
TYPE Original Research
PUBLISHED 05 March 2025
DOI 10.3389/fcvm.2025.1471989
EDITED BY

Nathalie Jeanne M. Bravo-Valenzuela,

Federal University of Rio de Janeiro, Brazil

REVIEWED BY

Shuo Wang,

Central South University, China

Eimo Martens,

Technical University of Munich, Germany

*CORRESPONDENCE

Shuhei Toba

toba.shuhei@gmail.com

Yoshihide Mitani

ymitani@med.mie-u.ac.jp

RECEIVED 28 July 2024

ACCEPTED 11 February 2025

PUBLISHED 05 March 2025

CITATION

Toba S, Mitani Y, Sugitani Y, Ohashi H,

Sawada H, Takeoka M, Tsuboya N, Ohya K,

Yodoya N, Yamasaki T, Nakayama Y, Ito H,

Hirayama M and Takao M (2025) Deep

learning-based analysis of 12-lead

electrocardiograms in school-age children: a

proof of concept study.

Front. Cardiovasc. Med. 12:1471989.

doi: 10.3389/fcvm.2025.1471989

COPYRIGHT

© 2025 Toba, Mitani, Sugitani, Ohashi, Sawada,
Takeoka, Tsuboya, Ohya, Yodoya, Yamasaki,
Nakayama, Ito, Hirayama and Takao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.
Frontiers in Cardiovascular Medicine
Deep learning-based analysis of
12-lead electrocardiograms in
school-age children: a proof of
concept study
Shuhei Toba1*, Yoshihide Mitani2*, Yusuke Sugitani3,4,
Hiroyuki Ohashi2, Hirofumi Sawada2, Mami Takeoka2,
Naoki Tsuboya2, Kazunobu Ohya2, Noriko Yodoya2,
Takato Yamasaki1, Yuki Nakayama1, Hisato Ito1,
Masahiro Hirayama2 and Motoshi Takao1

1Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine,
Tsu, Mie, Japan, 2Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie,
Japan, 3Department of Clinical Engineering, Mie University Hospital, Tsu, Mie, Japan, 4Department of
Electrical and Electronic Engineering, Mie University, Tsu, Mie, Japan
Introduction: The diagnostic performance of automated analysis of
electrocardiograms for screening children with pediatric heart diseases at risk of
sudden cardiac death is unknown. In this study, we aimed to develop and
validate a deep learning-based model for automated analysis of ECGs in children.
Methods: Wave data of 12-lead electrocardiograms were transformed into a
tensor sizing 2 × 12 × 400 using signal processing methods. A deep learning-
based model to classify abnormal electrocardiograms based on age, sex, and
the transformed wave data was developed using electrocardiograms
performed in patients at the age of 6–18 years during 2003–2006 at a tertiary
referral hospital in Japan. Eighty-three percent of the patients were assigned
to a training group, and 17% to a test group. The diagnostic performance of
the model and a conventional algorithm (ECAPS12C, Nihon Kohden, Japan)
for classifying abnormal electrocardiograms were evaluated using the cross-
tabulation, McNemar’s test, and decision curve analysis.
Results: We included 1,842 ECGs performed in 1,062 patients in this study,
and 310 electrocardiograms performed in 177 patients were included in the test
group. The specificity of the deep learning-based model for detecting
abnormal electrocardiograms was not significantly different from that of the
conventional algorithm. For detecting electrocardiograms with ST-T
abnormality, complete right bundle branch block, QRS axis abnormality,
left ventricular hypertrophy, incomplete right bundle branch block,
WPW syndrome, supraventricular tachyarrhythmia, and Brugada-type
electrocardiograms, the specificity of the deep learning-based model was
higher than that of the conventional algorithm at the same sensitivity.
Conclusions: The present new deep learning-based method of screening for
abnormal electrocardiograms in children showed at least a similar diagnostic
performance compared to that of a conventional algorithm. Further studies
are warranted to develop an automated analysis of electrocardiograms in
school-age children.
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FIGURE 1

Study population. ECG, electrocardiogram.
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1 Introduction

Twelve-lead electrocardiogram (ECG) is presumed to be useful

for detecting children who have a variety of pediatric

cardiovascular diseases or are at risk for premature sudden

cardiac death in childhood (1). In Japan, ECG has been

mandated in all students in the first year of elementary school,

junior high school, and senior high school since 1995 (1). In the

mass screening of heart diseases in school, children who are

prompted by school ECG screening to undergo secondary

screening or detailed examination are extracted based on the

national guidelines (1). ECG-based screening, in fact, contributes

to the early detection of children with long QT syndrome,

hypertrophic cardiomyopathy, pulmonary arterial hypertension,

and ventricular non-compaction and children who are at high

risk of sudden cardiac death (2–11). However, the introduction

of ECG-based screening as a nationwide population-level

healthcare system remains controversial internationally, mainly

because of its high resource utilization (3, 5, 12, 13).

Automated analysis of 12-lead ECG is widely used in adults

and its diagnostic performance has been shown to be high with

minimal resource utilization (14–18). In addition, recent studies

have demonstrated the efficacy of deep learning-based analysis of

pediatric ECGs in detecting congenital heart defects, left

ventricular dysfunction, and long-QT syndrome (19–22).

However, limited data are available in growing children with a

variety of target heart diseases and the diagnostic performance of

commercially-available automated analyzers remains unknown, in

part because of the lack of ECGs annotated based on a guideline

for screening children and of the rarity of each target disease (23).

In this study, we aimed to develop a deep learning-based

algorithm to interpret ECGs in school-age children and to

compare the diagnostic performance of the algorithm with a

conventional algorithm implemented in an ECG machine.
2 Materials and methods

This study was approved by the Institutional Review Board at

Mie University Hospital (H2019-175).
2.1 Patients and ECG data

We included consecutive patients at 6–18 years of age who

underwent a 12-lead ECG at Mie University Hospital, a tertiary

referral center from January 2003 to December 2006, during

which the same ECG recording system was consistently used.

The patients were randomly assigned to the training group

(83%), which was used for training the deep learning model, and

the test group (17%), which was used for evaluation of the

model. The study population is summarized in Figure 1.

In terms of ECG data, standard, simultaneous, digital, 10-s,

12-lead ECGs at rest were originally recorded using ECG-1400

(Nihon Kohden, Japan) in the supine position at a sampling rate

of 500 samples per second. Digital wave data of ECG were
Frontiers in Cardiovascular Medicine 02
extracted in the format of medical wave recording format

encoding rules (http://www.mfer.org/en/index.htm). In addition

to the wave data, findings assigned by an automated algorithm

(ECAPS12C, Nihon Kohden, Japan) based on Minnesota coding

system (24) and the age and the gender were also extracted.
2.2 Interpretation of ECG

As ground truth, ECGs were classified as abnormal when there is

a finding included in group A or B in the guideline (1). The findings

that were considered abnormal are shown in Supplementary Tables

1–3. All ECGs were interpreted by three board-certified pediatric

cardiologists (YM, HS, and HO). When one or more cardiologists

considered there was an abnormal finding, the ground-truth

diagnosis was determined through discussion by the three

cardiologists. During the interpretation process at both stages, the

cardiologists had access to the results of automated measurements

and diagnoses suggested by the conventional algorithm.

To evaluate the diagnostic performance of the Minnesota coding

system-based automated analysis implemented in the ECG machine,

Minnesota codes that correspond to the abnormalities included in

the group A or B in the guidelines were determined in accordance

with guideline (1). The Minnesota codes considered abnormal are

shown in Supplementary Table 4. ECGs that had been assigned

with these Minnesota codes were considered to be diagnosed as

abnormal by the conventional automated algorithm.
2.3 Model architecture

As preprocessing of input data, full-length 10-s 12-lead ECG

wave data were analyzed using the Pan-Tompkins algorithm, and
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wave data between the second QRS wave and the last QRS wave

were extracted (25). The wave data in each lead were

transformed into amplitude and phase using the Fourier

transform and filtered using a low pass filter at a threshold of

50 Hz. The amplitude and phase channels were combined based

on the Cabrela format and resized to form a three-dimensional

tensor sizing 2 × 12 × 400.

We developed a 21-layer deep convolutional neural network

based on the VGG-16 architecture (26). The neural network was

designed to have two input layers of the three-dimensional

tensor resulting from the preprocessing methods in addition to

an input vector for age and sex and to output the probability

that an inputted ECG is abnormal. The overview of the

preprocessing methods and the deep-learning model is shown in

Figure 2, and the architecture of the model is shown in Figure 3.

The deep learning-based model was trained using data in the

training group. The training data were divided into five
FIGURE 2

Overview of the deep learning-based model. ECG, electrocardiogram.
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subgroups, and five models were trained using k-fold cross-

validation at k of five (i.e., each model used one of the five

training subgroups for validation and the rest for training). After

optimization of the parameters using the training data, the

following parameters were used for training: batch size, 32; loss

function, binary cross entropy; optimizer, Adam; learning ratio,

1.0 × 10−7. After training for 100 epochs, models that achieved

the lowest loss on validation data were used for performance

evaluation. The training curves are shown in Figure 4.
2.4 Performance evaluation and statistical
methods

The performance of the model to detect abnormal ECGs was

evaluated using the area under the receiver operating characteristic

curve and the decision curve analysis (27). One threshold for
frontiersin.org
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FIGURE 3

Structural overview of the deep convolutional neural network. CNN, convolutional neural network.

FIGURE 4

Training curves of the deep learning-based model for 5-fold cross-validation.
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TABLE 1 Characteristics of ECG data. The numbers for abnormal ECG
findings represent the number of cases in which each finding was present.

Variables Training group
(n= 1,532)

Test group
(n = 310)

Number of patients 885 177

Median age (IQR, years) 11 (8–14) 11 (7–14)

Sex (male, %) 863 (56) 167 (54)

ECG findings (%)
Normal ECG 1,097 (71) 226 (73)

ST-T abnormality 245 (16) 51 (16)

Complete right bundle branch block 91 (5.9) 17 (5.5)

QRS axis abnormality 51 (3.3) 16 (5.2)

Toba et al. 10.3389/fcvm.2025.1471989
classifying an ECG as abnormal was determined based on Youden’s

index, and the other threshold was determined so that the sensitivity

of the deep learning was as high as the conventional algorithm.

At the thresholds determined, accuracy, sensitivity, specificity,

positive predictive value, and negative predictive value were

calculated and the specificity of the deep learning-based model was

compared with that of the conventional algorithm at the threshold

for the same sensitivity using the McNemar test (28). Data are

presented as median and interquartile range for continuous

variables when they are not normally distributed based on the

Kolmogorov–Smirnov test.
Right ventricular hypertrophy 49 (3.2) 11 (3.5)

Left ventricular hypertrophy 34 (2.2) 5 (1.6)

Left atrial load 31 (2.0) 0

Incomplete right bundle branch block 27 (1.8) 9 (2.9)

Artificial pacemaker 19 (1.2) 0

Q wave abnormality 16 (1.0) 0

Complete left bundle branch block 16 (1.0) 0

Reexamination is required 11 (0.7) 0

Premature supraventricular contraction 10 (0.7) 0

Premature ventricular contraction 9 (0.6) 3 (1.0)

WPW 7 (0.5) 1 (0.3)

Supraventricular tachyarrhythmia 6 (0.4) 8 (2.6)

QT prolongation 5 (0.3) 0
2.5 Visualization

Findings that our model focused on during prediction were

visualized by gradient-weighted class activation mapping (grad-

CAM) (29). An amplitude channel was produced by using grad-

CAM at the 12th convolutional layer of the model and was

converted to a heatmap by inverse fast Fourier transform using a

phase channel of original ECG data. The heatmap was overlayed on

an original ECG wave image to show areas that had influenced the

prediction of the model.

Other rhythm abnormality 4 (0.3) 0

First-degree atrioventricular block 4 (0.3) 0

Second-degree atrioventricular block 3 (0.2) 0

Sinus tachycardia or bradycardia 3 (0.2) 0

Ventricular tachycardia 2 (0.1) 0

Brugada-type electrocardiogram 2 (0.1) 1 (0.3)

Incomplete left bundle branch block 1 (0.1) 0

Intraventricular conduction delay 1 (0.1) 0

Sinus arrest or sinoatrial block 1 (0.1) 0
2.6 Software

Development and evaluation of the deep learning-based model

and statistical analyses were performed using python and its

libraries including Keras 2.2.4 with TensorFlow backend, scikit-

learn, statsmodels, SciPy, and OpenCV.

Third-degree atrioventricular block 0 4 (1.3)
3 Results

3.1 Patient characteristics

After excluding three ECGs with corrupted files, a total of 1,842

ECGs performed in 1,062 patients were included in the study. The

median age was 11 years (interquartile range, 8–14), and 575

patients (56%) were male. The race of the patients was not

recorded, but most (at least 95% or more) were considered to be

Asian based on the clinical experience at the center. Of the total

ECGs, 1,532 ECGs performed in 885 patients were assigned to the

training group, and 310 ECGs performed in the other 177 patients

were assigned to the test group. In the test group, 84 ECGs (27%)

include one or more abnormal findings as ground truth.

Characteristics of ECGs in each group are summarized in Table 1.
3.2 Experts’ interpretation

The initial interpretations by the three physicians were the same

in 222 ECGs (71%). In the 88 ECGs with disagreement, the findings

that were incorrectly not assigned by one or more physicians were:

ST-T abnormality (34 ECGs, 39%), QRS axis abnormality
Frontiers in Cardiovascular Medicine 05
(11 ECGs, 13%), left ventricular hypertrophy (5 ECGs, 5.7%),

incomplete right bundle branch block (5 ECGs, 5.7%), right

ventricular hypertrophy (4 ECGs, 4.5%), third-degree

atrioventricular block (3 ECGs, 3.4%), supraventricular tachycardia

(3 ECGs, 3.4%), complete right bundle branch block (2 ECGs,

2.3%), and Brugada pattern (1 ECGs, 1.1%). The findings that were

incorrectly assigned by one or more physicians were: normal (26

ECGs, 30%), ST-T abnormality (16 ECGs, 18%), incomplete right

bundle branch block (8 ECGs, 9.1%), Q wave abnormality

(5 ECGs, 5.7%), atrial load (5 ECGs, 5.7%), premature atrial

contraction (5 ECGs, 5.7%), prolonged QT (5 ECGs, 5.7%), right

ventricular hypertrophy (4 ECGs, 4.5%), QRS axis abnormality

(2 ECGs, 2.3%), left ventricular hypertrophy (2 ECGs, 2.3%),

Brugada pattern (1 ECG, 1.1%), complete right bundle branch

block (1 ECG, 1.1%), 1st-degree atrioventricular block (1 ECG,

1.1%), and other rhythm abnormality (1 ECG, 1.1%).
3.3 Performance of the conventional
algorithm

The conventional algorithm classified 208 ECGs (67%) as

abnormal in the test group. The accuracy, sensitivity, specificity,
frontiersin.org
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positive predictive value, and negative predictive value are 0.57

[95% confidence interval (CI), 0.52–0.63], 0.95 (95%CI, 0.93–

0.97), 0.43 (95%CI, 0.38–0.49), 0.38 (95%CI, 0.33–0.43), and

0.96 (95%CI, 0.94–0.98), respectively. The accuracy of the

conventional algorithm was similar between the ECGs with

initial agreement among physicians and those with initial

disagreement (0.57 vs. 0.58).
3.4 Performance of the deep learning model

The receiver operating characteristic curve and the decision

curve of our model for detecting overall abnormality are shown

in Figure 5. The net benefit of the deep learning-based model

was higher than that of the conventional algorithm at the

threshold probability of 0.04 or lower and 0.19 or higher. At

maximum Youden’s J index, our model classified 102 ECGs

(33%) as abnormal, and the accuracy, sensitivity, specificity,

positive predictive value, and negative predictive value were

0.83 (95%CI, 0.79–0.87), 0.79 (95%CI, 0.75–0.84), 0.84 (95%CI,

0.80–0.88), 0.65 (95%CI, 0.60–0.70), and 0.91 (95%CI,

0.88–0.94), respectively. To achieve the same sensitivity (95%) as

the conventional algorithm, the threshold for the output of the

model was set to 0.022, and the accuracy, sensitivity, specificity,

positive predictive value, and negative predictive value were

0.52 (95%CI, 0.47–0.58), 0.95 (95%CI, 0.93–0.97), 0.37 (95%CI,

0.32–0.42), 0.36 (95%CI, 0.31–0.41), and 0.95 (95%CI,

0.93–0.97), respectively. The specificity of the model was not

significantly different from that of the conventional algorithm

(P = .58, McNemar’s test). The accuracy of the model was similar

between the ECGs with initial agreement among physicians and

those with initial disagreement (0.52 vs. 0.52).
FIGURE 5

Overall diagnostic performance of the conventional algorithm and the deep
deep learning-based model. The area under the curve was 0.87. (B) Decis
model. The test harm was assumed to be 0.
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3.5 Performance for each abnormality

The diagnostic performance of the conventional algorithm and

deep learning-based model for abnormalities for which both

training and test groups contain one or more ECGs with such

abnormality at the same sensitivity are shown in Table 2. At the

same sensitivity, the specificity of the deep learning-based model

was significantly higher for ECGs with ST-T abnormality,

complete right bundle branch block, QRS axis abnormality, left

ventricular hypertrophy, incomplete right bundle branch block,

WPW syndrome, supraventricular tachyarrhythmia, and

Brugada-type electrocardiograms, but not significantly different

for ECGs with right ventricular hypertrophy and premature

ventricular contraction. The receiver operating characteristic

curves of the deep learning-based model for four major

abnormalities (ST-T abnormality, complete right bundle branch

block, QRS axis abnormality, and right ventricular hypertrophy)

are shown in Figure 6.
3.6 Visualization

Interpretation for ECGs with ST-T abnormality, with

complete right bundle branch block, and with QRS axis

abnormality, right ventricular hypertrophy, and ST-T

abnormality by our model was visualized and shown in Figure 7.
4 Discussion

In this study, we developed and validated a new deep learning-

based algorithm to detect the guideline-defined abnormalities in
learning-based model. (A) Receiver operating characteristic curve of the
ion curves of the conventional algorithm and the deep learning-based
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ECGs in school-age children. To our knowledge, this is the first

application of deep learning to interpreting the 12-lead ECG in

children with a variety of target heart diseases in accordance

with the nationwide population-level screening guideline, and we

showed that the deep learning-based analysis could detect

abnormalities in ECGs based on wave data, age, and sex, at

the diagnostic performance at least similar to the

conventional algorithm.

Automated analysis of 12-lead ECG has been studied since

1950s (15, 30). In previous studies, automated analysis of ECG

was performed using the rule-based approach, in which ECG

waveforms were recognized and interpreted based on descriptive

rules. The rule-based automated analysis of ECG has been

reported to have high diagnostic performance in adults (14, 16,

17). However, its application to ECGs in children has been

limited, and to our knowledge, the diagnostic performance of

automated algorithms for ECGs in children with a variety of

target heart diseases has not been reported. In this study, we

aimed to develop a method of automated analysis of ECG in

children without defining a detailed description of ECG

waveforms using a deep learning-based method.

Although a standard protocol for the interpretation of ECGs

for screening in school-age children has been established in

Japan, the percentage of students who were regarded as having

abnormal ECG varied among districts in Japan (1). In this study,

disagreement among the three certified pediatric cardiologists

occurred in 29% of the ECGs for evaluation. Considering the

relatively high inconsistency rate even among experienced

physicians, accurate and consistent analysis of ECGs will help

improve the efficacy of screening of ECGs in school-age children.

Deep learning has recently been developed initially in the field

of automated image recognition. One of the advantages of deep

learning is that deep learning models extract features that are

necessary to predict outputs not by descriptive definition of such

features but through the learning process in which a model is

trained using a large dataset of inputs and outputs. Because of

this non-descriptive learning process, it can recognize and

interpret images without descriptive definitions of waveforms

and abnormalities.

Recent studies have shown superior performance of deep

learning-based methods to analyze single-lead ECGs as well as

12-lead ECGs (19–22, 31–34). In some previous studies, deep

learning-based methods were applied by inputting 12-lead ECG

data as a 2-dimensional array to convolutional neural networks

(19, 21, 22, 34–37). However, a typical convolutional neural

network does not recognize sequential relationships among time-

dependent wave data, especially at distant time points. To handle

ECG wave data as time-sequence data, some previous studies

used recurrent neural networks, including long short-term

memory network for deep learning model (38, 39), time-

frequency spectrogram (40, 41), or transformer (20). In the

present study, we focused on periodicity in addition to the time

sequence of ECG waveforms and developed a model that used

conventional signal processing methods, such as the Fourier

transform and the Pan-Tompkins algorithm, and deep

convolutional networks. The model used in the present study has
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FIGURE 6

Diagnostic performance of the conventional algorithm and the deep learning-based model for four major abnormalities. (A) ST-T abnormality. The
area under the curve of the deep learning-based model was 0.86. (B) Complete right bundle branch block. The area under the curve of the deep
learning-based model was 0.91. (C) QRS axis abnormality. The area under the curve of the deep learning-based model was 0.92. (D) Right
ventricular hypertrophy. The area under the curve of the deep learning-based model was 0.89.
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four theoretical advantages compared with the models used in the

previous deep leaning-based ECG studies (34–42). First, the input

of the present model is wave data, which is consistent among

different recording systems and to which various signal-

processing methods, such as low pass filter, can be applied.

Second, because of the structure of the input tensor, which was

created based on Cabrela format, and the convolutional layers

used in the deep learning model, the geometrical relationships

among 12 leads of ECG can be recognized in the model. Third,

because the input data we used was not time-dependent voltage
Frontiers in Cardiovascular Medicine 08
data nor time-frequency spectrogram but 3-dimensionally

concatenated spectrums in which one dimension is for leads, one

dimension is for frequency, and the other dimension is for

amplitude and phase as results of Fourier transform, we could

reduce the size of the input tensor to 2 × 12 × 400. The smaller

size of the input tensor compared to the previous studies may

have contributed to the performance of the model despite the

relatively small number of included patients (35–38, 42). This

can be a potential advantage for screening abnormal ECGs in

children, who are associated with a variety of rare cardiac
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FIGURE 7

Visualization of the deep learning-based model. Red and yellow represent areas where the model focused on to output predictions. (A) An
electrocardiogram with ST-T abnormality. (B) An electrocardiogram with complete right bundle branch block. (C) An electrocardiogram with QRS
axis abnormality, right ventricular hypertrophy, and ST-T abnormality.
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diseases. Forth, the present model is a multi-modal deep-learning

model that includes age and sex as well as ECG data as its

inputs. This may be beneficial to analyze ECGs in growing

children of different ages and genders.

In the previous studies, the diagnostic performance of deep

learning-based analysis of ECGs in adults was shown to be

similar to or superior to that of conventional automated analysis

(43, 44). However, the diagnostic performance of deep learning-

based or conventional automated analysis for ECGs in children

with a variety of target heart diseases by using a screening

guideline has not been reported. In this study, we first evaluated

the diagnostic performance of a conventional algorithm

implemented in an ECG recorder (ECG-1400; Nihon Kohden,

Japan) and then compared it with that of deep learning-based

analysis. As a result, the conventional algorithm was shown to be

sensitive to the abnormalities in children but less specific

(sensitivity, 0.95; specificity, 0.43), and the deep learning-based

model had similar overall diagnostic performance to that of the

conventional algorithm and was more specific for ECGs with

some abnormalities, such as ST-T abnormality, complete right

bundle branch block, QRS axis abnormality, left ventricular

hypertrophy, incomplete right bundle branch block, WPW

syndrome, supraventricular tachyarrhythmia, and Brugada-type

electrocardiograms. As shown in Figure 5B, the net benefit of the

deep learning-based model was higher than that of the

conventional algorithm when at the lower and higher ends of the

threshold probability. The present convolutional neural network,

which recognizes the relationships among waves in adjacent leads

in the Cabrela format, may have contributed to the performance

of the model. Considering that the performance of the deep

learning-based model can be improved by including more data

for training, our deep learning-based model can classify ECGs in

children at least as accurately as a conventional automated

algorithm does.

One of the disadvantages of a deep learning-based model for

clinical purposes is that the recognition and interpretation of a

model are not well explained, and it is often considered a “black

box.” In this study, we showed areas of ECG wave on which our

deep learning-based model focused on to output prediction, as

shown in Figure 7. The areas were generally consistent with

the abnormalities in the abnormal ECGs except for the one

with ST-T abnormality. The inconsistency in the ECG with

ST-T abnormality may be caused by the frequent association of

ST-T abnormality with the other abnormalities in the training

data. This visualization technique may help clinicians review the

model’s predictions.

Several limitations of this study should be acknowledged. First,

because some of the ECG findings were rare, several abnormalities

in the guidelines were rarely or not included in the training or test

dataset. Second, because the output of our deep learning-based

model was for overall abnormality (i.e., whether an ECG includes

any abnormal findings), the evaluation of our model for each

abnormality may not represent the exact performance of the

deep learning-based model for each abnormality. Third, the data

recorded in the previous period were used in this study due to

the limited resources for the meticulous annotation process. The
Frontiers in Cardiovascular Medicine 10
conventional algorithm implemented in the ECG recorder has

remained largely the same, with only minor updates. These

updates may affect the performance of the current rule-based

algorithm. In addition, Minnesota codes were revised in 2010,

but this didn’t affect the results of the study. These limitations

will be solved by including more cases and by developing specific

models for each abnormality using a large amount of data in

future studies.

In conclusion, we developed a new deep learning-based method

to detect abnormalities defined by a national ECG screening

guideline in 12-lead ECGs in children, and its diagnostic

performance was at least similar to that of a conventional automated

algorithm. Further studies are warranted to improve the diagnostic

performance of the model for automated analysis of ECGs in the

setting of screening for apparently healthy school children.
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