore how gut microbiota could
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be modulating the adaptive immune response and its effect on

early atherosclerosis.

In humans there are a very few and small-sized studies that have

been performed to identify gut microbiota species that are different

between individuals with atherosclerosis or other CVD and healthy

controls (Table 1) (36–55). Bacterial DNA resembling that in the

gut is present in atherosclerotic plaques, but apart from a handful of

descriptive studies there are not functional studies to understand the

role of these bacteria in the plaque and if they could be associated

with increased CV risk (41, 53). Many different gut species have also

been identified as significantly increased or decreased in patients vs.

controls, but there is no consensus regarding species that are directly

linked to increased risk (36–55). Furthermore, while decreased

alpha-diversity is associated with disease in general, only one study

comparing controls and atherosclerotic patients found increased

diversity in healthy vs. atherosclerotic patients (), so clearly larger

epidemiological studies are needed to shed light into the relationship

between gut microbiota and CVD. Using a considerable sample

from the Framingham Heart Study it was shown that microbial

diversity decreased with 10-year CVD risk, and this was mostly

driven by BMI and lifestyle factors (54).

Despite not specific species have been identified, there is growing

evidence on how specific gut microbiota products and metabolites are

linked to increased risk of atherosclerosis (p.e. LPS and TMAO), while

others exhibit atheroprotective properties [p.e. short chain fatty acids

(SCFA)] [reviewed extensively in (57, 58)]. These metabolites also

influence the adaptive immune response, an in general those

atherogenic metabolites favor proinflammatory subsets while

atheroprotective metabolites enhance anti-inflammatory adaptive

immune cells (Figure 1) as it will be summarised below.
1.4 Gut microbiota and the adaptive
immune response and its potential role on
atherosclerosis

For many years, special attention was paid to the role of the gut

microbiota in the gastrointestinal tract and associated tertiary

lymphoid structures. More recently, it has been shown that the

gut microbiota exerts a remote effect, and may affect the

immune response systemically (59, 60). One reason for this is

that gut microbiota releases active metabolites and molecules

(p.e. LPS, TMAO or SCFA) that can interact with remotely

located organs and affect systemic immune responses and

atherosclerosis. Another reason for this is because immune cells

that change locally due to diet and gut composition in

mesenteric lymphoid nodes migrate to the periphery fueling

T cell accumulation within atherosclerotic lesions (61). Bellow we

will summarize how the different immune cell subsets can be

modulated by gut microbiota locally and/or systemically and how

this can impact the development of atherosclerosis.

1.4.1 Cd4+ T cells
1.4.1.1 Th1 cells
Th1 cells express the transcription factor T-bet and signal

transducer and activator of transcription 4 (STAT-4), and secrete
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interferon γ (IFN- γ), interleukin 2 (IL-2), IL-3, tumour necrosis

factor (TNF) and lymphotoxin (62, 63). Experimental mouse

models have shown that Th1 cells are pro-atherogenic [reviewed

in (5)] and are the dominant CD4+ T cells in human

atherosclerotic lesions (64–66).

Several gut bacteria species (p.e. Klebsiella and E. coli strains

from the Enterobacteriaceae family) have been shown to locally

modulate Th1 polarization in both mice (67) and humans (68).

In accordance with this, Enterobacteriaceae were also significantly

increased in the faeces of different atherosclerotic cohorts

compared to healthy controls (38, 39, 42, 49, 50) that could

potentially contributted to the development of the disease. As

expected, atheroprotective SCFAs like butyrate were shown to

inhibit T-bet and IFNγ (42), skewing Th1 differentiation into

anti-inflammatory IL-10-secreting in a G-coupled protein

receptor (GPR)-43 dependent-manner in experimental mouse

models of colitis and in human T cells (69). On the contrary,

pro-atherogenic LPS and TMAO were shown to enhance the

polarization of pro-inflammatory macrophages resulting in the

expansion and proliferation of Th1 and Th17 cells in advance

mouse models of atherosclerosis (70, 71).
1.4.1.2 Th2 cells
Th2 cells express the transcription factor GATA3 and secrete IL-4,

IL-5, IL-10 and IL-13 (72). Because Th2 signature cytokines can

counteract the Th1 pro-inflammatory response, they were

initially considered protective in atherosclerosis. But now we

know, that while IL-5, IL-10 and IL-13 are atheroprotective,

controversial results have been found regarding IL-4 [reviewed in

(5, 73)]. As expected, those species that enhance a Th1 response

have been shown to limit a Th2 response (p.e. Lactobacillus

strains and B. fragilis) (67, 74).
1.4.1.3 Th17 cells
Th17 cells expressing the transcription factor RAR-related orphan

receptor (ROR) γt, are activated by IL-23 and secrete IL-17. Their

role in atherosclerosis remains controversial as both atherogenic

(75, 76) and atheroprotective (77) effects have been described.

Th17, especially those located in the intestine, are among the

T cells that are more amenable by the gut microbiota and their

interactions have been widely studied in autoimmune and

metabolic diseases. In fact, mouse studies have shown that the

gut microbiota is essential for Th17 differentiation (78, 79).

Colonization of GF mice intestine with segmented filamentous

bacteria (SFB), gram-positive bacteria and Prevotella induced

Th17 differentiation and promoted secretion of IL-17 and IL-22

(67, 80–83). In a similar manner to Th1, SCFA inhibit RORγt

and Th17 differentiation (74) and promote Th17 IL-10-secreting

cells through inhibition of histone deacetylase (HDAC) and

activation of mTOR in a GPR-43 independent manner (84). In

atherosclerosis, LDLr−/− mice fed a HF/HC diet supplemented

with a cocktail of peptides that can modify the growth from a

HF/HC diet derived gut microbiota toward a low-fat diet one,

lead to a significant increase of Tregs and a decrease of Th17

reducing atherosclerosis (85).
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TABLE 1 List of clinical studies determining atherosclerotic plaque or gut microbiota composition in individuals with atherosclerosis and other associated cardiovascular diseases vs. healthy controls. CE, carotid
endarectomy; SCA, subclinical carotid atherosclerosis; CAD, coronary artery disease; CAS, carotid atherosclerosis; A, atherosclerosis; CHD, coronary heart disease; CVD, cardiovascular disease; IHD, ischemic heart
disease; AP, atherosclerotic plaques; F, faecal; 16S, 16S rRNA sequencing; MS, metagenomic shotgun sequencing; P, patients; C, control; TMAO, trimethylamine-N-Oxide; LPS, lipopolysaccharide; HDL-C, high
density lipoprotein—cholesterol; FHS, framingham heart study. TC, total cholesterol; LDL-C, low density lipoprotein; SCFAs, short-chain fatty acids; NS, not significant differences; NM, not measured. Terminal
restriction fragment length polymorphism (T-RFLP).

Condition Country Sample Anal N Gut microbiota in patients vs. controls Clinical parameters α diversity

CE (36) Denmark AP MS 15SP vs. 7C • ↓Porphyromonadaceae, Bacteroidaceae, Micrococcaceae, Streptococcaceae

• ↑Helicobacteraceae (H. pylori), Neisseriaceae (N. polysaccharea), Thiotrichaceae, Acinetobacter spp, Acidovorax spp

NM

CE (37) Sweden AP 16S 12SP vs.

15AP

• ↑Allobaculum, Erycipelotrichaceae, Erysipelotrichales, B. elkanii

• ↓Coeynebacteriaceae, Corynebacterium
NM

SCA (38) Italy F 16S

MS

144P vs.

201C

• ↑Enterobacteriaceae (Escherichia, Shigella), Firmicutes [Oscillospira, Streptococcus (S. salivarius, S. parasanguinis, S. anginosus),

Ruminococcus (R. obeum), Lactobacillaceae (L. gasseri, L. fermentum), Dorea (D. longicatena), Clostridium (C. leptum), Eubacteriaceae

(Eu. ramulus], Lachnospiraceae (Coprococcus), Parabacteroides (Pa. goldsteinii)

• ↓Bacteroides (B. uniformis, B. thetaiotaomicron), Ruminococcus (R. bromii), Firmicutes (F. prausnitzii)

• ↑TMAO, LPS

• ↓Butyrate

NM

CAD (39) China F 16S 70P vs. 98C • ↓Firmicutes (Faecalibacterium, Roseburia, Eubacterium, Clostridium, Lachnospiraceae*, Ruminococcaceae), Oscillospiraceae

(Subdoligranulum, Flavonifractor)

• ↑Firmicutes (Phascolarctobacterium**), Enterobacteriaceae (Escherichia, Shigella) Lactobacillaceae (Lactobacillus), Enterococcaceae

(Enterococcus), Streptococcaceae (Lactococcus), Erycipelotrichia (Catenibacterium), Bacillus, Leuconostocaceae), Pseudomonadaceae

(Pseudomonas)

• ↓Butyrate, HDL-C

• ↑TMAO*, TC**,

LDL-C**, HDL-C

NM

SCA (40) Hungary F 16S 14 twins • ↑Firmicutes [Lachnospiraceae (Roseburia), Ruminococcacceae (Faecalibacterium)), Bacteroidaceae (Bacteroides), Actinobacteria,

Eubacteriales (Blautia)

• ↓Bacteroidetes, Prevotellaceae

• NS

CAS (41) Sweden F MS 12P vs. 13C • ↑Firmicutes (Ruminococcus), Actinobacteria (Collinsella)

• ↓Firmicutes (Eubacterium, Roseburia)

• NM

A (42) China F MS 218P vs.

187C

• ↑Enterobacteriaceae [E. coli, K. pneumoniae, K. oxytoca, E. aerogenes], Firmicutes (Streptococcus spp, L. salivarius, S. moorei,

R. gnavus, unclassified Erysipelotrichaceae*, C. nexile*, S. anginosus*), Actinobacteria (A. parvulum, E. lenta, B. dentium)

• ↓Firmicutes (R. intestinalis, F. prausnitzii), Bacteroides (P. copri, A. shahii)

• ↑LPS, TMAO*

• ↓Lipid A synthesis

NS

CAD (43) Japan F (T-

RFLP)

39P vs. 30C

vs. 50H

• ↑Firmicutes (Lactobacillales, Clostridium)

• ↓Bacteroidetes (Bacteroides, Prevotella)
• NM

SCA (44) China F MS 569P • ↑Firmicutes (Enterococcus, Turicibacter), Euryarcheota (Methanobrevibacter), Proteobacteria (helicobacter), Actinobacteria

(Libanicoccus)

• ↓Firmicutes (Faecalicatena), Bacteroides (Alistipes), Proteobacteria (Acinetobacter, Oligella)

• ↓Butyrate Shannon index measured

in multiple factors

SCA (45) China F 16S 32P vs. 32C • ↑Firmicutes (Acidaminococcus, Christensenella, Lactobacillus)

• ↓Firmicutes (Anaerostipes, Fusobacterium, Gemella, Parvimonas, Romboutsia, Clostridium)

• NS

CHD (46) China F 16S 29P vs. 35H • ↑Firmicutes (Clostridia), Bacteroides, Fusobacteria

• ↓Proteobacteria, Bacteroidetes (Bacteroidia)
• NS

CAD (47) China F 16S 161P vs. 40C • ↓Firmicutes [Lachnospiraceae Roseburia), Ruminococcaceae (Faecalibacterium)]

• ↑Firmicutes (Veillonella), Proteobacteria (Haemophilus, Klebsiella)

• ↓Butyric acid

• ↑LPS

NS for SCAD and controls

** for UA and MI

CAS (48) China F MS 31P vs. 51C • ↓Bacteroidetes (Prevotellaceae), Proteobacteria (Pasteurellaceae, Haemophilus, E. coli**, Halomonas unclassified**, K. pneumoniae,

Pantoea unclassified), Firmicutes (A. defectiva, A. intestini, G. haemolysans, L. mucosae, L. lactis, M. elsdenii, R. sp JC304,

S. anginosus, T. sanguinis, Turibacter unclassified)

• ↑Bacteroidetes (B. sp 3_1_19, P. unclassified, P copri*)

• ↓SCFAs, LPS*,
TMAO**

• ↑LPS, SCFAs

NS

CVD (49) India B 16S 80P vs. 4° C • ↑Actinobacteria (Propionibacteriaceae, Corynebacterium, Rhodococcus, Mycobacterium, Bifidobacterium, Brachybacterium,

Clavibacter, Nocardia, Kocuria, Mobiluncus, Arthrobacter, Actinobacillus, Acinetobacter, Streptomyces, Cellulomonas, Leifsonia),

Firmicutes (Streptococcus, Bacillus, Acidaminococcus, Micrococcus), Bacteroidetes, Chlorobi, Chrloroflexi, Cyanobacteria,

Acidobacteria, Deinococcus-Thermus, Gemmatimonadetes, Thermotogae, Rhizobiales, Rhodobacterales, Enterobacteriales

(Sinorhizobium, Myxobacterium, Escherichia, Bradyrhizobium, Methylobacterium)

• ↓Proteobacteria (Pseudomonadaceae, Pseudomonas, Rhodopseudomonas, Escherichia, Shigella, Paracoccus)

• NM
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1.4.1.4 Tfh cells
Tfh cells express the transcription factor Bcl-6 and the chemokine

receptors CXCR5, ICOS and PD1. They are a specialized subset of

CD4+ T cells that provide help to B cells and are essential for

germinal center formation, affinity maturation and the

development of high affinity antibodies and memory B cells (86).

They are atheroprotective by modulating IgM secretion of MZB

cells (10–12).

The relationship between gut microbiota and Tfh is mutual,

not only does gut microbiota affect Tfh differentiation and

function but Tfh also shapes gut microbiota through receptors

that are able to sense the gut microbiota and to produce an

appropriate ecosystem for its development. So, on one hand

P2X7 (87) and PD1 (88) on Tfh are necessary to secrete gut

microbiota specific IgA antibodies and to maintain a more

diverse microbiota. And on the other hand, Tfh differentiation

are absent in GF mice and restored upon microbial transplant

in a TLR2-MyD88 dependent manner (89). Also, SFB in

Peyer’s patches were shown to enhance pro-inflammatory Tfh

differentiation by restricting IL-2 access to CD4+ T cells in a

dendritic cell dependent manner and favoring Bcl-6 expression

in the gut of a mouse model of arthritis (90).
1.4.1.5 Treg cells
Treg cells express the transcription factor FoxP3 and secrete

anti-inflammatory cytokines like IL-10, TGF-β, and IL-35 (91).

They preserve immune tolerance, block excessive inflammation

and have an immune suppressive activity (92). They exhibit a

prominent atheroprotective role (93–96) and clinical trials

using low dose IL-2 (which increases Tregs) have been

initiated to treat ischaemic heart disease (97, 98). Interestingly,

low dose IL-2 has been shown to affect gut microbiota in mice

and humans (99) so this interaction may have important

therapeutical implications.

Both intestinal and peripheral Treg cells differentiation are

regulated by SCFA in a GPR-43-dependent manner (100).

Moreover, butyrate and propionate enhance extrathymic Treg

production activating intronic enhancer CNS1 (101) or

inhibiting HDAC (101, 102) respectively. As expected, in

atherosclerosis, ApoE−/− mice fed a HF/HC diet supplemented

with propionic acid developed less atherosclerotic plaques than

those that were not supplemented due to increased Treg cell

numbers and lL-10 levels in the gut microenvironment (103).

And these effects were reverted when blocking IL-10R. The

promising beneficial effects of propionic acid are all based in

animal studies, thus an exhaustive toxicity and safety study

should be run before being able to think in translational

studies. Other microbiota derived metabolites like polysaccharide

A produced by B. fragilis (104) and beta-glycan/galactan

produced by B. bifidum also promote expansion of Treg cells

and IL-10 production in a TLR2 signalling dependent manner

(105). Several specific strains, like Lactobacillus casei (106),

L. reuteri (107), L. murinus (108) and L. acidophilus strain L-92

(109) have been associated with increased production of Tregs

in small experimental animal models.
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FIGURE 1

Interactions between metabolites, gut microbiota and adaptive immune cells and their effect on atherosclerosis. In this graph it is summarized how
gut microbiota species and derived metabolites regulate activation and cytokine and antibody secretion of the different adaptive immune cell subsets.
On one hand, atheroprotective SCFA increase TI-IgM secretion by MZB cells; IL10-Th1/Th17 secreting cells; Tregs; Bregs; IgA-producing PC and CD8T
cells. On the other hand, pro-atherogenic TMAO and/or LPS activate TD-IgM secretion by MZB cells; Th1 and Th17 cells. The metabolites that activate
Th2, Tfh and FOB have not been characterized yet. SCFAs, short chain fatty acids; LPS, lipopolysaccharide; TMAO, trimethylamine N-oxide; MZB,
Marginal Zone B cells; Th, T helper cells; Tfh, T follicular helper cells; Tregs, T regulatory cells; Bregs, B regulatory cells; PC, plasma cells; FOB,
Follicular B cells; PSA, polysaccharide A; GSGG, beta-glycan/galactan; SFB, Segmented filamentous bacteria; SPF, specific pathogen free; TI-IgM,
T-independent immunoglobulin M; TD-IgM, T-dependent immunoglobulin M; IgA, immunoglobulin A; IL, interleukin; IFNγ, interferon γ; GZB,
granzyme B.
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1.4.2 Cd8+ T cells
Similarly to CD4+ T cells, CD8+ T cells are generated in the

thymus and express the TCR but they recognize antigens

presented by MHC class I (located in all nucleated cells). They

participate in the host defense against intracellular pathogens and

tumor surveillance. They secrete effector cytokines like IFNγ and

TNFα but they also have a cytotoxic function by secreting

perforins and granzymes (GZ). In human plaques it has been

reported that their percentage is lower than CD4+ T cells but, as

the disease advances, and specifically in lesions susceptible to

rupture, they account for up to half of the T cell population

(110–112). Experimental animal models and single cell

transcriptomics of human atherosclerotic plaques have shown

that GZB and GZK producing CD8+ T cells enhance the

development of atherosclerosis (112–114).

CD8+ T cells are reduced in GF mice, and several species have

been shown to enhance their activation (102, 115–117).

Controversial results have been shown about the impact of
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butyrate and propionate on CD8+ T cells, some showing an

inhibitory effect (118), while others an stimulatory effect by

enhancing their IFNγ and GZB secretion in a GPR-41/43

independent manner inhibiting HDAC (115). Thus, experimental

studies supplementing with SCFA to increase Tregs will need to

check that they do not enhance proatherosclerotic CD8+ T cells.

1.4.3 B lymphocytes
B cells play important roles in both innate and adaptive

immune responses. They undergo hypersomatic mutations and

become antibody-producing cells (GC, plasmablasts and plasma

cells). Antibodies are glycoproteins of the Ig family that are

attached to the B cell membranes serving as B cell receptor

(BCR) for antigens or can be secreted into the extracellular

space and the circulation where they bind to auto- or foreign

antigens. Several studies have shown that bacterial antigens are

essential for the maturation, differentiation and antibody

secretion of all B cells.
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1.4.3.1 Follicular B cells (FOB)
FOB cells are B2 cells that are located in the follicles in the spleen

and can circulate in both mice and humans between other

secondary lymphoid organs like Peyer’s patches in the gut (119).

They produce class switch antibodies in a T-cell dependent

manner through the activation of BCR, TLR and BAFF/APRIL

signaling pathways. They are activated in the follicles by Tfh

entering the GC response and generating PC and high affinity

antibodies (IgG, IgA, IgE etc). Both, FOB and GC B are

considered proatherogenic (120–123).

sIgA are the first line of defense in protecting the mucosal

tissues from infections and maintaining gut homeostasis within

the microbiota (124–126). They are produced by B cells in the

Peyer patches and are induced by food antigens and gut bacteria

[p.e. gut microbiota derived SCFA and Bacteroidetes are

indispensable to generate IgA producing PC by inhibiting HDAC

and boosting PC differentiation signalling pathways (like Xbp1)

(127)]. Very little is known about the potential role of IgA in

atherosclerosis. On one hand, ApoE−/− atherosclerotic mice have

higher IgA levels than C57Bl6 WT mice (128). And in humans,

high levels of sIgA in blood have recently been associated with

increased severity of atherosclerosis in the Rotterdam Study

(129). But on another hand, sIgA also have atheroprotective

properties like maintaining a diverse microbiota and facilitating

Tregs activation (130). Thus, mouse and human studies are

needed to clarify the exact role of sIgA in atherosclerosis.

Gut microbiota also has an important role in regulating the rest

of the Ig repertoire besides IgA, but it has been less studied. Using

ApoE−/− mice treated with high spectrum antibiotics, Chen et al.

demonstrated that gut microbiota is an important trigger for the

recruitment and activation of pro-atherogenic B2 cells producing

IgG in perivascular fat (131). Further studies are needed to

establish the importance of gut microbiota in antibody

class switching.

1.4.3.2 Marginal zone B cells (MZB)
MZB cells reside only in the outer layer of the follicles in the spleen

in mice. But in humans unswitched MZ-like cells account for the

majority of the activated B cells in blood (132). We have

previously shown that in response to a high fat high cholesterol

(HF/HC) diet, MZB cells protect from atherosclerosis by limiting

Tfh cells in a Pdl1-dependent manner downstream of TLR and

BCR signalling pathways (10). LPS levels were significantly

increased in LDLr−/− fed a HF/HC so we hypothesize that gut

microbiota is necessary to activate MZB cells atheroprotective

programme and further experiments are needed to test if the

absence of TLRs specifically in MZB cells would affect their

activation and function in the atherosclerotic context.

MZB cells are not affected in GF mice, but several studies have

shown that gut microbiota is important in their development and

antibody secretion. Mice with a restricted flora (RF) (rich in

Firmicutes) show a complete deletion of MZB cells while their

development was normal in SPF mice (rich in Bacteroidetes)

(133). Regarding their BCR repertoire, human MZB cell

precursors migrate to the gut associated lymphoid tissue (GALT)

for somatic hypermutation and this process is regulated by gut
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commensals (134, 135). Furthermore, T independent IgM

secretion by MZB cells depend on the presence of peri-MZ

neutrophils that colonize that area after post-natal microbial

colonization (136) as well as on GPR43, as its deletion in MZB

cells, decreases expression of surface proteins (CD21, CD1d,

CD24, IgM, etc) and enhances the formation of T-independent

IgM antibodies and anti-dsDNA autoantibodies (137).

1.4.3.3 B1 cells
In mice B1 cells reside in the peritoneum and the pleural cavities

and are divided into B1-a and B1-b cells. Their human

counterparts have started to be identified (138). Experimental

mice models have shown that B1 cells protect from

atherosclerosis in a T cell independent manner by generating

natural IgM antibodies (8, 9, 139). Although B1 cells can also

migrate to the intestines, their contribution to the total IgA

plasma pool is minimal as demonstrated using gnotobiotic Ig

allotype chimeric mice (140). Similarly, to MZB cells, commensal

microbe and post-natal microbial colonization drives the pre-

immune B cell repertoire of B1 cells and the concomitant

development of IgA and IgM secreting PC (141, 142). It has

been described that in aging there is an accumulation of pro-

inflammatory B1 cells that express 4-1BBL leading to insulin

resistance due to a significant decrease of anti-inflammatory A.

muciniphila in the gut (143).

1.4.3.4 B regulatory (Breg) cells
Breg cells exert immunosuppressive and regulatory functions. They

increase in response to proinflammatory IL-6, IL-1β, IL-21, BAFF

and GM-CSF and secrete IL-10 (144). In general, they exhibit an

atheroprotective role (145), despite it might be through other

functions independently of IL10 secretion (146).

Gut microbiota is necessary for splenic and MLN Breg cells

differentiation as well as IL-10 and IL-35 secretion (147). Mice

with aberrant or lack of gut microbiota do not develop IL-

10-secreting Breg cells in an IL-6/IL-1B (147) and a TLR2/TLR9

ligands dependent manner (148, 149). As expected, Clostridia

(that is the main strain that produces SCFA) induces the

secretion of IL-10 by Bregs (150).
1.5 How we could target the gut microbiota
to treat atherosclerosis regulating the
adaptive immune response

1.5.1 Probiotics
Probiotics are live microorganisms that are beneficial for the

host’s health when administered in sufficient amounts (151).

They can be used to combat gut microbiome dysbiosis, inhibiting

the growth of harmful bacteria and “triggering” the growth of

beneficial bacteria (152). To be considered a probiotic there has

to be scientific evidence (153), nevertheless much of this

scientific evidence relies on small sample sized studies that also

lack appropriate controls. Thus, there is an urgent need for

larger studies and meta-analyses to elucidate the effects of

probiotics across different diseases and populations. The most
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frequently used probiotics, found in fermented dairy such as

yoghurt are from Lactobacillus and Bifidobacterium genera and

have shown to modulate both the adaptive immune responses in

a strain dependent manner [reviewed extensively in (154)] and

dyslipemia in hypercholesterolemic patients (155) but not in

normocholesterolemics (156). In experimental mice models,

administration of Akkermansia muciniphila (an intestinal

commensal with anti-inflammatory properties) to ApoE−/− mice

reduced atherosclerosis due to decreased endotoxemia (157) but

did not affect neointima formation in ApoE3-Leiden mice (158).

The effect of probiotics on the adaptive immune response during

atherosclerosis remains unexplored.

1.5.2 Prebiotics
Prebiotics are indigestible compounds found in certain foods

that selectively nourish beneficial bacteria in the gut improving

host wellbeing (159). They can be naturally occurring in fruit,

vegetables or whole grains or can be made synthetically.

Nondigestible carbohydrates, including oligosaccharides and

polysaccharides are the most popular prebiotics (160, 161). They

primarily influence the adaptive immune system indirectly

promoting probiotics’ growth [extensively summarized in (162)],

or via altering metabolite production (p.e. increasing SCFA

production). Polyphenols, found in tea, vegetable and cereals

modulate the gut microbiota and have been reported to have

prebiotic effects via enhancing the growth of probiotic families

including Lactobacilli, inhibiting pathogenic bacteria such as

E.coli (163, 164) and increasing SCFA production (164) in mice

studies. In fact, tea, also reduced plaque development in ApoE−/−

atherosclerotic mice (165). In humans, several small sized

prospective observational studies have associated olive oil, berries,

pomegranate juice and cocoa rich in prebiotics with

cardioprotective and anti-atherogenic properties (165–171).

Nevertheless, in the future larger population studies of the gut

microbiota combined with nutritional, genetic and immunepheno-

typing analysis will be needed to understand thir interaction and

how we can utilize it to treat atherosclerosis.

Furthermore, there is an important interaction gut microbiota

—anti-atherosclerotic drugs that needs to be studied in more depth

to develop more effective and personalized therapies to treat

atherosclerosis. For example, statins exhibit prebiotic effects by

altering gut microbiota (p.e.: decreasing Clostridium) and/or

SCFA (171, 172) while at the same time a more diverse gut

microbiota leads to a statin greater response (173).

1.5.3 Fecal Microbiota transplantation (FMT)
FMT refers to the transfer of one’s own or a donor’s faecal

sample to a receiver to restore gut microbiome homeostasis. It

can be used to improve the gut microbial ecology, however there

is an associated risk of transmitting infectious agents and the

challenge of donor selection in humans (174, 175). In humans,

FMT has been demonstrated to be successful for treating

recurrent infections of Clostridium difficile (176). Animal

experiments using FMT to treat atherosclerosis yielded promising

results. FMT from atherogenic mice to WT recipient mice

resulted in increased plaque size, increasing circulating innate
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immune cells and elevated proinflammatory cytokines (177). On

the contrary, FMT from healthy mice into an atherosclerotic

mouse model significantly decreased disease burden (178). In

humans FMT from vegan controls into 20 patients with

metabolic syndrome did not affect TMAO or other pro-

inflammatory markers (179). While in a more recent clinical trial

involving 237 patients that received a FMT from healthy controls

demonstrated a significant reduction in cardiovascular risk in

patients with metabolic syndrome (180). Additional studies to

comprehensively examine the potential efficacy, adverse effects,

and translatability of FMT are needed to conclude if this could

be a promising therapy to treat atherosclerosis.

1.5.4 Vaccinations
Several studies have demonstrated that B cells in atherosclerotic

lesions locally produce antibodies that can react against gut

microbe antigens. This may be attributed to bacteria originating

from the microbiome present in atherosclerotic plaque (54, 181)

or by those present in GALT (132). Notably, these antibodies

produced by B lymphocytes in plaques have been reported to

exhibit cross-reactivity with epitopes such as oxidised low-density

lipoprotein (oxLDL) and cytoskeletal proteins (p.e. transgelin

type 1) associated with atherogenesis (182). The development of

vaccines that promote atheroprotective antibodies or neutralize

atherogenic factors could lower cardiovascular risk.

Binder et al. (183) showed that pneumococcal polysaccharide

vaccine (PPV) decreased atherosclerotic lesion formation through

a molecular mimicry mechanism between heat-killed

Streptococcus pneumoniae, found in the microbiome, and oxLDL.

This atheroprotective effect was thought to be due to numerous

mechanisms including high anti-oxLDL IgM titres blocking

uptake of oxLDL by macrophages effectively (184–186). Since

then, the link between PPV and cardiovascular events has been

controversial. Some trials have provided evidence for an

association between PPV and reduced risk of cardiovascular

ischaemic events (187, 188) while other studies have not

(189–191). However, meta-analyses generally demonstrate

significant reductions in CV risk in patients over 65, despite

heterogenous samples (192). New clinical studies are ongoing,

such as the Australian Study for the Prevention through

Immunisation of Cardiovascular Events (AUSPICE), which

recruited 4,275 participants, to investigate this further. Although

the conclusive findings of this study are pending publication,

their preliminary results in smaller subgroups show no changes

in CVD and or antibody titers (193, 194).

Additional gut and oral microbial pathogens have been trialed

for vaccination. Porphyromonas gingivalis, a microbe found in the

oral cavity and atherosclerotic plaques has been shown to expedite

atherosclerosis via a cross-reactivity mechanism (195, 196).

Immunisation against P. gingivalis was able to mitigate pathogen-

induced atherosclerosis in ApoE−/− but not in WT mice (197) or

on top of statins (198). Moreover, immunization with the outer

membrane protein of Enterobacteriaceae resulted in decreased

inflammatory cells and increased M2 macrophages observed in

plaques of both ApoE−/− and WT mice (181). Human clinical

trials are necessary to investigate their translational effect.
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In our opinion, vaccines using microbial antigens is a very

promising weapon to treat atherosclerosis. However, the challenge

of vaccine development includes identifying the correct antigens,

predicting efficacy based on findings made on animal models and

determining how to measure reduction in plaque size in humans.

Successful vaccine development requires the collaboration of

multi-disciplinary teams and integration of various techniques.
2 Conclusion

The microbiome has emerged as a promising target for addressing

atherosclerosis, due to its diverse effects spanning from

immunomodulation to metabolite secretion. This review provides a

comprehensive overview of how microbiome-targeting mechanisms

influence the adaptive immune system, contributing to either

atheroprotection or atherogenesis. Whilst the impact of the

microbiome on the innate immune system has been studied

extensively, the potential role in targeting the adaptive immune

system is less understood. Harnessing the microbiome as a

therapeutic target can yield multifaceted benefits, including specific

and specialized immunomodulation, making it a compelling target

for the development of more effective therapies to treat atherosclerosis.
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