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prenatal cardiac screening: a
systematic review and
meta-analysis
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Background: Congenital heart disease (CHD) is a major contributor to morbidity
and infant mortality and imposes the highest burden on global healthcare costs.
Early diagnosis and prompt treatment of CHD contribute to enhanced neonatal
outcomes and survival rates; however, there is a shortage of proficient examiners
in remote regions. Artificial intelligence (AI)-powered ultrasound provides a
potential solution to improve the diagnostic accuracy of fetal CHD screening.
Methods: A literature search was conducted across seven databases for
systematic review. Articles were retrieved based on PRISMA Flow 2020 and
inclusion and exclusion criteria. Eligible diagnostic data were further meta-
analyzed, and the risk of bias was tested using Quality Assessment of
Diagnostic Accuracy Studies—Artificial Intelligence.
Findings: A total of 374 studies were screened for eligibility, but only 9 studies
were included. Most studies utilized deep learning models using either
ultrasound or echocardiographic images. Overall, the AI models performed
exceptionally well in accurately identifying normal and abnormal ultrasound
images. A meta-analysis of these nine studies on CHD diagnosis resulted in a
pooled sensitivity of 0.89 (0.81–0.94), a specificity of 0.91 (0.87–0.94), and an
area under the curve of 0.952 using a random-effects model.
Conclusion: Although several limitations must be addressed before AI models
can be implemented in clinical practice, AI has shown promising results in
CHD diagnosis. Nevertheless, prospective studies with bigger datasets and
more inclusive populations are needed to compare AI algorithms to
conventional methods.

Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_
record.php?ID=CRD42023461738, PROSPERO (CRD42023461738).
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Introduction

Congenital heart disease (CHD) is the most common

congenital abnormality, affecting approximately 1% of live births

worldwide (1). All CHD cases require life-long follow-up (2),

with around one in four requiring at least one cardiac surgery

within their first year of life (3). Thus, CHD contributes

significantly to morbidity and infant mortality (4) and imposes

the highest burden on global healthcare costs (5). While the

incidence of CHD is comparable across the globe, the weight of

this burden is particularly pronounced in low- and middle-

income countries (LMICs), especially those characterized by high

fertility rates, such as Indonesia (6, 7). It has been determined

that early diagnosis and prompt treatment of CHD, like prenatal

cardiac examination, contribute to enhanced neonatal outcomes

and survival rates (8). It is recommended that cardiac screening

be performed between 18 and 22 weeks of gestation using a

general obstetric ultrasound with a specified ultrasound probe for

a focused evaluation of fetal heart (9–11).

CHD screening in newborns exhibits a moderate sensitivity of

68.5% and a high rate of false negatives, which may lead to delayed

diagnosis and adverse events (12). This could be attributed to

artifacts, making it challenging to identify small details and

structures (13). Current data indicate that CHD detection rates

remain low, at just 48%, particularly in low- and middle-income

regions, possibly due to the shortage of skilled examiners in rural

and remote areas (14). The accuracy of ultrasound results highly

depends on the proficiency of examiners, which is influenced by

technique, knowledge, and experience (15).

To bridge the gap between the high demand for prenatal

screening for CHD and limited resources, integrating artificial

intelligence (AI) presents a promising solution. AI involves

leveraging machines and systems to imitate human problem-

solving and decision-making capabilities. One type of AI,

machine learning (ML), utilizes algorithms to identify patterns

and predict outcomes from predetermined data. Deep learning

(DL), a subset of ML, is an unsupervised AI technique that

consistently outperforms traditional ML methods and can

organize data into multiple processing layers, enabling

autonomous learning, aiding decision-making, and revealing new

findings that may otherwise elude human detection (12–14).

Numerous studies have shown that AI holds great promise in

the early detection of CHD by distinguishing various cardiac

abnormalities (16), enhancing the quality of ultrasound images

(17, 18), streamlining the segmentation of cardiac structures

(19, 20), assisting in ultrasound image acquisition (21, 22), and

quantifying echocardiographic measurements (23, 24). The

integration of AI with fetal ultrasound has been shown to

significantly improve clinical efficiency, reduce subjective

variability due to operator expertise differences, standardize plane

acquisition, and provide potential solutions for areas with scarce

medical resources (10, 13).

To date, no quantitative synthesis has been conducted on the

application and accuracy of artificial intelligence models in

detecting congenital heart disease through prenatal cardiac

screening. This systematic review and meta-analysis aims to
Frontiers in Cardiovascular Medicine 02
summarize recent research findings on AI’s diagnostic

performance in CHD diagnosis during the second trimester

of pregnancy.

The paper is organized as follows: the Methods section outlines

the search strategy, selection criteria, and statistical methods used

in the systematic review and meta-analysis, including data

extraction and quality assessment. The Results section presents

the findings of the meta-analysis, including the diagnostic

performance of AI models in CHD detection. This is followed by

a detailed Discussion on the implications of AI integration in

clinical practice, study heterogeneity, limitations, and potential

future directions. Finally, the Conclusion section summarizes the

key findings and emphasizes the potential of AI to improve CHD

diagnosis, particularly in low-resource settings.
Methods

Search strategy and selection criteria

This review adhered to the Preferred Reporting Items

for Systematic Reviews and Meta-Analyses (PRISMA)

recommendations (25) and is registered with PROSPERO,

number CRD42023461738. Seven databases, namely Embase,

PubMed, MEDLINE, Cochrane, Global Health, IEEE Xplore, and

Scopus, were systematically searched up to 30 September 2023.

The reference lists of all relevant articles were also reviewed to

enhance the identification of published AI research. Titles and

abstracts were independently reviewed by one researcher, and all

relevant citations were included for full-text analysis. Since this

study only involved retrieving and synthesizing data from

already published studies, ethical approval was not necessary.

The complete search strategy adopted for each database is

summarized in the Supplementary Material.
Study eligibility

The Population, Intervention, Comparison, Outcome (PICO)

search framework was applied in the screening and interpretation

processes, as described below:

- Population: studies conducted on humans, limited to second-

trimester fetuses (aged 13–26 weeks), the gold standard period

for fetal organ (especially cardiac) screening through prenatal

cardiac screening, regardless of geographical location.

- Intervention: prenatal ultrasound or echocardiography screening

augmented with AI, including but not limited to machine

learning and deep learning techniques.

- Comparator: clinician diagnosis of CHD based on the patient’s

medical examination results, including but not limited to patient

interview, physical examinations, laboratory tests, and

radiology imaging.

- Outcomes: the overall performance or accuracy parameters of

artificial intelligence, which can include sensitivity, specificity,

negative predictive value, positive predictive value (precision),
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F1 score, receiver operating characteristic (ROC) curve, area

under the curve (AUC), and Dice coefficient.
The exclusion criteria were as follows: editorials, letters, reviews,

conference proceedings, pre-prints, any articles in languages

other than English, and any articles not related to the

research topic.
Data extraction and quality assessment

One reviewer independently extracted study characteristics and

diagnostic outcomes using a standardized data extraction form.

The recorded data from each study included authors’ names,

publication year, AI methods, training and testing datasets, and

results (including sensitivity, specificity, accuracy, F1 score,

AUC). To identify any risk of bias, each study was appraised

using the Quality Assessment of Diagnostic Accuracy Studies—

Artificial Intelligence (QUADAS-AI), a framework designed to

evaluate the risk of bias and applicability in reviews of AI

diagnostic test accuracy and comparative accuracy studies that

use at least one AI-centered index test. Three domains were

assessed for risk of bias and concerns regarding applicability:

patient selection, index test, and reference standard. The patient

selection domain was additionally assessed based on the flow and

timing of the study. If all domains related to bias or applicability

in a study are deemed “low,” it is acceptable to give an overall

judgment of “low risk of bias” or “low concern regarding

applicability.” However, if a study is deemed “high” or “unclear”
FIGURE 1

Flow diagram of the study selection.
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on one or more domains, it may be considered “at risk of bias”

or have “concerns regarding applicability” (26).
Statistical analysis

The true positives, false positives, true negatives, and false

negatives were pooled to generate sensitivity and specificity for

CHD diagnosis. A meta-analysis, performed using the R package

meta, was used to construct forest plots for sensitivity and

specificity using the inverse-variance model (27). Heterogeneity

was assessed using Cochran’s Q-test and the Higgins

inconsistency index (I2) test. P <0.05 in Cochran’s Q-test

indicated the existence of heterogeneity, while a Higgins I2 test

value >50% indicated substantial heterogeneity. As high

heterogeneity between studies was suspected, a random-effects

model was used for synthesis. Hierarchical summary receiver

operating characteristics curves and 95% confidence intervals

(CIs) were estimated using the Reitsma bivariate model (28)

using R package mada (29). Deeks’ funnel plot of the asymmetry

test was not possible due to the number of studies being fewer

than 10. All statistical analyses were performed using R version

4.2.1 (R Statistical Computing).
Results

A total of 374 studies were identified using the search

strategy, as shown in the PRISMA flow diagram in Figure 1.

After excluding duplicates and irrelevant articles, only 52
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studies underwent a full-text review to assess eligibility.

Ultimately, nine original articles with sufficient data to

construct a 2 × 2 table were included in this review and meta-

analysis (16, 30–37). The quality assessment results are

displayed in Table 1, which suggests that most studies had a

low risk of bias and low applicability concerns. The risk of bias

in four studies (31–34) is mainly due to unclear patient

selection methods or database sources and indefinite division

between training and testing datasets.

Among nine studies in Table 2, only one used ML instead of DL

for diagnosing CHD (34). Half of the included studies used

ultrasound images (16, 31, 32, 36, 37), whereas the others

analyzed echocardiography images. All studies described and

divided the training and testing datasets used in their study, except

for two studies (32, 34). The number of videos in the training and

testing datasets ranges from as few as 50 to over 100,000

ultrasound images. However, most studies exhibit an imbalanced

ratio, with more training data than testing data. This is likely due

to the rarity of detecting CHD in prenatal cardiac screening. One
TABLE 1 Summary of the risk of bias and applicability concerns.

No. Study Risk of bias

Patient
selection

Index
test

Reference
standard

1 Arnaout et al.
(16)

Low Low Low

2 Gong et al. (30) Low Low Low

3 Nurmaini et al.
(31)

Low Low Low

4 Qiao et al. (32) High Low Unclear

5 Tang et al. (33) Unclear Low Low

6 Truong et al.
(34)

High Low Low

7 Wang et al. (35) Low Low Low

8 Wu et al. (36) Low Low Low

9 Yang et al. (37) Low Low Low

TABLE 2 Summary of the studies included in the meta-analysis.

No. Study AI method Training dataset T
1 Arnaout et al.

(16)
DL: convolutional neural
network (CNN)

107,823 images 4,108
37 d

2 Gong et al.
(30)

DL: CNN 3,196 images (2,655 normal
vs. 541 diseased)

400
disea

3 Nurmaini et al.
(31)

DL: CNN 969 images (157 normal vs.
812 diseased)

160
disea

4 Qiao et al. (32) DL: CNN 50 ultrasound videos: 25
normal, 25 diseased

N/A

5 Tang et al. (33) DL: CNN 6,698 images 350
disea

6 Truong et al.
(34)

ML: random forest 3,910 patients N/A

7 Wang et al.
(35)

DL: CNN 540 videos 120
TAP

8 Wu et al. (36) DL: CNN 1,395 images (800 normal
vs. 595 diseased)

300
disea

9 Yang et al. (37) DL: CNN 1,395 images 123
disea
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study specifically examined total anomalous pulmonary venous

connection (TAPVC) (35), while others distinguished CHDs in

general from normal heart images. Only a few studies conducted

external and cross-validation to ensure the reliability of their

models prior to clinical deployment in real-world settings (16, 30,

33, 34). The AI models performed exceptionally well in accurately

identifying normal and abnormal ultrasound images. They

exhibited a sensitivity range of 68%–100%, specificity range of

84%–100%, accuracy range of 83%–100%, F1 score range of

66%–100%, and AUC range of 0.88–0.99.

The meta-analyzed sensitivity and specificity of these nine

studies are shown in Figures 2 and 3, respectively. The

heterogeneity of all studies was high for both forest plots, with

83% for sensitivity and 60% for specificity; hence, random-effects

quantity models were used for the meta-analysis. From the

random-effect models, the overall sensitivity and specificity were

0.89 (0.81–0.94) and 0.91 (0.87–0.94), respectively. The summary

receiver operating curve (SROC) was also plotted, as can be seen

in Figure 4, with a pooled AUC of 0.952.
Applicability concerns

Flow and
timing

Patient
selection

Index
test

Reference
standard

Low Low Low Low

Low Low Low Low

Low Low Low Low

Unclear Low Low Low

Low Low Low Low

Low Low Low Low

Low Low Low Low

Low Low Low Low

Low Low Low Low

esting dataset Results
patients: 4,071 normal,

iseased
Sensitivity 88% (95% CI: 47%–100%); specificity 90%
(95% CI: 73%–98%); accuracy 88%; F1 94%; AUC 0.92

patients: 200 normal, 200
sed

Sensitivity 85% (95% CI: 79%–90%); specificity 90%
(95% CI: 85%–94%); accuracy 88%; F1 87%; AUC 0.881

patients: 20 normal, 140
sed (intra-patient)

Sensitivity 100% (95% CI: 95%–100%); specificity 100%
(95% CI: 71%–100%); accuracy 100%; F1 100%

Sensitivity 94% (95% CI: 80%–100%); specificity 92%
(95% CI: 74%–99%); accuracy 95%; F1 95%

patients: 200 normal, 150
sed

Sensitivity 97% (95% CI: 93%–99%); specificity 99%
(95% CI: 96%–100%); accuracy 98%; F1 98%; AUC 0.996

Sensitivity 85% (95% CI: 82%–88%); specificity 88%
(95% CI: 87%–89%); accuracy 88%; F1 66%; AUC 0.94

patients: 82 without
VC, 20 with TAPVC

Sensitivity 90% (95% CI: 67%–99%); specificity 87%
(95% CI: 77%–93%); accuracy 88%; F1 72%; AUC 0.941

patients: 154 normal, 146
sed

Sensitivity 97% (95% CI: 92%–99%); specificity 84%
(95% CI: 78%–90%); accuracy 90%; F1 91%

patients: 66 normal, 57
sed

Sensitivity 68% (95% CI: 55%–80%); specificity 95%
(95% CI: 87%–99%); accuracy 83%; F1 79%

frontiersin.org

https://doi.org/10.3389/fcvm.2025.1473544
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 3

Forest plots of the pooled specificity for the diagnostic performance of AI in detecting CHD.

FIGURE 2

Forest plots of the pooled sensitivity for the diagnostic performance of AI in detecting CHD.
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Discussion

CHD remains the most prevalent congenital disability disease

and is the leading cause of infant mortality (38). Improving the

early diagnosis and screening rate of fetal CHD is crucial.

Ultrasound is the most commonly used imaging modality and an

essential tool in clinical practice due to its low cost, non-invasive

nature, and high reproducibility (39). However, the quality of

fetal echocardiographic images affects the assessment of cardiac

structure, function, and prenatal diagnostic outcomes. Obtaining

high-quality and standard fetal echocardiographic images

remains challenging due to factors such as fetal position,

differences in sonographer skill levels, and variations in

instrument resolution. Diagnosis relies heavily on the
Frontiers in Cardiovascular Medicine 05
sonographer’s experience, leading to unsatisfactory detection rates

for fetal cardiac abnormalities (40). Integrating AI into the

diagnostic process for early detection of CHD is highly beneficial

for reducing morbidity and mortality.

This systematic review and meta-analysis is the first to assess

the effectiveness of AI in diagnosing CHDs during prenatal

cardiac screening in second-trimester fetuses. The second

trimester is specifically studied because it offers more reliable

fetal orientation and better assessment of heart development

(41). This review provides a more updated and thorough

evaluation compared to the previous review on AI’s use in CHD

diagnosis using fetal echocardiography.

According to this study, AI models demonstrate very high

performance in detecting CHD compared to conventional
frontiersin.org
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FIGURE 4

SROC curve for the diagnostic performance of AI in detecting CHD.
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methods (i.e., clinician’s diagnosis of CHD). The DenseNet 201

model, tested on an intra-patient dataset in a study by Qiao

et al. (32), achieved 100% sensitivity and specificity and thus

100% accuracy. This could be achieved by combining gradient

class activation mapping (Grad–CAM) with guided

backpropagation (Guided-BP). Abnormal pixels in ultrasound

images are highlighted and visualized, which improves the

interpretability and understanding of expert fetal cardiologists.

Other than that, other AI models also demonstrated high

diagnostic accuracy. For instance, OB-4000, used by Arnaout

et al. (16), employed the biggest testing dataset, which is said to

simulate the real prevalence of CHD in a typical population

(0.8%–1%). Their work is the closest translation to resource-poor

and real-world settings. Therefore, automatic screening for CHD

through these AI algorithms might overcome the need for expert

examiners and increase the CHD detection rate. On a population

level, this will greatly assist both beginners and expert clinicians

in diagnosing CHD as well as broaden access to fetal

heart screening.

Wu et al. (36) further analyzed that AI can even provide high-

quality teaching tools to aid sonographers in learning about CHD.

While most studies focus on differentiating between normal and

CHD hearts, classifying different types of CHD is very crucial for

further treatment and knowing the prognosis, as done by Nurmaini

et al. (31). However, as the number of classification classes

increases, the accuracy, sensitivity, and specificity of AI algorithms

decrease. They were able to increase the accuracy to as high as 99%

by employing geometric transformation and increasing the training

dataset, which is very crucial in a deep learning AI model. Having

more robust and efficient AI algorithms is also the key to

translating into resource-poor and real-world settings.
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AI models have shown high accuracy in detecting CHD, which

suggests that integrating AI into routine prenatal cardiac screening

could potentially reduce healthcare costs, especially in LMICs.

Although no studies have specifically examined the cost-

effectiveness of AI-augmented prenatal cardiac screening, one

study found that AI-augmented ECG examination could be the

most cost-effective option, with a cost of less than $50,000 per

quality-adjusted life year (QALY) willingness-to-pay threshold (42).

While machine learning algorithms may appear to perform

satisfactorily, there are still several methodological barriers that

can affect the results and increase heterogeneity. Technical

parameters like hyperparameter tuning are often kept

confidential, resulting in significant statistical heterogeneity.

Heterogeneity, which measures the difference in effect size

between studies, can arise from several factors like model fine-

tuning, hyperparameter selection, and the number of epochs. In

addition, data partitioning is arbitrary due to the lack of standard

guidelines for utilization. In this study, most included studies had

an imbalanced ratio of training and testing datasets, which could

lead to poor generalization or even misleading accuracy. It ’s

essential to consider the generalizability of the studies, as most

were developed and validated using Asian populations, with only

one study evaluating AI performance in American populations.

Evidence has shown that Asians have the highest prevalence of

CHD, so more datasets based on other ethnicities are necessary

to ensure the study’s generalizability (43).

One major issue with deep learning is its black box-like nature,

which makes it difficult to understand how it operates and makes

decisions. Despite being highly accurate, healthcare workers cannot

accept its decisions without proper interpretation. A possible

solution to this problem is using interpretable hand-crafted

features from clinical information or biosignals that human

experts are familiar with and incorporating them into deep

learning models to improve their interpretability.

AI has some limitations that should be acknowledged. To

improve algorithm performance, a significant amount of training

data is required. In addition, the high computational power of AI

can lead to over-fitting, where the model is too closely tailored to

the training data and cannot adapt to new data.

In summary, artificial intelligence models, especially deep

learning techniques, have shown effective results in detecting

CHD. However, it is important to carefully consider various

factors such as the data acquisition process, characteristics of the

data, characteristics of the population being analyzed, weight

reduction of the algorithm, working principle, and

interpretability of the model to develop a practical medical AI

model that can be applied in real-world scenarios.
Conclusion

While there are some obstacles to using AI models in clinical

practice, there is potential for AI to improve CHD diagnosis.

However, more extensive studies are necessary to compare AI

algorithms with conventional methods and to include a broader

range of patients. Once these studies are completed and AI
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algorithms are validated, they may be helpful in clinical practice,

especially in LMICs.
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