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1Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, MO,
United States, 2Department of Radiology, University of Missouri, Columbia, MO, United States,
3Department of Medicine, University of Missouri, Columbia, MO, United States, 4Department of
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Introduction: Myocardial perfusion MRI is important for diagnosing coronary
artery disease, but current clinical methods face challenges in balancing
spatial resolution, temporal resolution, and slice coverage. Achieving broader
slice coverage and higher temporal resolution is essential for accurately
detecting abnormalities across different slice locations but remains difficult
due to constraints in acquisition speed and heart rate variability. While
techniques like parallel imaging and compressed sensing have significantly
advanced perfusion imaging, they still suffer from noise amplification, residual
artifacts, and potential temporal blurring due to the rapid transit of dynamic
contrast vs. the temporal constraints of the reconstruction.
Methods: This study introduces a conditional diffusion-based generative model
for myocardial perfusion MRI super resolution, addressing the trade-offs
between spatiotemporal resolution and slice coverage. We adapted Denoising
Diffusion Probabilistic Models (DDPM) to enhance low-resolution perfusion
images into high-resolution outputs without requiring temporal regularization.
The forward diffusion process introduces Gaussian noise incrementally, while
the reverse process employs a U-Net architecture to progressively denoise the
images, conditioned on the low-resolution input image.
Results: We trained and validated the model on a retrospective dataset of dynamic
contrast-enhanced (DCE) perfusion MRI, consisting of both stress and rest images
from 47 patients with heart disease. Our results showed significant image quality
improvements, with a 5.1% reduction in nRMSE, a 1.1% increase in PSNR, and a
2.2% boost in SSIM compared to GAN-based super-resolution method (P < 0.05
for all metrics using paired t-test) in retrospective study. For the 9 prospective
subjects, we achieved a total nominal acceleration of 8.5-fold across 5–6 slices
through a combination of low-resolution acquisition and GRAPPA. PerfGen
outperformed GAN-based approach in sharpness (4.36±0.38 vs. 4.89 ±0.22) and
overall image quality (4.14± 0.28 vs. 4.89± 0.22), as assessed by two experts in a
blinded evaluation (P < 0.05) in prospective study.
Discussion: This work demonstrates the capability of diffusion-based generative
models in generating high-resolution myocardial perfusion MRI from conditional
low-resolution images. This approach has shown the potentials to accelerate
myocardial perfusion MRI while enhancing slice coverage and temporal
resolution, offering a promising alternative to existing methods.
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1 Introduction

Improving myocardial perfusion MRI is critical for assessing

perfusion defects, requiring a balance between high spatial

resolution, temporal fidelity, and slice coverage (1–3). Clinically,

sufficient spatial resolution is necessary to detect subtle perfusion

abnormalities but achieving enough spatial resolution (<3.0 mm) (4)

and extensive slice coverage is particularly challenging under high

heart rate conditions. The need to capture more slices (≥3 slices)

within a short acquisition window further complicates the ability to

fully resolve both motion and perfusion dynamics (5).

Recent techniques such as parallel imaging and compressed

sensing (6–8), using both Cartesian (2) and non-Cartesian

sampling (7, 9), have made progress in accelerating acquisition

and increasing resolution in myocardial perfusion MRI. However,

there remains open questions regarding the trade-offs between

spatial and temporal fidelity, motion correction (10), as well as

the potential for residual artifacts (11). Moreover, these methods

typically require the complete acquisition of the entire temporal

series to apply temporal regularization (1, 2) and motion

correction, which can hinder the ability to display real-time

images during contrast inflow and washout.

Given the ongoing challenges, there remains a need for alternative

strategies to increase imaging speed for high temporal resolution and

expanded slice coverage while simultaneously maintaining

spatiotemporal fidelity. Low-resolution (LR) acquisitions inherently

allow for faster imaging and higher signal-to-noise ratio (SNR),

which can be crucial for capturing rapid contrast changes and

minimizing the effects of cardiac and respiratory motion. By

leveraging super-resolution (SR) methods (12, 13), these images can

be enhanced to achieve higher spatial fidelity, offering a balance

between imaging speed and diagnostic quality.

However, low-resolution perfusion may suffer from reduced

spatial details and fidelity, as well as more severe dark rim

artifacts and partial volume effects (14). These artifacts can

interfere with accurate perfusion analysis and affect diagnostic

outcomes. To address this, strategies must be developed to

compensate for the loss of spatial resolution and mitigate

artifacts. Recent advances in deep learning, particularly

generative models, provide a promising way for enhancing the

quality of LR images in cardiac MR imaging (15–18). However,

Generative Adversarial Networks (GAN) are prone to experience

unstable training and mode collapse issues (19). In contrast,

diffusion models have proven to produce high-quality images

with robust training stability and superior image quality

(12, 20–21). Additionally, diffusion generative models offer a

robust mechanism for improving spatial resolution of myocardial

perfusion MRI without relying on temporal regularization.

Previous studies have investigated GAN-based generative models

on cardiac MRI (15, 18), but applying generative models to

myocardial perfusion MRI has not been explored. By

conditioning the diffusion model on low-resolution perfusion

images, it is possible to enhance image detail while retaining the

benefits of rapid acquisition, high temporal resolution and

expanded slice coverage.
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We propose to develop a conditional diffusion-based generative

model for myocardial perfusion MRI super resolution, termed

PerfGen, that leverages existing clinical imaging protocols and

data to generate myocardial perfusion images conditioned by

low-resolution images. This study explores the proof-of-the-

concept that diffusion generative models can be integrated with

myocardial perfusion MRI to synthesize high-resolution (HR)

perfusion images and demonstrated its feasibility to accelerate the

acquisition. This model provides an alternative solution that

balances spatial resolution, temporal fidelity, and slice coverage,

offering a new way for efficient and high-quality myocardial

perfusion MRI.
2 Materials and methods

2.1 Data acquisition and preprocessing

All patients provided informed consent, and all studies were

performed in accordance with protocols approved by our

institutional review board.

2.1.1 Retrospective myocardial perfusion data
Dynamic contrast-enhanced (DCE) perfusion data were

collected from 47 heart disease patients using standard clinical

MRI protocols at the University of Missouri-Columbia Hospital.

The dataset was divided into an 80:20 split, with 38 patients for

training and 9 patients for testing. Each subject had 3 short-axis

slices (base, mid, and apex), with all temporal frames used,

resulting in a total of 8,040 images for training and 1,830 images

for testing. A mixed dataset with both rest and stress perfusion

data were collected using gadolinium contrast for perfusion

and Regadenoson for stress with free breathing acquisition.

Prospective electrocardiogram triggering was used for all patients.

Within the training group, 15 patients underwent rest perfusion

only, and 23 underwent stress perfusion only. For the testing

group, 3 subjects were assessed under rest conditions and 6

under stress. All testing data and most training data were

acquired on a 1.5 T MAGNETOM Aera (Siemens Healthineers),

except for 4 subjects from the training group were imaged using

a 3 T MAGNETOM Vida (Siemens Healthineers).

Imaging parameters for the gradient echo perfusion sequence

included a repetition time of 2.2–2.3 ms, echo time of 1.08 ms,

flip angles between 12° and 15°, resolution of 2.3–2.4 mm × 2.3–

2.4 mm, 60–80 temporal measurements, and a GRAPPA

acceleration rate of 2. We use chest and spine phased-array

receiver coils (20–34 channels) with an acquisition matrix of

160 × 120–160, a temporal resolution of 138–184 ms per slice, a

saturation pulse delay of 100–120 ms, and acquire 3 slices per

R-wave peak to R-wave peak (RR) interval.

2.1.2 Prospective myocardial perfusion data
NineDCE rest perfusion patient datawere collected atUniversity

of Missouri-Columbia Hospital using a 3 T MAGNETOM Vida

(Siemens Healthineers), with 8 acquired using GRAPPA-3 and 1

using GRAPPA-2. Prospective electrocardiogram triggering was
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used for all patients. Five to six short-axis myocardial perfusion slices

were acquired per RR interval during free breathing. Imaging

parameters of the gradient echo perfusion sequence included a

repetition time of 2.2–2.3 ms, echo time of 1.08 ms, flip angles

between 12° and 15°, resolution of 2.3–2.4 mm × 2.3–2.4 mm,

60 temporal measurements, and a GRAPPA acceleration rate of

2–3. Late gadolinium enhancement (LGE) imaging was used as a

reference for validating the super-resolved perfusion defects,

particularly in the presence of late enhanced regions. The

acquisition matrix size is 160 × 48–62 following a 35%–36%

low-resolution acceleration, with 16–22 actual phase encoding

lines acquired using GRAPPA-3. The temporal resolution was

36.8–50.6 ms per slice, with an inversion time of 100 ms for

the saturation pulse, resulting in a total acquisition time of

118.4–125.3 ms per slice. For the GRAPPA-2 data, the acquisition

matrix size is 176 × 62 following a 35% low-resolution acceleration,

with 32 actual phase encoding lines acquired using GRAPPA-2.

The temporal solution was 73.6 ms per slice, resulting in a total

acquisition time of 136.8 ms.

2.1.3 Low-resolution data preparation
To simulate LR perfusion data from HR perfusion images for

model training, we used the following steps to generate LR and

HR pairs (Figure 1). Fast Fourier Transform was applied to the

original HR magnitude image to convert to k-space domain for

retrospective experiments. The center 30%–50% of the phase-

encoding lines were used, with the dynamic low-resolution ratio

aiming for data augmentation. The outer k-space lines were zero-

padded with the data in the readout maintained and converted

back to the image domain using an inverse fast Fourier

transform followed by taking the absolute value. Both the

synthesized LR images and paired HR images were cropped to

the same central 96 × 96 matrix size followed by the image

normalization. The cropping was performed manually to position
FIGURE 1

Illustration of the framework of synthetic data pipeline. High-resolution (HR
resolution (LR) images. This involves Fast Fourier transform (FFT) of the perfu
performing an inverse FFT (IFFT), resulting in paired HR and LR images.
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the heart within the cropped region. On-the-fly data

augmentation included random vertical flip and horizontal flip,

each applied with a probability of 50%. HR perfusion images

served as the reference, and the LR synthetic images were

enhanced using zero-padding and PerfGen. In the prospective

study, the multi-coil complex-valued k-space data was truncated

by setting the phase resolution to 35% in the sequence.
2.2 Conditional generation with denoising
diffusion probabilistic models

Given a dataset of LR-HR perfusion MRI pairs, D ¼ (xi, yi}
N
i¼1,

which are samples from an unknown conditional distribution of

high-resolution myocardial perfusion MRI domain, a parametric

approximation of p(yjx) was learned through a stochastic

iterative refinement process that maps the source LR image x to

target HR image by0. We adapted the Denoising Diffusion

Probabilistic Models (DDPM) and Image Super-Resolution via

Iterative Refinement (SR3) (12) to generate HR MR perfusion

images from LR image through diffusion process.

Figure 2A provides an illustration of a conditional diffusion-

based model to map Gaussian noise yT to a HR image by0,
conditioned on the source LR image x. The forward diffusion

process q follows the Markov process to gradually add Gaussian

noise to the HR perfusion image y0 step by step until the image

converges to a pure Gaussian distribution yT . The reverse process

p utilizes a U-Net model (22), trained to conditionally denoise

the image to reconstruct a HR perfusion image by0 using the LR

perfusion image x as the guidance.

2.2.1 Forward diffusion process
The forward diffusion process gradually added Gaussian

noise to the HR perfusion image y0 over T iterations until
) myocardial perfusion images are processed to generate synthetic low-
sion image, taking the center k-space lines, applying zero-padding, and
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FIGURE 2

Illustrations of the conditional denoising diffusion model and the denoising U-Net architecture. (A) The forward diffusion process q (left to right)
gradually add noise to the high-resolution image y over T steps until it converges to pure Gaussian noise y. The reverse diffusion process p (right
to left) iteratively denoises the noisy images, conditioned on the low-resolution (LR) image x, to recover the high-resolution image. (B) The input
to the U-Net is composed of two channels: the LR image x concatenated with the noisy image y at timestep t. The model outputs the denoised
image y.
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the image converges to a Gaussian distribution via the

diffusion kernel (Equation 1). Equation 2 provides the complete

generation process.

q(yt j yt�1) ¼ N(yt j ffiffiffiffiffi
at
p

yt�1, (1� at)I), (1)

q(y1:T j y0) ¼
YT

t¼1 q(yt j yt�1), (2)

where at , 1 � t � T are variance schedule subject to 0 , at , 1,

I is the identity matrix. T is set to 2,000, and the added Gaussian

noise to the HR image generated a sequence of noisy images

with increasing noise level y [ [y1, y2, . . . , yT ].

Specifically, q(yt) can be obtained directly from y0 at any time

step without iterations where gt ¼
Qt

i¼1 at (Equation 3).

q(yt j y0) ¼ N(yt j ffiffiffiffiffi
gt
p

y0, (1� gt)I), (3)
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2.2.2 Reverse Diffusion Process
The reverse diffusion process is defined as a reverse

Markov process, starting from Gaussian noise yT and

progressively denoised to reconstruct the HR perfusion images by0
(Equations 4–6):

pu(y0:T j x) ¼ p(yt)
YT

t¼1 pu(yt�1 j yt , x), (4)

p(yT) ¼ N(yT j 0, I), (5)

pu(yt�1 j yt , x) ¼ N(yt�1 j mu(x, yt , gt), s
2
t I) (6)

pu(yt�1 j yt , x) is the posterior distribution to be learned,

distribution variance s2
t is fixed to be 1� at , distribution mean

mu(x, yt , gt) is reparametrized as (Equation 7):

mu(x, yt , at) ¼ 1ffiffiffiffiffi
at
p yt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffi

1� gt
p fu (x, yt , gt)

� �
(7)
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1499593
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Sun et al. 10.3389/fcvm.2025.1499593
where fu(x, yt , gt) is the denoising model which takes the

source LR perfusion image x and a noisy image yt to predict

the noise e.

After the parametrization, each denoising step in the reverse

process will be (Equation 8):

yt�1  1ffiffiffiffiffi
at
p yt � 1� atffiffiffiffiffiffiffiffiffiffiffiffiffi

1� gt
p fu(x, yt , gt)

� �
þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� at
p

et (8)

where fu(x, yt , gt) is the denoising model, et is the predicted noise

at step t with et � N(0, I).

2.2.3 Model implementation
We adapted the SR3-DDPM model to super-resolve a 2D low-

resolution MR perfusion image into a HR image. The denoiser is

achieved using a U-Net model and the optimization that employs

KL-divergence to maximize the likelihood of the generated HR

images by0 and the ground truth HR image y0. L1-loss between

the noise predicted by the network and the amount of noise

added was used, and the objective function for training fu was

defined as (Equation 9):

argmin
u

L ¼ kfu x,
ffiffiffi
g
p

y0 þ
ffiffiffiffiffiffiffiffiffiffiffi
1� g

p
e, g

� �
� ek11 (9)

where fu represents the denoising U-Net model, x is the LR image,

y is the corresponding HR image, e is the added noise with

e � N(0, I), g is a scalar parameter related to the variance

scheduler with gt ¼
Qt

i¼1 at .

The model starts with pure Gaussian noise and a LR perfusion

image, using the corresponding HR perfusion image as the

ground truth. The model will iteratively refine the noisy output

through a U-Net model trained to denoise at various noise levels

and generate images with the desired HR perfusion data

distribution. By using the LR perfusion MR image to condition

the generation process, the SR image is specifically determined

to maintain anatomical consistency similar to the original LR

perfusion images.

In the U-Net architecture (Figure 2B), the input comprised

two channels representing the LR image and the noisy image,

and one output channel, representing the generated less noisy

HR images. The LR and HR pairs in our synthesis pipeline

maintained the same matrix size, and the conditioning LR image

was used at the shallowest level of the U-Net by channel-wise

concatenating with the noisy image. Both the LR image and

noisy image at time step t were encoded through a convolutional

layer followed by two linear layers for further encoding. The

U-Net structure was composed of convolution, group

normalization, Swish activation, residual connections and pooling

layers. The U-Net structure consisted of five levels, with the

number of channels in each level being [64,128,256,512,512].

Each level contained two ResNet blocks (23) with a dropout rate

of 0.2. At the bottleneck, an additional self-attention was applied

after the convolution layers. The self-attention module employs

convolutional layers to compute the query, key, and value
Frontiers in Cardiovascular Medicine 05
representations for spatial attention. It is followed by another

convolutional layer to refine the output and is interleaved with

the original ResNet block at the bottleneck for enhanced feature

representation. Detailed model architecture was depicted in

Supplementary Figure S1.

PerfGen was implemented using Python and PyTorch on two

48GB NVIDIA A6000 GPUs. PerfGen had 92M trainable

parameters. The model was trained for 50,000 iterations with

AdamW optimizer with a learning rate of 3e-5 and a batch size

of 128. During inference, we used DDPM sampling with full

inference steps (T = 2,000).
2.3 Model evaluation

For synthetic data, to compare PerfGen with GAN-based

super-resolution model trained on cardiac MRI (15), normalized

Root-Mean-Square-Error (nRMSE), Peak Signal-to-Noise Ratio

(PSNR), and Structural Similarity Index (SSIM) were calculated,

using original HR images as reference. The metrics were

evaluated within the 96 × 96 field of view, focusing specifically on

the heart region. The nRMSE (24) was calculated as (Equation 10):

nRMSE ¼ 1
max (I)�min(I)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1
i¼0 (~Ii � Ii)

2
r

(10)

where ~I is SR images super-revolved by PerfGen or GAN, I is the

reference HR image, N is the total number of pixels, ~Ii and Ii are

the pixel intensities at position i in the SR and HR images,

respectively. PSNR (25) was calculated as (Equation 11):

PSNR ¼ 10� log10
2552

1
N

XN�1
i¼0 (~Ii � Ii)

2

0
B@

1
CA (11)

SSIM (26) was calculated as (Equation 12):

SSIM ¼
(2m~I mI þ c1)(2seI,I þ c2)

(m2
~I
þ m2

I þ c1)(s2
~I
þ s2

I þ c2)
(12)

where m~I and mI are the average and variance of ~I and I, s eI,I is the
covariance of ~I and I, and c1 and c2 are constants to prevent

division by a near-zero denominator.

Differences between GAN super-resolved images and PerfGen

super-resolved images were statistically tested using a paired t-test

(P < 0.05). For prospective data, images super-resolved by two

methods were qualitatively compared with LGE images at

matched slice position to identify perfusion defects. One

cardiologist and one radiologist scored prospectively acquired

datasets on a 1–5 scale (1 being the worst and 5 being the best),

assessing perfusion image sharpness and overall quality relative

to clinical perfusion image standards. Differences between

methods were assessed with the Wilcoxon signed-rank test.
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3 Results

3.1 Model validation with synthetic data

3.1.1 Qualitative comparison
Figure 3 compares the myocardial perfusion images across

different phases of contrast enhancement during first-pass

perfusion using synthetic test data. The PerfGen super-resolved

images are compared to LR, GAN super-resolved and HR

reference images at baseline, peak right ventricle (RV), peak left

ventricle (LV), and peak myocardium (Myo). The results show

an improvement in the image resolution and contrast for

the PerfGen super-resolved images, allowing for enhanced

visualization of contrast perfusion through the myocardium. The
FIGURE 3

Comparison of myocardial perfusion images across perfusion phases for one
image at baseline, peak right ventricle (RV), peak left ventricle (LV), and p
illustrating the progression of contrast perfusion through the myocardium,
the RV, LV, and myocardial tissue. Each row shows the low-resolution
perfusion images, and high-resolution reference images.
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enhanced detail provided by PerfGen aligned better with the HR

reference images than LR and GAN methods.

Figure 4A further demonstrates the evaluation of the PerfGen by

comparing myocardial perfusion images at the basal, midventricular,

and apical slice locations. The PerfGen super-resolved images show

enhanced resolution and structural details across all slice locations

compared to the HR reference. Figure 4B shows the signal-t plot

illustrating the changes in the LV myocardial region, LV blood pool,

and RV blood pool. The spatially super-resolved images

demonstrate better alignment with the reference high-resolution

spatial images compared to the acquired LR spatial images and

GAN-based super-resolved images.

Figure 5 presents example cross-sectional time-intensity profiles

from the subject shown in Figure 4, comparing LR images, GAN
retrospective test data. From left to right, the images show the perfusion
eak myocardium (Myo). Each column represents different time points,
highlighting key cardiac phases with distinct contrast enhancement in
images, GAN-based super-resolved images, PerfGen super-resolved
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FIGURE 4

(A) Comparison of GAN-based super-resolved images, PerfGen super-resolved images and high-resolution (HR) perfusion images across different
slice locations for one synthetic test data. From left to right, the myocardial perfusion images are shown at the base, midventricular, and apical
slice locations. The top row showed low-resolution (LR) images, the following rows showed GAN-based and PerfGen super-resolved images, and
the bottom row showed the corresponding HR reference images. This comparison highlights the effectiveness of PerfGen in enhancing image
resolution and better alignment with reference images than GAN-based approach across various slice locations of the heart. (B) The signal-t plots
illustrate the signal intensity of the basal slice in (A) in terms of the left-ventricular (LV) myocardial region, LV blood pool and right-ventricular (RV)
blood pool changes over time. The spatially super-resolved images by PerfGen (PerfGen-SR-S) aligns better with the reference HR spatial images
(HR-S) than the acquired LR spatial images (LR-S) and the GAN-based super-resolved images (GAN-SR-S).

FIGURE 5

Comparison of cross-section profile along time plots corresponding to low-resolution (LR), GAN, PerfGen and reference high-resolution (HR) for the
patient in Figure 4 were shown. PerfGen presents better temporal fidelity than zero-padded LR images and GAN-based super-resolved images
compared to the reference HR x-t plots.

Sun et al. 10.3389/fcvm.2025.1499593
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super-resolved images, PerfGen super-resolved images, and reference

HR images. The PerfGen super-resolved method shows better

temporal fidelity than the LR images and GAN super-resolved images

compared with the reference HR plots. Figure 6 shows the stress
FIGURE 6

Example images from a retrospective patient undergoing regadenoson stress
sized defect in the basal septum and a small defect in the inferolateral wall.
high-resolution (HR) images were compared as reference for image quality
baseline, appear blurred but indicates perfusion defects in the septum. Th
shows slight mismatches with the HR reference in terms of image details
small inferolateral wall perfusion defects (indicated by red arrows). PerfG
accurately highlighting perfusion defects in similar regions with higher fidel
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perfusion images of a patient with inducible myocardial ischemia.

PerfGen demonstrates better alignment with HR reference images

than LR images and GAN-based super-resolved images in terms of

the overall image quality and the accurate perfusion defect detection.
perfusion imaging with inducible myocardial ischemia with a moderate-
Low-resolution (LR) images, GAN-based super-resolution, PerfGen, and
and their ability to illustrate perfusion defects. LR images, used as the

e GAN-based super-resolution method improves image sharpness but
in myocardial regions, with potentially reduced fidelity in depicting the
en demonstrates greater visual similarity to the HR reference, more
ity.
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FIGURE 7

Quantitative comparison of GAN and PerfGen super-resolved myocardial perfusion images for nine tested datasets. Boxplots show (A) normalized
root mean square error (nRMSE), (B) peak signal-to-noise ratio (PSNR), and (C) structural similarity index (SSIM) for GAN and PerfGen images.
PerfGen demonstrates a significant improvement in all metrics, with lower nRMSE, higher PSNR, and higher SSIM compared to super-resolved
images by GAN, with a reduction in nRMSE by approximately 5.1%, an increase in PSNR by 1.1%, and an improvement in SSIM by 2.2%. Statistical
significance is indicated by the asterisks.

Sun et al. 10.3389/fcvm.2025.1499593
3.1.2 Quantitative comparison
Figure 7 presents a quantitative comparison between GAN

and PerfGen super-resolved myocardial perfusion images of

nine testing datasets. The PerfGen method significantly

outperformed the GAN-based approach across all evaluated

metrics. Specifically, PerfGen achieved a 5.1% reduction in

nRMSE (mean nRMSE: 2.68 ± 0.85% for GAN vs. 2.55 ± 0.84%

for PerfGen, respectively), a 1.1% increase in PSNR (mean PSNR:

31.89 ± 2.82 dB for GAN vs. 32.24 ± 2.77 dB for PerfGen,

respectively), and a 2.2% improvement in SSIM (mean SSIM:

0.87 ± 0.15 vs. 0.89 ± 0.16 for PerfGen, respectively). These

improvements are statistically significant, as indicated by the

asterisks in Figure 7, demonstrating the superior performance of

PerfGen in enhancing image quality.
3.2 Model validation with prospectively
acquired data

Figure 8 compares the super-resolved perfusion images by

PerfGen and GAN to both LR perfusion images and LGE

images. The super-resolved images show perfusion defects that

closely match the defects observed in the LGE images at

corresponding slice locations, providing proof-of-concept that

PerfGen can potentially identify the super-resolve perfusion

defects from LR images. PerfGen demonstrates better alignment

with LGE compared to GAN-based super-resolved perfusion

images. Furthermore, the combination of a LR acquisition with

35% phase lines and GRAPPA-2 allowed the acquisition of five

slices, with a 2.86-fold improvement in temporal resolution

compared to clinical routine settings, demonstrating the

improved image quality with improved slice coverage.

Figure 9A provides evaluation of PerfGen in enhancing

myocardial perfusion images across five different perfusion slices.
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Super-resolved images are compared with LR images using zero-

padding for five prospectively acquired slice, showing improved

contrast and image detail across various perfusion phases by

PerfGen. The super-resolution method demonstrates improved

visualization of image details that are not as obvious in the LR

images or GAN super-resolved images acquired using GRAPPA-3

and 35% phase resolution. Figure 9B shows the signal-time plots of

the intensity changes over time in the LV myocardial region, LV

blood pool and RV blood pool. The plots demonstrate that

achieving a 4.3-fold increase in temporal resolution and five slices

covered in myocardial perfusion MRI, compared to the clinically

used GRAPPA-2 and three slices, improves the ability to capture

sharp transitions in contrast during myocardial perfusion as

compared against a synthetic low temporal resolution curve using

rate-2 acceleration. Supplementary Video 1 showed the movies of

six slices from one prospective patient acquired with GRAPPA-3

and 35% phase encoding lines, comparing LR, GAN-based super-

resolved and PerfGen super-resolved images.

For the nine prospectively acquired subjects, all slices were

evaluated by two experts in Figure 10. For sharpness, the scores

were 4.36 ± 0.38 for GAN and 4.89 ± 0.22 for PerfGen (P < 0.05);

for overall image quality, the scores were 4.14 ± 0.28 for GAN

and 4.89 ± 0.22 for PerfGen (P < 0.05).

PerfGen not only improves spatial resolution but also enhance

critical image features, such as perfusion defects, that align well

with LGE reference images, providing proof of concept for

demonstrating the potential of super-resolution techniques in

diagnostic accuracy in myocardial perfusion imaging.
4 Discussion

With the growing interest in myocardial perfusion MRI in

identifying myocardial ischemia, there is an increased need for high
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FIGURE 8

Comparison of low-resolution (LR), GAN super-resolved images, PerfGen super-resolved images and LGE images for one prospectively acquired
myocardial perfusion dataset. The first row illustrates the LR perfusion images, followed by the super-resolved images by GAN and PerfGen. The
last row shows the corresponding LGE images at similar slice locations. The PerfGen super-resolved perfusion images highlight perfusion defects
that match the locations of defects observed in the LGE images. PerfGen demonstrates superior alignment with LGE compared to GAN-based
super-resolved perfusion images, demonstrating the ability of PerfGen to recover and enhance important diagnostic features. This figure also
shows how the combination of LR acquisition of 35% phase resolution and GRAPPA-2 can improve slice coverage, with five slices acquired and
2.86-fold higher temporal resolution for this patient.
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spatiotemporal resolution and expanded slice coverage to accurately

monitor dynamic changes in blood flow and myocardial perfusion.

This poses a challenge in achieving acquisition speed to capture

rapid change and fine details without sacrificing the quality and

accuracy necessary for effective diagnosis. Low-resolution

acquisition is an alternative approach that inherently allows for

acceleration and higher SNR. However, the reduction in spatial and

temporal details may degrade the image quality, influence the

diagnosis accuracy and potentially impact the subsequent

quantitative analysis.

In this study, we demonstrated that existing clinical perfusion

MRI images can be effectively used to train a conditional

diffusion generative model for super-resolution. We proposed a

super-resolution pipeline that utilizes low-resolution myocardial

perfusion MRI as the guidance after initial reconstruction by

GRAPPA (27), which is also potentially applicable to compressed
Frontiers in Cardiovascular Medicine 10
sensing (28) or unrolled network (29) outputs, offering a

complementary approach to the existing workflows. When

combined with GRAPPA (factor 2–3) in prospective acquisitions,

this method offers a nominal 5.7–8.5 folds acceleration, allowing

for better slice coverage and improved temporal resolution. This

approach not only accelerates acquisition but also mitigates the

loss of contrast and details typically associated with low-

resolution imaging. We validated our model on an infarction

patient using reference LGE images, with the perfusion defects

showing consistent with the scar regions in LGE.

While diffusion generative models have demonstrated the

training stability and high-quality image generation across

various vision tasks (12, 20, 30), their application in generating

myocardial perfusion MRI and integration with cardiac MRI

have yet to be explored. The study demonstrates that the

diffusion generative model produces myocardial perfusion images
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FIGURE 9

(A) Comparison of low-resolution (LR) perfusion images, GAN-based super-resolved images and PerfGen super-resolved images across different
perfusion slices for one prospectively acquired test data. This figure shows the super-resolved images by PerfGen compared with low-resolution
images using zero-padding and super-resolved images by GAN at different slice locations using GRAPPA-3 and LR of 35% phase resolution.
PerfGen demonstrate improved contrast and details in the images than zero-padding images and GAN super-resolved images. (B) The signal-time
plots show the intensity changes over time for the basal slice in (A) in terms of the LV myocardial region, LV blood pool, and RV blood pool. The
acquired LR spatial image achieves 4.3-fold higher temporal resolution (green curve) compared to routine reference temporal resolution. PerfGen
super-resolved spatial images maintain this high temporal resolution (orange curve) while capturing more detailed myocardial perfusion dynamics
than zero-padding and GAN super-resolved images. The synthetic curve represents 4.3-fold lower temporal resolution, simulating a 2-fold
accelerated acquisition. The higher temporal resolution (green, purple and orange curves) enables more accurate tracking of rapid perfusion
changes compared to the smoother dynamics observed in the low temporal resolution curve (SR-S & LR-T blue curve) as supported by the
comparison with low spatial resolution images (LR-S & HR-T, green curve). LV, left-ventricular; RV, right-ventricular; LR-S, low spatial resolution
images; HR-T, high temporal resolution images; SR-S, super-resolved spatial images: low temporal resolution images.
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comparable to routine GRAPPA-2 perfusion images and

outperform the compared GAN-based method, highlighting its

potential to enhance temporal resolution and slice coverage for

clinical use. This super-resolution approach provides several key

advantages: (1) it effectively generates fine image details,

outperforming one existing GAN-based super-resolution method,

(2) the combination of low-resolution acquisition and GRAPPA

reduces the risk of residual artifacts from highly accelerated

undersampling (8.5-fold), (3) the GRAPPA-reconstruction by the

vendor allows for real-time visualization for perfusion imaging,

enabling real-time monitoring of contrast dynamics, and (4) the
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super-resolution process operates independently of the full

temporal series, allowing for efficient image-by-image processing

and minimize the potential loss of temporal fidelity.

Our results showed higher temporal resolution than the

clinically used GRAPPA-2, where the higher temporal resolution

enables better capture of fast perfusion dynamics. This

enhancement can reduce temporal blurring, provide more precise

time-intensity curves for quantitative analysis, and allow for

more accurate assessment of myocardial ischemia. Additionally,

higher temporal resolution can mitigate motion artifacts

caused by cardiac and respiratory motion, resulting in images
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FIGURE 10

Quantitative comparisons of GAN and PerfGen methods for super-resolution of prospective perfusion images, evaluated on 9 prospective subjects
and scored by two experts. PerfGen demonstrated significantly better performance than GAN in sharpness and overall image quality. Sharpness
scores were 4.36 ± 0.38 for GAN and 4.89 ± 0.22 for PerfGen (P < 0.05), while overall image quality scores were 4.14 ± 0.28 for GAN and
4.89 ± 0.22 for PerfGen (P < 0.05).
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with better image quality and potentially more reliable

diagnostic outcomes.

One of the potential limitations of this approach is that the

super-resolved output cannot theoretically exceed the spatial

resolution of the reference images used for training. A broader

dataset would be beneficial for a more thorough model

training. Although GRAPPA-reconstruction allows for real-time

visualization, PerfGen requires additional time to enhance image

quality and does not currently support real-time processing. While

the diffusion generative model aims to learn the distribution of

high-resolution perfusion images and generate high-quality

outputs, and proof-of-concept studies highlight the promise of the

PerfGen model, accurately detecting small perfusion defects

remains challenging due to partial volume effects and dark rim

artifacts. Addressing these potential limitations will require further

training on larger datasets, optimized network architectures, and

robust training strategies. Additionally, further studies are necessary

to validate these findings in diverse clinical scenarios, particularly

for assessing ischemic perfusion defects in stress perfusion MRI. It

is important to note that the comparison between our method and

GAN-based method involves a single diffusion generative model

and one published GAN-based approach trained for cardiac MRI

super-resolution which has been applied to various cardiac

MRI applications (15, 31). This comparison is not intended as

a comprehensive theoretical comparison between GANs vs.

diffusion models. The relative performance of these models may

also depend on factors such as the datasets used, the specific

applications, and other implementation details. Currently,

our findings are preliminary and serve as a proof-of-concept;

additional clinical validation is necessary to assess the reliability of

this approach. Future efforts could also explore integrating the

super-resolution method with physics-guided self-supervised

learning reconstruction networks for high-resolution perfusion
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MRI (32), and extend this approach with quantitative analysis

(33–35). Further studies will be needed to establish the clinical

utility and validate the diagnostic values of this method.

Overall, this work shows the capability of the conditional

diffusion generative model in high-resolution myocardial

perfusion MRI generation and demonstrates its feasibility to

accelerate myocardial perfusion MRI acquisition, increase

temporal resolution and slice coverage, and improve image

quality without introducing significant artifacts or blurring.
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SUPPLEMENTARY TABLE 1

Details of contrast agent and stress agent protocol

SUPPLEMENTARY FIGURE 1

Detailed depiction of the denoising U-Net architecture. The network takes in
a two-channel input, where one channel represents the low-resolution
condition image and the other contains the noisy image at time step
t. The output is the denoised image at the subsequent time step t-1. The
U-Net architecture consists of convolutional layers, group normalization,
Swish activation, residual connections, and pooling layers. A convolution
layer and two linear layers were used as the image encoder for the inputs.
At the bottleneck, an additional self-attention layer was applied.

SUPPLEMENTARY VIDEO 1

Comparison of zero-padded low-resolution, GAN-based super-resolved
and PerfGen super-resolved myocardial perfusion images across six slices
and perfusion measurements acquired with 35% phase encoding lines and
GRAPPA-3. The first row shows the zero-padded low-resolution images,
while the following rows present the corresponding GAN-based super-
resolved images and PerfGen super-resolved images. The super-resolved
images by PerfGen demonstrate improved spatial resolution and contrast,
recovering key perfusion features that may be less apparent in the low-
resolution images and GAN super-resolved images. This movie highlights
the potential of PerfGen to enhance image quality and diagnostic accuracy
for myocardial perfusion imaging.
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