Check for updates

OPEN ACCESS

EDITED BY Carole Sudre, University College London, United Kingdom

REVIEWED BY Giuseppe Caminiti, Università telematica San Raffaele, Italy Giuseppe Mascia, University of Genoa, Italy

*CORRESPONDENCE Hao Zhang ⊠ crrczh2020@163.com

RECEIVED 01 July 2024 ACCEPTED 24 February 2025 PUBLISHED 24 March 2025

CITATION

Moneruzzaman Md, Tang Z, Li X, Sun W, Maduray K, Luo M, Kader M, Wang Y and Zhang H (2025) Current exercise-based rehabilitation impacts on poststroke exercise capacity, blood pressure, and lipid control: a meta-analysis.

Front. Cardiovasc. Med. 12:1457899. doi: 10.3389/fcvm.2025.1457899

COPYRIGHT

© 2025 Moneruzzaman, Tang, Li, Sun, Maduray, Luo, Kader, Wang and Zhang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Current exercise-based rehabilitation impacts on poststroke exercise capacity, blood pressure, and lipid control: a meta-analysis

Md. Moneruzzaman^{1,2,3,4}, Zhiqing Tang^{1,2}, Xiaohe Li⁴, Weizhen Sun⁴, Kellina Maduray⁵, Meiling Luo⁴, Manzur Kader⁶, Yonghui Wang⁴ and Hao Zhang^{1,2,3*}

¹School of Rehabilitation, Capital Medical University, Beijing, China, ²Beijing Boʻai Hospital, China Rehabilitation Research Center, Beijing, China, ³Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China, ⁴Department of Rehabilitation Medicine and Physical Therapy, Qilu Hospital of Shandong University, Jinan, Shandong Province, China, ⁵Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong Province, China, ⁶Department of Medicine, Solna, Clinical Epidemiology Division, Karolinska Institutet, Stockholm, Sweden

Objectives: This systematic review aimed to evaluate the impact of post-stroke exercise-based rehabilitation programs on blood pressure, lipid profile, and exercise capacity.

Methods: Through a systemic search of literature from inception to 2024 using five databases, we analyzed data on the mean difference (MD) using a metaanalysis method to estimate effectiveness.

Results: Thirty-seven randomized control trials were included encompassing various exercises such as aerobic, resistance, stretching, exergaming, robot-assisted training, and community-based training. Significant improvement was illustrated at discharge in systolic [MD 2.76 mmHg; 95% confidence interval (CI) –1.58 to 3.92, P < 0.05] and diastolic (MD 1.28 mmHg; 95% CI 0.54–2.12, P < 0.05) blood pressure and peak oxygen volume (MD –0.29 ml/kg/min; 95% CI –0.53 to 0.05, P < 0.05). We also observed significant improvement at discharge in high-density lipoprotein only after resistance exercise from two articles and low-density lipoprotein only in the intervention groups compared to the control groups from ten articles.

Conclusion: Overall, current exercise-based rehabilitation programs significantly improve blood pressure and exercise capacity in patients with stroke at discharge. However, lipoprotein changes remained inconclusive. Although ameliorative changes were noted in most variables, more research is needed to determine optimum exercise intensity, type combination, and health education to reduce post-stroke complications and mortality.

Systematic Review Registration: https://doi.org/10.17605/OSF.IO/X89FW.

KEYWORDS

stroke, exercise, blood pressure, lipid profile, neurocardiology

1 Introduction

After a stroke, 75% of patients develop cardiac diseases such as coronary artery disease, myocardial infarction (MI), atrial fibrillation (AF), heart failure (HF), and cardiac dysrhythmias (1-3). Schneck (4) stated that 19% of patients complained of heart problems just 3 months after a stroke, even though they had no history of heart

disease. Several studies also illustrated that cardiovascular disease increased the risk of death after a cerebrovascular accident (4, 5). Among other cardiac cases, coronary stenosis (50%) and MI (3%) were more frequent after stroke (6). Moreover, ventricular arrhythmias, acute MI, HF, and cardiac death can be found among 4.1% of hospitalized patients with intracerebral hemorrhagic stroke, while it increases to 9% among subarachnoid hemorrhagic stroke patients (1). These post-stroke cardiac episodes are caused by stroke-induced heart damage, often known as stroke heart syndrome (7). Therefore, cardiac problems can also occur as a compensatory mechanism for stroke, known as neurogenic stress cardiomyopathy (NSC). Common manifestations of NSC are abnormal electrocardiogram (ECG) waves, ventricular wall abnormalities, and the release of troponin, a cardiac muscle regulator protein (8). Besides NSC, Takotsubo cardiomyopathy is another factor that impairs psychological stress by weakening the heart muscle after a stroke (9). However, cardiac diseases can also develop due to long-term physical inactivity and a sedentary lifestyle (5).

Consequently, 20% of ischemic strokes occur due to several cardiac complications, making cardiac diseases the most common risk factor for stroke (7, 10). When other risk factors, such as hypertension, diabetes, and smoking, are taken into account, people with AF increase their risk of stroke by approximately 5% (10). Moreover, recent studies indicate that approximately 25% of stroke patients without a prior history of AF may develop asymptomatic AF due to cardio-neurogenic mechanisms, increasing stroke recurrence risk and raising mortality by 60% (11). Fortunately, serial 12-lead ECG monitoring within the first month of post-stroke can significantly improve AF detection. However, focusing on persistent sinus rhythm and precise differentiation between AF and ventricular tachycardia are crucial to avoid further risk (12, 13). Evidence from a cohort study demonstrated that after rheumatoid heart disease, 5.2% of the patients had an incidence of stroke (14). Lackland and colleagues (15) found that cardiovascular risk factor prevention was one of the main reasons behind the decline of stroke mortality from third to fourth in the United States. Thus, cardiovascular risk factors prevention after a stroke event is inevitable.

Meanwhile, post-stroke rehabilitation comprises a variety of exercises (muscle strengthening and stretching, mobility training) and education (health education, personal grooming) to improve patients' physical, cardiorespiratory, and cognitive performance (16, 17). Post-stroke blood pressure (BP), cardiac output (CO), heart rate (HR), and heart rate variability (HRV)-the fluctuation between two R waves-levels are essential to determine overall cardiac health and risk of stroke recurrence after rehabilitation (18, 19). Patients with depressed HVR have a lower performance rate, influencing overall recovery (20). A study on 103 subacute stroke patients found an adverse functional outcome following low HRV (18). Studies found that post-stroke cardiorespiratory fitness is not related to the factors causing stroke but to cardiovascular and pulmonary disease (21). The volume of oxygen peak (VO_{2peak}), a measure of cardiorespiratory fitness, drops nearly 50% within a week of a stroke event compared to healthy individuals; although, stroke survivors' often require a higher aerobic capacity to do routine work because of disability (22, 23). The walking ability of stroke survivors also declines due to low VO_{2peak} (22).

Previous meta-analysis studies mainly focus on the impact of aerobic exercise on post-stroke peak oxygen uptake and walking distance; evidence on the effects of post-stroke rehabilitation on cardiac variables and lipid profile was less explored (23, 24). Some meta-analyses illustrated the impact of aerobic exercise on BP and cholesterol levels, but the overall findings were inconclusive due to methodological errors among included studies and outcome measures (20, 25). Furthermore, a metaanalysis conducted by Boulouis and colleagues (26) demonstrated that lowering blood pressure after intracerebral hemorrhage was safe but unrelated to patients' functional outcomes, which debriefed the relation between functional outcomes and cardiac variables after stroke. However, the impact of all types of rehabilitation protocols in intra- and inter-groups and comparing baseline and post-intervention changes on blood pressure, lipid profile, and functional and exercise capacity may provide insight into post-stroke rehabilitation and suggest guidelines to reduce post-stroke complications and mortality.

Therefore, our study aimed to summarize the available evidence on the effect of post-stroke rehabilitation on BP, HR, and CO, lipid profile such as HDL, and low-density lipoprotein (LDL) by comparing post-treatment changes from baseline, as well as changes between control and intervention group. The primary outcomes of our study are BP, lipid profile variables, and exercise capacity (VO_{2peak}), and the secondary outcome is functional capacity (walking).

2 Method

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (27). The protocol of this review is registered and made public in the open science forum (OSF) platform (https://doi.org/10.17605/OSF.IO/X89FW).

2.1 Search strategies and selection of studies

Following PICOS (28, 29) (population, intervention, comparison, outcome, and study design) methodology, a search was conducted in five online databases (Web of Science, PubMed Central, PEDro, Cochrane Library, and Scopus) for studies that reported any of our study variables such as hemodynamic changes, physical function, and cardiorespiratory properties after post-stroke rehabilitation published from inception to June 2024. For PICOS, the population consisted of all patients participating in the post-stroke rehabilitation program. Interventions included any post-stroke rehabilitation program, including exercise and health education. Studies compared the intervention effects on any variables related to cardiovascular or cardiorespiratory and functional changes after the intervention, comparing baseline and

post-intervention changes. The reported study outcomes were any of our study variables such as hemodynamics (BP, HR, and CO), lipid profile variables (HDL and LDL), exercise capacity measured by VO_{2peak}, and functional capacity measured by the 6 min walk test (6MWT). The study design was a randomized control trial (RCT). There was no language restriction on search engines.

The following keywords and medical subject headings (MeSH), and an asterisk (*), to identify associated keywords were utilized for a wide range of search results, such as "Cardi*," "rehab*," "Cerebr*," "Heart (MeSH)," "Brain (MeSH)," "Stroke (MeSH)," "Hemorrhagic (MeSH)," "Exercise (MeSH)," "training," "ischemic," "embolic," "thrombotic," and Boolean/phrase "AND" and "OR." In addition, all relevant article reference lists, previous systematic reviews, and guidelines were screened for selection (shown in Supplementary File 1).

One author (MM) operated the search. Three authors (MM, LX-H, M-LL) screened all articles independently, limiting studies to the following inclusion criteria: (1) study subjects are from post-stroke rehabilitation, including both genders as participants; (2) studies wherein exercise or therapy or training program was performed (such as aerobic exercise, resistance training, community-based rehabilitation program, telerehabilitation, yoga, preventive education); (3) interventional studies, which evaluated the effectiveness of an intervention, with outcomes measured at baseline and post-intervention, with or without follow-up; (4) studies wherein outcome measurement was focused on hemodynamics, lipid profile, and functional and exercise capacity as a primary or secondary outcome, respectively. The exclusion criteria of studies were as follows: (1) studies on subjects having a stroke with other neurological commodities such as Parkinson's disease or Alzheimer's disease, cardiac disease and surgeries such as bypass surgery, and musculoskeletal or traumatic brain injury; (2) studies only focused on stroke without rehabilitation; (3) observational studies (e.g., cross-sectional association or correlation study), case reports, review articles, experimental or animal studies, abstracts, editors or experts' opinions, and letters to editors; (4) unpublished study data or studies that failed to provide outcome data after contact with the author(s). Discussions with the supervising author (HZ) resolved any disputes regarding study selection.

2.2 Screening of article

We utilized reference manager software "Zotero" (30) and "Rayyan" (31) for study screening and finding duplicates. Titles and abstracts were screened for primary selection, and full text and data availability were assessed for final study selection. The author (MM) contacted the respective authors for data availability. Any disagreement was solved through discussion.

2.3 Quality assessment

For the quality of the study and the risk of bias assessment, two authors (MM and W-ZS) utilized "PEDro" (32) and the Cochrane Handbook for risk of bias assessment tool "ROB 2.0" (33). Regarding PEDro scores, studies were categorized as fair (>4), good (6–8), and excellent (9–10). The ROB 2.0 was assessed for the randomization process, deviation from the intended interventions, missing outcome data, measurement of the outcome, and selection of the reported result and categorized as low risk, some concern, and high risk. The leave-one-out forest plot checked for any ambiguity in the study data.

2.4 Data extraction

Two authors (MM and KM) extracted all available data independently from included studies, including first author, year, country, sample size, age, gender, inclusion criteria of participants, type of stroke and disability, rehabilitation programs (such as aerobic exercise, balance training, upper and lower limb exercise, resistance training, health education), standard rehabilitation protocol, treatment duration and intensity, treatment outcomes [BP, CO, HR, HDL, LDL, total cholesterol (TC), triglycerides (TG), FBG, VO_{2peak}, time up and go (TUG), Berg balance score (BBS), 6MWT], follow-up, and summary of all findings (shown in Tables 1, 2).

2.5 Statistical analysis

We analyzed baseline and post-intervention effect data from included studies' hemodynamic changes (BP, CO, HR), lipid profile (HDL, LDL, TC, TG), FBG, functional capacity (6MWT, TUG, BBS), and exercise capacity by VO_{2peak}. We considered each rehabilitation program from a single study as a distinct entry for analysis; we validated the final results of each variable with changes at post-intervention of each study's control and intervention group illustrated by the study's author, followed by the published methodology (34). We used the random effects model of meta-analysis, converted standard error data to standard deviation, and estimated the mean difference (MD) with a 95% confidence interval (CI). A P-value of <0.05 was considered statistically significant. We utilized the software "RevMan" (35) version 5.3 and STATA version 17.0 (StataCorp, College Station, TX, United States) for data analysis. We assessed heterogeneity by the I^2 value (inconsiderable heterogeneity, $I^2 < 0\%-30\%$) and the funnel plot to identify potential outliers (36).

3 Results

3.1 Study selection and screening

A total of 9,484 articles were retrieved, and all duplicate articles were removed. A thorough screening of titles and abstracts excluded 4,855 articles, and 265 articles were assessed for eligibility through full-text analysis. Finally, 37 articles satisfied all the inclusion criteria. The PRISMA flow diagram illustrates the overall search strategy (Figure 1), and the findings of all keywords from electronic databases were tabulated

TABLE 1 Summary of findings of all included articles.

Author, year, country	Total sample size, N	Gender, n (M/F)	Age (mean, SD)	Inclusion criteria on stroke incidence	Type of disability or stroke and severity among included participants, (n)	Treatment duration	Measure(s) and outcome(s)	Follow- up duration	PEDro score
Tang et al., 2013, Canada (49)	50	29/21	59.71, 12.35	 >1 year post-stroke 	 Lacunar, 7 Ischemic, 19 Hemorrhagic, 16 Unknown, 8 	6 months	Aerobic capacity (VO_{2peak}), arterial stiffness, functional capacity (6MWT), hemodynamic and cardiac function (left ventricular ejection fraction, trans-mitral inflow, lateral mitral annulus, right atrial emptying fraction, lateral tricuspid annulus), blood profile (TC, LDL, HDL, triglycerides, fasting blood glucose, homocysteine)	Not estimated	8/10
Kim et al., 2014, South Korea (43)	20	N/A	54, 8.98	• Stroke incidence within the last 6 months	 Unilateral stroke with hemiparesis Oriented and able to walk 6 min with or without assistance 	4 weeks	Lung capacity (FVC, FEV, PEF), functional capacity (6MWT), shortness of breath modified Borg dyspnea scale (SBMBDS)	Not estimated	4/10
Moore et al., 2014, United Kingdom (45)	40	34/6	69, 9.5	 >6 months post-stroke 	 Ischemic stroke, 37 Mild to moderate impairment (NIHSS 0-8) Able to complete 6MWT (with/without a stick) 	19 weeks	Glucose control, insulin sensitivity test, cerebral blood flow, cardiorespiratory fitness, resting blood pressure, lipid profile, body composition, physical performance on 6MWT,10MWT, Berg balance scale (BBS) test, cognitive function	Not estimated	7/10
Moore et al., 2016, United Kingdom (46)	-						Cardiorespiratory fitness (VO _{2peak} , work rate), cardiac hemodynamics (CO, BP, cardiac power output), peripheral muscle oxygen extraction, functional capacity (6MWT, 10MWT, TUG, BBS)	Not estimated	7/10
Faulkner et al., 2016, United Kingdom (38)	47	35/12	55.94, 11.04	• Within 7 days of symptom onset	Transient ischemic stroke or minor stroke	12 weeks	Central and peripheral blood pressures on an oscillometric device, HR, RPE	Not estimated	7/10
Gambassi et al., 2019, Brazil (39)	22	9/13	63.45, 11.86	Stroke incidence within the last 6 months	• Able to walk with or without a walking aid	Over 8 weeks	Functional parameters (isometric handgrip of paretic and non-paretic limbs, 10MWT, 5-repetition sit-to-stand, TUG), hemodynamic parameters (BP, heart rate variability), oxidative stress markers (thiobarbituric acid reactive substances, carbonyls, NADPH oxidase, hydrogen peroxide, superoxide dismutase, and plasma nitrite analyses)	Not estimated	6/10
Hus et al., 2020, China (Taiwan) (41)	23	20/3	55.45, 4.66	 Stroke duration >24 months Stroke events with stable clinical status >3 months 	Thrombosis, 15Hemorrhage, 8	3–4 months	Aerobic capacity (bicycle ergometer), cerebral oxygenation [non-invasive continuous CO monitoring, near-infrared (NIR) system], peak CO, serum brain-derived neurotrophic factor (BDNF)	Not estimated	6/10

Frontiers in Cardiovascular Medicine

(Continued)

Author, year, country	Total sample size, N	Gender, <i>n</i> (M/F)	Age (mean, SD)	Inclusion criteria on stroke incidence	Type of disability or stroke and severity among included participants, (n)	Treatment duration	Measure(s) and outcome(s)	Follow- up duration	PEDro score
Gjellesvik et al., 2020, Norway (40)	70	41/29	58.13, 9.15	• Three months to 5 years after the first- ever stroke	Transient ischemic stroke or minor stroke	8 weeks	Graded exercise treadmill test (VO _{2peak}), systolic and diastolic BP, blood profiles (lipid levels, insulin resistance, hemoglobin, HDL, LDL, TC, triglycerides, glycosylated hemoglobin, and C peptide), HR, lactate, minute ventilation, respiratory exchange ratio, carbon dioxide output, Borg balance scale	12 months	7/10
Tollar et al., 2020, Hungary (50)	641	349/292	66.5, 5.87	• 2-4 weeks after stroke	 Subacute ischemic stroke (326) Walking disability was severe Moderately severe ADL- specific disability 	5 weeks	Functional capacity (6MWT), health-related QoL, HR, BP, and RPE, static balance, Berg balance scale, Beck depression scale, modified Rankin scale	Not estimated	8/10
Deijle et al., 2022, Netherlands (37)	119	70/49	64.70, 9.7	Adult with TIA or minor ischemic stroke 1 month ago, able to walk, and no cardiopulmonary complication and chronic diseases in <2 years	TIA (34)Ischemic stroke (26)	12 months	Montreal Cognitive Assessment (MoCA), maximal oxygen consumption (V O_{2max}) by cycle ergometer, ECG, hospital anxiety and depression scale (HADS), fatigue severity scale (FSS), BP, TC, LDL	24 months	8/10
Lapointe et al., 2023, Canada (44)	52	33/19	69.2, 10.7	 Ischemic stroke or TIA with a minimum of 3 months post-event. Ambulatory capacity over 10 min without or with assistive devices 	Able to walk independently or with an assistive device	6 months	peak oxygen uptake (VO_{2peak}), systolic and diastolic blood pressures, lipid profile, HbA1c, waist circumference, body composition, self- reported physical activity, functional level, anxiety and depression, and cognitive functions	12 months	4/10
Kang et al., 2023, Korea (42)	16	10/6	55.26,14.22	 Mini Mental State Examination score >22 Ability to follow verbal instructions and communicate 	Patient with ischemic stroke and without any severe disability	8 weeks	Irisin, muscle strength, cardiorespiratory endurance, and body composition before and after the program	Not estimated	5/10
Sakakibara et al., 2022, Canada (48)	126	87/39	68.1, 9.7	 Stroke in the last 12 months Mild to moderate stroke severity on modified Rankin scale score ranging from 1 to 4 	Ischemic (89)Hemorrhagic (24)Lacunar (8)	6 months	Lifestyle behavior, Health-related quality of life, depressive symptoms and cognitive function, walking physical activity, blood pressure, glycated hemoglobin, fasting glucose, high- and low-density lipoprotein, C-reactive protein, and homocysteine	12 months	8/10
Krawcyk et al., 2019, Denmark (69)	71	49/22	63.7, 9.2	 First-time lacunar stroke or a recurrent event of lacunar stroke with mild neurological symptoms on the Scandinavian stroke scale (43–58 points) Able to speak and read 	• Lacunar	3 months	Cardiorespiratory fitness, post-stroke fatigue, cognitive behavior, BP, BMI, PAS2 (questionnaire returned on assessment visit, reporting average physical activity for the past two weeks)	Not estimated	7/10

(Continued)

Author, year, country	Total sample size, N	Gender, n (M/F)	Age (mean, SD)	Inclusion criteria on stroke incidence	Type of disability or stroke and severity among included participants, (n)	Treatment duration	Measure(s) and outcome(s)	Follow- up duration	PEDro score
Aguiar et al., 2020, Brazil (53)	22	16/6	50, 10.46	 ≥20 years of age Diagnosis of stroke >6 months. 	 Ischemic (19) Hemorrhagic (2) Ischemic and hemorrhagic (1) 	12 weeks	Cardiorespiratory fitness, walking distance, QoL	16 weeks	7/10
Macko et al., 2005, United States (63)	61	43/18	63.4, 9.04	 >45 years of age Chronic stroke (>6 months) Hemiparetic gait 	Not specified	6 months	Functional mobility, cardiovascular fitness	Not estimated	5/10
Reynolds et al., 2021, Australia (66)	20	18/2	57.5, 11.2	 Aged ≥18 years stroke (ischemic or hemorrhagic) within the past 6 weeks (minimum) to 12 months Able to walk at least 100 m (with or without aids or standby supervision) 	Ischemic (16)Hemorrhagic (4)	12 weeks	Functional mobility, cardiovascular fitness, QoL		7/10
Ribeiro et al., 2017, Brazil (67)	38	23/15	58.5	 Aged between 21 and 70 years Subacute stage (until 1 year from the onset of stroke) Able to walk independently for 10 m Able to understand simple motor commands 	Ischemic (32)Hemorrhagic (6)	9 days	Blood pressure, heart rate, gait speed on treadmill	Not estimated	5/10
Sandberg et al., 2020, Sweden (68)	52	20/32	74.7,9.3	 At least 18 years Had a first stroke Able to perform aerobic exercise Understand spoken and written instructions Impairments on National Institutes of Health stroke scale (NIHSS) score of 7-42 	Ischemic (46)Hemorrhagic (6)	3 weeks	Blood pressure, heart rate	Not estimated	6/10
Wijkman et al., 2018, Sweden (72)	53	26/27	70.9, 7.6	 50 years and older Ability to understand the Swedish language Ability to walk 5 m with or without the support of any means or person Be able to get up on a cycle ergometer and cycle at their own chosen pace Approval of medically responsible physician to conduct physical/training in groups 	Ischemic (52)Hemorrhagic (1)	12 weeks	Cardiorespiratory function, balance, walking capacity, QoL	6 months	6/10

Frontiers in Cardiovascular Medicine

(Continued)

Author, year, country	Total sample size, N	Gender, <i>n</i> (M/F)	Age (mean, SD)	Inclusion criteria on stroke incidence	Type of disability or stroke and severity among included participants, (<i>n</i>)	Treatment duration	Measure(s) and outcome(s)	Follow- up duration	PEDro score
Acheampong et al., 2018, Ghana (52)	13	5/8	59.88, 10.88	 Age group of 35–68 years Diagnosed with stroke for <2 years Cleared of severe complications (e.g., blindness, kidney, and nerve damage) 	• Ischemic	10 weeks	Biochemical variables, physiological variables, and cardiovascular variables	Not estimated	4/10
Globas et al., 2012, Switzerland (55)	36	29/7	68.7, 6.3	 >60 years, Residual hemiparetic gait was enrolled >6 months after stroke The ability to walk on the treadmill at ≥0.3 km/h for 3 min with handrail support 	• Ischemic (36)	13 weeks	Cardiorespiratory fitness, gait velocity	One year	7/10
Han et al., 2017, South Korea (56)	20	12/8	60.9, 13.2	 First-ever primary ischemic or hemorrhagic stroke Interval between stroke onset and recruitment was ≤3 months Presence of hemiparesis Mild to moderate walking deficit Ability to follow verbal instructions and communicate with investigators 	Ischemic (14)Hemorrhagic (4)	6 weeks	Cardiorespiratory fitness, walking endurance, ADL	Not estimated	6/10
Jin et al., 2013, China (57)	128	91/37	56.96, 6.5	Ischemic stroke (>6 months)Independence in ambulation with or without a walking aid	• Ischemic (128)	12 weeks	Cardiorespiratory fitness, walking	Not estimated	4/10
Lee et al., 2013, South Korea (60)	16	8/8	63.25, 14.1	An onset of stroke within 6 monthsPresented with mild to moderate paresis of the lower extremities	Ischemic (10)Hemorrhagic (6)	4 weeks	Cardiorespiratory fitness, BP, walking ability	Not estimated	4/10
Quaney et al., 2009, United Kingdom (65)	38	17/21	61.53, 13.6	 Adult 6 months prior Residual hemiparetic deficits in either the upper or lower extremity Adequate cardiac function 	Not specified	8 weeks	Exercise capacity, cognitive function, mobility	Not estimated	6/10
Sutbeyaze et al., 2008, Turkey (71)	45	24/21	61.8, 11.6	 First episode of unilateral stroke with hemiparesis during the previous 12 months Sufficient unilateral upper torso and extremity nerve function and strength to accomplish arm crank ergometry Ability to understand and follow simple verbal instructions 	Ischemic (33)Hemorrhagic (12)	6 weeks	Cardiorespiratory fitness	Not estimated	7/10

(Continued)

Author, year, country	Total sample size, N	Gender, n (M/F)	Age (mean, SD)	Inclusion criteria on stroke incidence	Type of disability or stroke and severity among included participants, (n)	Treatment duration	Measure(s) and outcome(s)	Follow- up duration	PEDro score
Potempa et al., 1995, United States (64)	42	23/19	Not specified	 Age 21–77 years <6 months of stroke onset 	Mild to moderate hemiparesis	10 weeks	Cardiovascular variables and fitness	Not estimated	5/10
Zou et al., 2015, China (73)	56	34/22	51.85, 7	 Aged <60 years >6 months after stroke onset Achieved basic functional independence Walk independently with or without walking aids 	Ischemic (37)Hemorrhagic (19)	8 weeks	Cardiovascular variables and blood profile	Not estimated	7/10
Stoller et al., 2015, Switzerland (70)	14	9/5	61, 11	Older than 18 yearsLess than 20 weeks of post-strokeAbility to understand the procedures	Ischemic (12)Hemorrhagic (2)	4 weeks	Cardiorespiratory fitness	Not estimated	8/10
Faulkner et al., 2013, New Zealand (54)	60	31/29	68.5, 10.4	• All patients with new TIA without any other major complications such as dementia or unstable cardiac condition	• TIA (60)	8 weeks	Cardiorespiratory fitness and cardiovascular variables	12 months	8/10
Kirk et al., 2013, United Kingdom (58)	24	19/5	67.5, 9.3	 One month of stroke incidence Able to walk with or without a stick, no history of falls within the past 2 months Cognitive capacity sufficient to undertake group exercises 	• TIA (18)	6 weeks	Cardiorespiratory fitness and cardiovascular variables	6 months	8/10
Kono et al., 2013, Japan (59)	70	48/22	63.95,9.4	 Recent onset of stroke Modified Rankin scale score of 0–1 Returned home directly after discharge Without any communication disability 	• Not specified	24 weeks	Cardiovascular and orthopedic risk factor	2.9 years (median)	8/10
Lennon et al., 2008, Ireland (61)	48	28/20	59.75, 10.07	Over 18 years1-year post-ischemic strokeAny level of independence	Infract (42)Unknown (6)	10 weeks	Cardiopulmonary fitness and blood profile	Not estimated	7/10
MacKay-Lyons et al., 2022, Canada (62)	184	121/63	65.08,10.05	Over 17 years old.Within 3 months of stroke onset	• Not specified	12 weeks	Cardiopulmonary fitness and QoL	6 months and 12 months	8/10

TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; FVC, forced vital capacity; FEV, forced expiratory volume; PEF, peak expiratory flow; 6MWT, 6 min walking test; 10MWT, 10 min walking test; CO, cardiac output; BP, blood pressure;

Frontiers in Cardiovascular Medicine

TUG, timed up and go; HR, heart rate; RPE, ratings of perceived exertion; NHIS, National Health Interview Survey.

TABLE 2 Characteristics of included studies rehabilitation program and summary of findings.

Study	Rehabilitation program(s)	Sample size	Age (mean <u>+</u> SD)	Data analyzed	Rehabilitation protocol(s)	Treatment intensity	Treatment duration	Summary of result(s)
Tang et al., 2013_A	Aerobic exercise (AE)	25	65.9 ± 6.4	HDL, LDL, TG, TC, 6MWT, VO _{2peak} , FBG	Walking (overground brisk and inclined), cycle ergometry (upright and recumbent), marching on the spot, repeated sit-to-stand, and step-ups onto platform steppers	High-intensity (40%–70%–80% of HRR)	Total 60 min, 3 times/week	 There were no significant changes in VO_{2peak} in either group (<i>P</i> = 0.45). Improved 6MWT distance (<i>P</i> = 0.02) and reduced total LDL cholesterol and triglyceride levels.
Tang et al., 2013_B	Balance and flexibility (BF)	25	66.9 ± 7.8		Stretching, weight-bearing, postural re- education, and balance exercises	Low-intensity (<40% of HRR)		 No improvement in lipids, glucose, and homocysteine levels and ambulatory capacity
Yim et al., 2014_A	Upper and lower-body exercise with respiratory training	10	54.10 ± 11.69	6MWT	Joint mobility, eccentric contraction, muscle, strengthening, walking exercise, automated full-body workout, and respiratory training	Low-intensity	Total 60 min, 3 times/week	 Increase the mean difference in 6MWT; the walking distance before and after exercise significantly differed between groups.
Yim et al., 2014_B	Upper and lower-body exercise training	10	53.90 ± 5.82		Walking exercise, joint mobility, eccentric contraction, muscle strengthening, automated full-body workout			 Increase shortness of breath modified Borg dyspnea scale before and after exercise in both groups (P<0.05)
Moore et al., 2014_A	Fitness and mobility exercise	20	68 ± 8	Blood pressure, LDL, HDL, total cholesterol, 6MWT, VO _{2peak}	Upper and lower limb stretching, functional strengthening, balance, agility, and fitness training	Moderate intensity, initially 40%– 50% of their maximum HR, increasing increments of 10% every 4 weeks, up to 70%–80%, Strength/balance exercises were progressed by increasing repetitions and loading	45–60 min, 3 times/ week	 Exercise increases work rate and peak oxygen consumption (increased by 17%). A significant within-group increase was demonstrated in diastolic BP in the control group, but between-group differences in resting diastolic but not
Moore et al., 2014_B	Education about health care and stretching	20	70 ± 11		Home-based stretching exercise and health education on medication, diet, and physical activity	Not estimated		 systolic BP in favor of exercise. The exercise group found significant improvement in walking ability, balance, cognition, mood, strength, physical activity, and overall stroke recovery. HDL-C levels increased significantly in the exercise group compared with controls. Total cholesterol, LDL-C levels, body mass index, and composition were unchanged in both groups following the intervention
Moore et al., 2016_A	Fitness and mobility exercise	20	68 ± 8	TUG, CO	Upper and lower limb stretching, functional strengthening, balance, agility, and fitness training	Moderate intensity, initially 40%– 50% of their maximum heart rate, increasing increments of 10% every 4 weeks up to 70%–80%, strength/balance exercises were progressed by increasing repetitions and loading	45-60 min, 3 times/ week	 The exercise group significantly improved peripheral oxygen utilization but did not alter the central oxygen supply. Exercise-induced changes in peak oxygen consumption and peripheral muscle oxygen utilization were not
		20	70 ± 11	<u> </u>		Not estimated		

(Continued)

Moneruzzaman et al.

Study	Rehabilitation program(s)	Sample size	Age (mean <u>+</u> SD)	Data analyzed	Rehabilitation protocol(s)	Treatment intensity	Treatment duration	Summary of result(s)
Moore et al., 2016_B	Education about health care and stretching				Home-based stretching exercise and health education on medication, diet, and physical activity			 strongly associated with improved function. A moderately significant correlation was observed between exercise- induced peak oxygen consumption change and 10MWT and TUG test scores
Faulkner et al.,	Aerobic exercise	25	66 ± 12	HR, BP, HDL,	Continuous walking and cycling	Age-predicted 90% of maximal	30-60 min, 2 times/	Exercise program soon after stroke/
2016_A Faulkner et al., 2016_B	Health education	22	68±10	LDL, TG, TC, 6MWT, VO _{2peako} FBG	Education on secondary prevention and healthcare	HR, BP, RPE Not estimated	week Not estimated	 TIA diagnosis significantly improved cSBP (7%) and reduced AIx (15%). A significant interaction for peripheral and central pulse pressure was also observed for cSBP, pSBP, and the exercise group presenting lower values than the control group post-intervention. Pulse pressure was increased in the control group but decreased in the exercise group at baseline and post-intervention
Gambassi et al., 2019_A	Resistance training (RT) with neurological rehabilitation	11	66.4 ± 10.1	BP, HR, TUG	Dynamic RT (seated row and squat on the chair, vertical chest presses and squat on the chair, knee extension and squat on the chair), physical movements that mimic basic and instrumental ADL, postural changes, and gait exercises on parallel bars. With an elastic belt with standard rehabilitation	vertical chest press and squat on the chair, knee extension, and squat on the chair, physical movements that mimic basic and instrumental ADL, postural	40–50 min, 2 times/ week	 8-week dynamic resistance training protocol with elastic bands improved physical function, hemodynamic parameters, autonomic modulation, and oxidative stress markers in chronic ischemic stroke survivors. A significant reduction in upper-limb muscle strength (i.e., IHGPL and IHGNPL) was observed in the
Gambassi et al.2019_B	Neurological rehabilitation	11	60.5 ± 13.2		Standard rehabilitation	Physical movements that mimic basic and instrumental ADL, postural changes, and gait exercises on parallel bars		 control group. Improved 10MWT, sit-to-stand, TUG value. SBP and DBP remained unchanged in both groups over the experimental period. Heart rate and DP were significantly reduced in the training group after 8 weeks
Hus et Aa., 2020_A	Aerobic exercise	10	58.5 ± 4.35	CO, VO _{2peak}	Cycling, balance, range of motion, or therapeutic exercise with high-intensity interval training (HIIT)	3 min intervals at 80% VO_{2peak} 3 min of exercise at 40% of VO_{2peak} cooldown at 30% VO_{2peak}	45–60 min, 2–3 times/week	 VO_{2peako} CO, dendritic growth (P = 0.017), and serum BDNF levels increase significantly after HIIT than MICT.

(Continued)

Study	Rehabilitation program(s)	Sample size	Age (mean <u>+</u> SD)	Data analyzed	Rehabilitation protocol(s)	Treatment intensity	Treatment duration	Summary of result(s)
Hus et al., 2020_A	Aerobic exercise	13	53.1 ± 3.45		Cycling, balance, range of motion, or therapeutic exercise with moderate- intensity continuous training (MICT)	60% of peak oxygen consumption (VO $_{2peak}$)		• VO _{2peak} , was positively correlated with deoxyhemoglobin ($r = 0.634$, $P = 0.006$) and %neurites ($r = 0.551$, $P = 0.041$)
Gjellesvik et al., 2020_A	Walking, home advice about physical activity, health education	36	57.6 ± 9.2	BP, HDL, LDL, TG, VO _{2peak}	Treadmill exercise 4×4 HIITT (speed increased by 0.5–1.0 km/h ⁻¹ , inclination increased by 1%–2%)	85%–95% of peak HR, 3 min of active recovery at 50%–70% of peak HR	38 min, 3 times/ week, 8 consecutive weeks	 The HIIT group's improvement in functional capacity and VO_{2peak} after 8 weeks was higher than the standard
Gjellesvik et al., 2020_B	Home advice about physical activity and health education	34	58.7 ± 9.2		Physically active and engaging in activities with moderate to high intensity	Not estimated	3–5 days per week	care group post-intervention but did not maintain during the follow-up period assessment
Tollar et al., 2020_A	Twice/day high- frequency and high- intensity exercise	286	67.6 ± 5.49	BBS	EX1: double exergaming exercise (EX), exergaming used three modules of the Xbox 360 core: system reflex ridge, space pop, just dance, agility training, and medical massage of the lower limb	RPE of 14-16 of 20	60 min, 2 times/day (5 consecutive sessions, 5 weeks, 50 sessions)	 HIIT exergaming twice or once daily significantly improves over low-intensity standard care on clinical and motor symptoms, BP, and QoL. QoL, Barthel index, BBS, 6MWT, and
Tollar et al., 2020_B	Once a day high- frequency and high- intensity exercise	272	65.9 ± 6.10	_	EX2: single exergaming exercise, exergaming used three modules of the Xbox 360 core: system reflex ridge, space pop, just dance, agility training, and medical massage of the lower limb	_		standing posture improved significantly in the EX2 group and the same in the EX1 and control groups.Systolic and diastolic resting BP decreased more in the EX2 and EX1
Tollar et al., 2020_C	Standard care	83	177.9 ± 4.23		Group exercises include sitting, walking, and balance exercises, as well as upper extremity and trunk muscle strength exercises by lifting, lowering, and rotating medicine balls and end- weighted sticks. Exercises standing target lower extremity function (stepping variations such as forward, backward, diagonally while standing on 1 leg), weight shifting, coordinative movements with arms while walking with and without various sensory implements, and squatting movements with arm support on a chairback to strengthen the lower extremity extensor mechanism, medical massage of the lower limb		60 min, once a day	groups than in the control group
Lapointe et al., 2023_A		16	65.6 ± 11.3	VO _{2peak} , SBP, DBP, HR, HDL,	Supervised aerobic exercise (walking, swimming, dancing, or cycling)	RPE at 4-6/10; 50% peak power output (PPO)	20–40 min with 5 min warmup and	A 6-month HIIT + MICT combined program and a standard MICT
Lapointe et al., 2023_B	HIIT + MICT	19	71.8 ± 9.9	LDL	MICT exercises with increased bouts 10 min	RPE at 4-6/10; 95% of PPO	5 min cooldown	program induced similar improvements in CRF, and self-
Lapointe et al., 2023_C	Usual care	17	69.6 ± 10.7		Standard exercise program	Not estimated		reported physical activity compared with a control group

(Continued)

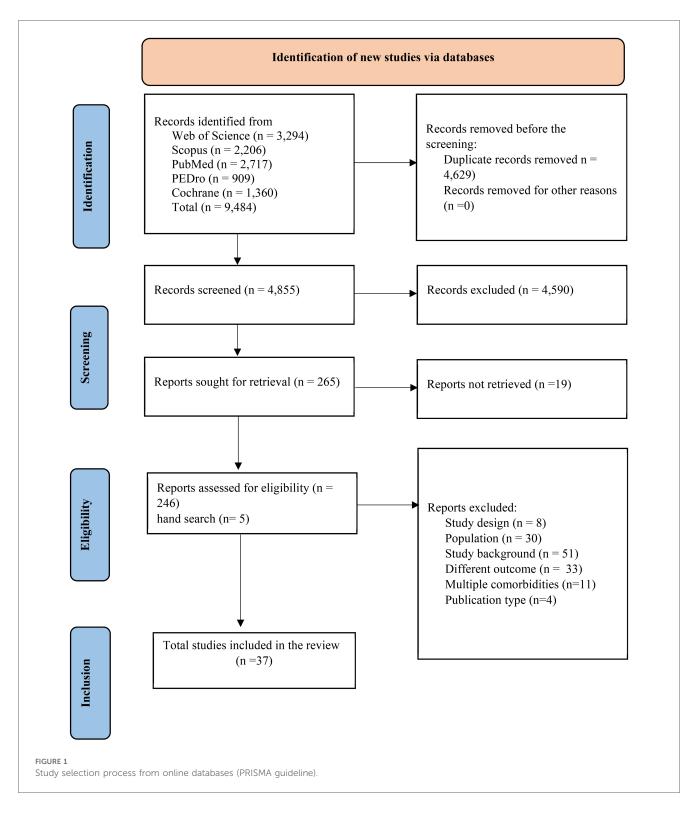
Study	Rehabilitation program(s)	Sample size	Age (mean <u>+</u> SD)	Data analyzed	Rehabilitation protocol(s)	Treatment intensity	Treatment duration	Summary of result(s)
Deijle et al., 2022_A	MoveIT training	60	64.7 ± 8.9	VO _{2peak,} SBP, DBP, TC, LDL	10 participants group-wise supervised aerobic exercise (cycle ergometer, treadmill, rowing)	40%–80% of targeted heart rate, RPE 11–16, and Borg scale 6–20	30 min, 2–3 times/ week	 No benefit was found among participants in terms of cardiorespiratory function, but the
Deijle et al., 2022_B	Standard care	59	63.9 ± 10.6	-	Usual care according to institutional guideline	Not specified	Not specified	experimental group was found to be more fatigued than the usual care group
Kang et al., 2023_A	Community-based rehabilitation	6	54.33 ± 18.22	6MWT, VO _{2peak}	Strength training (both limbs), cardiovascular exercise (high knee, sidestep, pogo jump, jumping jack, front step, back step, and knee up), and game-based leisure-time physical activities	65%–80% of the individual's maximum heart rate	60 min, 3 times/week	 Community-based exercise improved leg and trunk strength, peak oxygen consumption values, and body composition, which suggested that it might be an effective intervention to increase irisin levels and prevent a
Kang et al., 2023_B	Standard care	10	56.20 ± 9.64		Usual care according to institutional guideline	Not specified	Not specified	stroke-related decline in muscle function
Sakakibara et al., 2022_A	Stroke coach	64	67.2 ± 9.2	SBD, DBP, HDL, LDL, FBG	Monitored lifestyle through telephone calls; participants used self- management health monitoring cards and a self-monitoring kit	Not estimated	30–60 min telephone call with 5–10 min check-in calls	 Stroke coach did not improve lifestyle behavior, but memory training improved HRQoL and glucose control among community-living stroke
Sakakibara et al., 2022_B	Memory training	62	69.1 ± 10.2	-	Monitored patients' daily activity and trained them on cognitive health management	-		survivors with mild stroke- related disability
Krawcyk et al., 2019_A	Aerobic exercise and home-based HIIT	31	63.7 ± 8.9	BP, LDL, HDL, TC, TG	Aerobic exercise with HIIT and medical education	77%–93% of the maximum HR, 14–16 on the Borg-rated PER	15 min of home- based HIIT, 3X3 continuous bouts, and 2 min active recovery	• Within 3 months, HIIT did not have a superior effect on cardiorespiratory fitness
Krawcyk et al., 2019_B	Aerobic exercise	32	63.7 ± 9.2		Aerobic exercise and medical education	Self-regulated	Self-regulated	
Aguiar et al., 2020_A	Treadmill walking	10	52, 11	VO _{2peak} , 6MWT	Aerobic training with a progressive increase in speed	60%-80% HRR	40 min	• Treadmill or outdoor-overground walking does not have any significant
Aguiar et al., 2020_B	Over the ground walking	8			Over the ground walking	≤40% HRR	40 min	impact on physical activity levels but improves depression, endurance and mobility.Treadmill walking improves QoL
Macko et al., 2005_A	Walking on treadmill	26	63,10	VO _{2peak} , 6MWT	Treadmill aerobic exercise at minimum 40%–50% of HRR increased progressively 5% HRR every 2 weeks	60%-70% HRR	40 min	• Treadmill aerobic exercise improves functional mobility and cardiovascular fitness
Macko et al., 2005_B	Usual care and stretching	20	64,8		Usual care, stretching, and low- intensity treadmill walking are at 30%– 40% HRR	30–40% HRR	35 min	

Frontiers in Cardiovascular Medicine

(Continued)

Study	Rehabilitation program(s)	Sample size	Age (mean <u>+</u> SD)	Data analyzed	Rehabilitation protocol(s)	Treatment intensity	Treatment duration	Summary of result(s)
Reynolds et al., 2021_A	Progressive moderate intensity	10	54.6, 8.9	VO _{2peak} , 6MWT	Progressive, moderate-intensity training with upright stationary cycle ergometer, recumbent bike, treadmill, upper-limb ergometer, stepper, cross- trainer, and stairs	Minimum at 40% of HRR increased by 5% HRR as tolerated on RPE 11–13	30 min	Moderate-intensity cardiovascular fitness training is safer for stroke survivors than usual care. But does not have any superior effect than the standard care
Reynolds et al., 2021_B	Standard care	10	60.3, 12.9		Upright stationary cycle ergometer (maximum 5 min per session), walking in rails or gym, standing balance, basic strengthening (slow squats, seated quadriceps extension), and bed-based exercises	<40% HRR; RPE <11		
Ribeiro et al., 2017_A	Treadmill walking with ankle load	19	57	SBP, DBP, HR	Gait training on a treadmill with added load to the non-paretic lower limb	50% of HR maximal, ankle load equivalent to 5% of the 234 body weight	30 min	An additional load on non-paretic lower limbs with gait training does not alter cardiovascular parameters and
Ribeiro et al., 2017_B	Treadmill walking	19	60		Gait training on a treadmill	Unweighted and at a tolerated range	-	can be considered useful and safe for stroke patients
Sandberg et al., 2020_A	In-bed cycling	23	72.7,12	SBP, DBP, HR	An electrical in-bed cycling with a maximum of 15 sessions, each participant was encouraged to cycle by himself/herself, but otherwise, the cycle was able to run passively at 20 revolutions per minute	RPE (11–13) ≥50% of maximum oxygen uptake and HRR maximum of 60%	20 min	Aerobic in-bed cycle exercise has a significant impact on normalizing blood pressure response to exercise
Sandberg et al., 2020_B	Usual care	29	76.3,6.4		Standard care	Not specified	Not specified	-
Wijkman et al., 2018_A	Aerobic exercise	29		SBP, DBP, HR	15 min warmup (phase one), an 8 min aerobic part on an ergometer cycle (phase two), a 10 min part with low- intensity mixed exercises (phase 3), another 8 min aerobic part on an ergometer cycle (phase 4), and a final 15 min cooldown (phase 5)	Not specified	60 min	 Stroke patient usually has an exaggerated SBP response. Aerobic exercise improves aerobic capacity, walking ability, balance, and self- reported quality of life
Wijkman et al., 2018_B	Usual care	24			Only general advice about physical exercise and activity, no specific exercise program	Not specified	Not specified	_
Acheampong et al., 2018_A	Combined exercise	5	Not estimated	SBP, DBP, LDP, HDL, TG, TC,	Aerobic exercise, flexibility exercise, resistance training	40%-70% of HRR	60 min	• The combined exercise group showed significantly improved BP and lipids in
Acheampong et al., 2018_B	Conventional exercise	8	Not estimated	HR	Activities in daily living, not any specific exercise	Not specified	Not specified	post-intervention results compared to the pre-treatment
Globas et al., 2012_A	Aerobic treadmill exercise	18	68.6 ± 6.7	VO _{2peak} , 6MWT, BBS	Treadmill exercise	60%-80%	10-45 min	• Aerobic treadmill exercise with a training intensity just below the
Globas et al., 2012_B	Usual care	18	68.7 ± 6.1		Passive, muscle tone-regulating exercises, balance training	Not specified	60 min	anaerobic threshold improves chronic stroke survivors' cardiovascular fitness, gait, balance, mobility, and quality of life in older persons

Moneruzzaman et al.


(Continued)

Study	Rehabilitation program(s)	Sample size	Age (mean <u>+</u> SD)	Data analyzed	Rehabilitation protocol(s)	Treatment intensity	Treatment duration	Summary of result(s)
Han et al., 2017_A	Land-based exercise	10	62.40 ± 12.72	6MWT, VO _{2peak} o HR	Land-based aerobic exercise program using upper and lower-body ergometers with standard care includes stretching and strengthening exercises of the upper extremities and task-oriented therapy	Not specified	50 min, 5 times/week	• Patients with subacute stroke who are able to complete 6 weeks of aquatic treadmill significantly improve walking endurance and cardiorespiratory fitness than land-based exercise
Han et al., 2017_B	Aquatic treadmill exercise	10	59.40 ± 14.25		Water-based aerobic exercise on a motorized aquatic treadmill with standard care includes stretching and strengthening exercises of the upper extremities and task-oriented therapies	50%–85% HRR	50 min, 5 times/week	
Jin et al., 2013_A	Aerobic cycling training	65	57.6 ± 6.6	SBP, DBP, 6MWT, VO _{2peak} , HR	Patients pedaled for 6–10 min in each task condition, and 2–3 min of rest were provided between each task with control group training	50%-70% HRR	40 min/day; 5 times/ week	Aerobic cycling training improves cardiovascular fitness in patients with chronic stroke
Jin et al., 2013_B	Usual care	63	56.3 ± 6.5	-	Supervised stretching movements lasting 35 min and 5 min low-intensity overground walking training	20%-30% HRR	35 min/day; 5 times/ week	
Lee et al., 2013_A	Functional electrical stimulation	8	63.25 ± 15.00	SBP, DBP, 6MWT, BBS, VO _{2peak} , HR	Electrical stimulation on the paretic quadriceps, hamstring, gluteus maximus, and tibialis anterior muscles using two EMG during assistive ergometer training	A pedaling cadence of 30 rpm for 30 min	5 times/week	 Assisted ergometer training with an FES increases subacute stroke patients' aerobic capacity
Lee et al., 2013_B	Assistive ergometer training	8	63.25 ± 14.12		assistive ergometer training	-		
Quaney et al., 2009_A	Aerobic exercise	19	64.10 ± 12.30	VO _{2peak} , BBS	Stationary bike	70% HRR	45 min/day; 3 times/ week	• Aerobic exercise improves mobility and some cognitive functions related
Quaney et al., 2009_B	Streaming exercise	19	58.96 ± 14.68		Upper and lower limb stretching exercise	Not specified	45 min/day; 3 times/ week	to motor learning
Sutbeyaze et al., 2008_A	Breathing retraining	15	60.8 ± 6.8	VO _{2peak}	15 min of diaphragmatic breathing combined with pursed-lips breathing, followed by 5 min of air-shifting techniques and 10 min of voluntary isocapnic hyperpnea. The patients had a 5 min interval before each type of exercise with conventional rehabilitation	Not specified	15 min/day; 6 times/ week	Respiratory muscle training program has a significant short-term impact on respiratory muscle function
Sutbeyaze et al., 2008_B	Inspiratory muscle training	15	62.8 ± 7.2		Inspiratory muscle training with conventional rehabilitation	40%–60% of maximum inspiratory pressure	15 min/day; 6 times/ week	
Sutbeyaze et al., 2008_C	Usual care	15	61.9 ± 6.15	BP, HR, VO _{2peak}	Conventional rehabilitation	Not specified	5 times/week	
Potempa et al., 1995_A	Aerobic exercise	19	Not specified		Aerobic exercise training	Not specified	30 min/day; 3 times/ week	Aerobic exercise improves submaximal SBP and aerobic capacity
Potempa et al., 1995_B	Passive ROM exercise	23	Not specified		Passive ROM exercise of upper and lower limb	Not specified	30 min/day; 3 times/ week	

(Continued)

Study	Rehabilitation program(s)	Sample size	Age (mean <u>+</u> SD)	Data analyzed	Rehabilitation protocol(s)	Treatment intensity	Treatment duration	Summary of result(s)
Zou et al., 2015_A	Resistance training	28	52.3 ± 6.9	BP, HR, LDL, HDL, FBG	Three sets of 15 unilateral repetitions of the leg press, leg extension, and leg curl movements on the training machines	Not specified	40 min/day; 3 times/ week	 Resistance training has a significant role in improving hyperglycemia and dyslipidemia
Zou et al., 2015_B	Usual care	28	51.4 ± 7.2		Three sets of 15 unilateral repetitions of the leg press, leg extension, and leg curl movements on the training machines	Not specified	40 min/day; 3 times/ week	
Stoller et al., 2015_A	Feedback-controlled robotics-assisted treadmill exercise (FC- RATE)	7	57 ± 12	VO _{2peak}	Progressive cardiovascular exercise using FC-RATE with usual care, including physical, occupational, and speech and language therapy	40%–70% HRR	30-60 min/day; 4-5 times/week	 FC-RATE and conventional RATE significantly increase cardiopulmonary performance and exercise intensity, but recommended intensity levels for
Stoller et al., 2015_B	Robotics-assisted treadmill exercise (RATE)	7	63 ± 13		RATE with usual care, including physical, occupational, and speech and language therapy	Not specified	30–60 min/day; 4–5 times/week	cardiovascular training are not consistently achievable
Faulkner et al., 2013_A	Exercise and education program	30	68 ± 11	BP, TC, HDL, FBG	Aerobic exercise (treadmill, cycle ergometer), resistance exercise, core stability, balance, control, postural exercises, flexibility, etc., and focused education on prevention	50%-85% HRR	90 min; 2 times/week	• Exercise combined with an education program significantly improves cardiovascular fitness and reduces the risks of post-stroke complications, this improvement can be maintained 3
Faulkner et al., 2013_B	Usual care	30	69 ± 10		Standard care	Not specified	Not specified	months post-intervention
Kirk et al., 2013_A	Cardiac rehabilitation	12	67.5 ± 11.4	BP, TC, HDL, FBG	Aerobic, anaerobic exercise with usual care and education	50%–70% HR _{max}	In three phases; 1 h in each phase	• Standard cardiac rehabilitation programs are feasible and effective in
Kirk et al., 2013_B	Usual care	12	66.8 ± 7.3		Usual care	Not specified		reducing the risk of future cardiovascular events for patients after minor and transient ischemic stroke
Kono et al., 2013_A	Lifestyle modification and education	35	63.5 ± 7.0		Walking at home, reducing salt intake, health education, center-based aerobic and resistance training	60%-70% HRR	60 min, 3–5 times/ week	Lifestyle modification is beneficial for reducing stroke recurrence and improving SBP and HDL levels
Kono et al., 2013_B	Usual care	35	63.4 ± 11.4		Health education and usual care	Not specified	Not specified	
Lennon et alA	Active	24	59.0 ± 10.3		Cycle ergometry with resistance, stress management education and usual care	60% of HRR	30 min	Cardiac rehabilitation programs improve fitness and reduce
Lennon et alB	Control	24	60.5 ± 10.0		Only physical and occupational therapy	Not estimated	Not estimated	complications after an acute ischemic stroke event
MacKay-Lyons et al., 2022_A	Prevention	94	64.3 ± 10.2		Health education, aerobic and strength training	60%-80%	60 min, 5 times/week	• This study concluded that patients with exercise and preventive education
MacKay-Lyons et al., 2022_B	Usual care	90	65.9 ± 9.9		Usual care	Not estimated	Not estimated	significantly improved LDL and DBP, but these improvements were not sustained after a few months

BP, blood pressure; cSBP, central systolic blood pressure; HR, heart rate; HRR, heart rate reserve; CO, cardiac output; CBF, cerebral blood flow; TC, total cholesterol; LDL, low-density lipoprotein; HDL, high-density lipoprotein; FVC, forced vital capacity; FEV, forced expiratory volume; PEF, peak expiratory flow; 6MWT, 6 min walking test; 10MWT, 10 min walking test; TUG, timed up and go; HI, high-intensity; LI, low-intensity; RPE, ratings of perceived exertion; Aix, augmentation index; QoL, quality of life; FBG, fasting blood glucose; VO_{2peak}, peak volume of oxygen.

(Supplementary File 1). PRISMA checklist for the abstract, full text, and other information are available in Supplementary File 2.

3.2 Study characteristics

The characteristics and rehabilitation programs of the included articles were compiled in Tables 1 and 2. The data from 37 trials

(37–73), all intervention and control groups, were illustrated separately in Table 2. In total, 2,337 stroke patients [minimum age of (mean \pm SD) 54 \pm 8.98 years and a maximum of (mean \pm SD) 74.7 \pm 9.3 years] who participated in various rehabilitation programs (minimum duration of 4 weeks and maximum of 24 weeks). The inclusion criteria among articles on stroke incidence among included participants was a minimum of one week to a maximum of a year post-stroke. Ischemic stroke

cases comprised 52.11% (n = 1,218) of all stroke events (Table 1). Moore et al. used the same subjects but reported different variables in two (45, 46) studies in different periods.

Additionally, sixteen articles (37, 38, 40, 41, 43, 44, 49, 53, 55, 57, 63–65, 67, 69, 72) investigated aerobic exercise (such as walking and cycling); six articles (40, 45, 48, 54, 59, 62) compared the effect of health education training; one article (50) included exergaming exercises; one article (70) involved robot-assisted walking training; and three articles (39, 42, 73) involved dynamic and resistance training. Exercise sessions lasted no more than 60 min, were performed three times/week, and were of varying intensity based on ratings of perceived exertion (14–16) and maximum heart rate (40%–95%). Exercise-based rehabilitation programs of all included articles are tabulated in Table 2.

3.3 Risk of bias and study quality

All included articles were evaluated using the "PEDro" and the ROB 2.0 tool. According to the PEDro score, 26 articles (37-41, 45, 46, 48-50, 53-56, 58, 59, 61, 62, 65, 66, 68-73) scored between 6 and 8, which is considered significantly good quality, and the remaining articles were regarded as fair quality (Table 1). None of the articles was excluded due to low quality. Furthermore, only three articles (39, 55, 57) had a high risk, and nineteen articles (42, 46, 48, 49, 53-56, 58, 59, 61, 63, 65, 67-71, 73) had a low risk of bias according to the results of the ROB 2.0 tool. Some concerns were noted in other articles due to the selection of reported results and the randomization process (Supplementary File 3).

3.4 Post-rehabilitation changes in BP, HR, and CO

From 19 articles (37-40, 44, 45, 48, 52, 54, 57-62, 64, 68, 69, 72), we analyzed stroke patients' SBP from baseline (number of patients, n = 1,146) and after discharge (n = 1,144). Cumulative results showed that the reduction of SBP after discharge was significant (MD 2.75 mmHg; 95% CI 1.58-3.92; P < 0.05, $I^2 = 0\%$), similar results were found in the comparison of baseline and discharge changes between control and intervention group (P < 0.05) (Figure 2), but the subgroup analysis of aerobic exercise, resistance training, and standard care from baseline to discharge shows insignificant reduction but tends to be positive effect (Supplementary File 4A). Notably, diastolic blood pressure (DBP) from baseline (n = 1,173) and after discharge (n = 1,168)from 18 articles (37-40, 44, 45, 48, 52, 54, 57-62, 68, 69, 72) showed significant declination (MD 1.28 mmHg; 95% CI 0.45-2.12 mmHg; P < 0.05, $I^2 = 0\%$), but in the comparison of baseline and discharge changes between control and intervention group, this improvement was insignificant $(P > 0.05, I^2 = 0\%)$ as well as from all subgroup analysis (Supplementary File 4B). We analyzed stroke patients' physiological variables (such as HR and CO) to find insightful explanations for these challenges. We found postrehabilitation HR changes from eleven articles (38, 39, 44, 52, 56, 57, 60, 61, 64, 68, 72) (Figure 3) and CO changes from three articles (41, 45, 46) (Supplementary File 5) at discharge, and the comparison of baseline and discharge changes between the control and intervention group was insignificant (P > 0.05) but ameliorative. However, concerning the positive impact of rehabilitation, our study recommends modification of post-stroke rehabilitation protocol in terms of exercise intensity, duration, and frequency to have a significant outcome.

3.5 Post-rehabilitation changes in lipid profile

We analyzed HDL from 12 articles (38, 40, 44, 45, 48, 49, 52, 54, 58, 62, 69, 73) (n = 750) at discharge [MD -0.02 (95% CI -0.05 to 0.01), P > 0.05, $I^2 = 0\%$], and the comparison of baseline and discharge changes between the control and intervention group [MD -0.04 (95% CI -0.10 to 0.02), P > 0.05, $I^2 = 0\%$] was insignificant (Supplementary File 6A). However, subgroup analysis at discharge on resistance training found significant changes [MD -0.18 (95% CI -0.22 to 0.14), P < 0.05, $I^2 = 0\%$] (Figure 4A). LDL from nine articles (37, 40, 44, 45, 48, 49, 52, 62, 73) (n = 659) at discharge [MD 0.01 (95% CI -0.08 to 0.09), P > 0.05, $I^2 = 0\%$] and subgroup analysis at discharge was insignificant (Figures 4B,C). Further, the comparison of baseline and discharge changes between the control and intervention group found significant changes [MD 0.18 (95% CI 0.06-0.29), P < 0.05, $I^2 = 0\%$] (Figure 4D). These changes suggest that all intervention groups' exercise may have had a higher impact due to the type of exercise combination than those of control groups at discharge, which requires further validation using cross-over control trial methods. TC from 10 articles (37, 38, 40, 45, 49, 52, 54, 58, 61, 73) (n = 491) found insignificant improvement at discharge and between groups (P > 0.05) (Supplementary File 7). Nonetheless, TG from six articles (37, 49, 52, 62, 69, 73) (n = 399) found significant improvement at discharge [MD 0.10 (95% CI 0.01–0.18), P < 0.05, $I^2 = 0\%$] (Supplementary File 8A). Furthermore, the comparison of baseline and discharge changes between the control and intervention group found insignificant changes [MD 0.10 (95% CI -0.04 to 0.24), P < 0.05, $I^2 = 0\%$] (Supplementary File 8B).

3.6 Exercise and functional capacity after rehabilitation

Post-rehabilitation exercise capacity was assessed via VO_{2peak} after exercise from nineteen articles (37, 40–42, 44, 45, 49, 53, 55, 56, 60–66, 70, 71) (n = 710) and found significant changes at discharge [MD -0.29 ml/kg/min (95% CI -0.53 to -0.05), P < 0.05, $I^2 = 0\%$], although insignificant changes only after health education (P > 0.05), but the inclusion of health education with standard care and exercise-based rehabilitation was found to have a positive effect. However, a significant improvement was found in the comparison of baseline and discharge changes

between the control and intervention group [MD -2.27 ml/kg/min (95% CI -3.01 to -1.54), P < 0.05, $I^2 = 0\%$] (Figure 5).

Post-stroke rehabilitation significantly improved functional capacity measured in 6MWT from 12 articles (42, 43, 45, 49,

50, 53, 55–57, 60, 63, 66) (n = 448) and found significant changes at discharge [MD -27.15 m (95% CI -45.11 to -9.18), P < 0.05, $I^2 = 49\%$], but the comparison of baseline and discharge changes between the control and intervention group

A

1.1.1 SBP Vestemporg et al. 2016, A 1.3.6 1.2.2.7 7.6.7 9.0 7.6.7 9.0 7.6.7 9.0 7.6.7 9.0 7.6.7 9.0 7.6.7 9.0 7.7.1 1.3.0.1 9.0 1.4.1 9.0 1.5.2 9.0 1.5.2 1.5.2	Study or Subgroup	Ba Mean		eline SD	Total	Post-ir Mean	iterventa SD		Weight	Mean Difference IV, Random, 95% CI	Mean Difference IV, Random, 95% Cl
bekempong et al. 2018, A bekempong et al. 2		mean		55	, star	medii	50	. otai	maight		
Ackempony et al. 2018, B 1385 8 142.13 9 8 2.24 4.88 [1-3.47, 2.21] Pankher et al. 2013, A 140 143 130 144 0.23 144 0.34 144 0.34 144 0.34 144 0.34 144 0.34 144 0.34 144 0.34 144 0.34 144 0.34 144 0.34 144 133 33.44 11 139 30.61 11 0.24 4.00 [2.277, 30.77] Tumose et al. 2012, A 143 13 33.44 11 139 30.61 11 0.24 4.00 [2.277, 30.77] 1.00 1.0		139.8	139.8	13.9	5	126.2	7.82	5	0.7%	13.60 [-0.38, 27.58]	· · · · · · · · · · · · · · · · · · ·
Delle et al. 2022, A 124.5 15 60 124.2 17.3 60 4.1% 0.20 (4.49, 0.00) per et al. 2012, B 123.6 15 2 50 123.2 6 0 2.2% 120 (3.44, 0.49) Fundamer et al. 2013, B 147.0 12 2 30 134 15.6 30 2.2% 30 (5.13, 0.10) Fundamer et al. 2016, B 4 130 37 22 21 38 0.50 124.0 2.00 (4.20, 0.10) Fundamer et al. 2016, B 4 130 37 22 21 38 0.50 11 10 0.00 (2.77, 0.077) Genesative et al. 2017, B 124.6 36 15 157 13.6 (3.32, 2.6% 12.20) (4.20, 0.10) Genesative et al. 2017, B 124.6 36 15 157 13.6 (3.32, 2.6% 12.20) (4.20, 0.10) Genesative et al. 2017, B 124.6 36 15 157 13.6 (3.32, 2.6% 12.20) (4.20, 0.10) Genesative et al. 2017, B 124.6 36 15 157 13.6 (3.32, 2.6% 12.20) (4.40, 0.10) Genesative et al. 2013, B 110.7 13.2 (5.3, 118.9 16.0 (3.4, 4.9% 12.0) Genesative et al. 2013, B 110.7 13.2 (5.3, 118.9 16.0 (3.4, 4.9% 12.0) Genesative et al. 2013, B 112 33 13.8 112 35 13.5 4.0% 2.70 (4.40, 0.10) Genesative et al. 2013, B 112 31 31.6 112 31 13.6 12.1 118.6 (3.4, 4.9% 12.0) Genesative et al. 2013, B 112 31.7 13.7 13.7 13.7 14.1 10.7 1.0% 4.40 (4.40, 0.10) Genesative et al. 2013, B 112 31.7 13.7 13.7 14.1 10.7 1.0% 4.40 (4.40, 0.10) Genesative et al. 2013, B 112 33 13.8 13.8 14.4 15.7 11.4 16.4 15.1 15.0 1 Genesative et al. 2013, B 12.2 13.7 14.1 10.7 1.0% 4.40 (4.40, 0.10) Genesative et al. 2013, B 12.2 13.7 14.1 13.7 11.1 10.7 1.0% 4.40 (4.40, 0.10) Genesative et al. 2013, B 12.2 13.7 14.1 13.7 11.1 10.7 1.0% 4.40 (4.40, 0.10) Genesative et al. 2013, B 12.2 13.7 14.7 12.7 1.1 11.7 10.7 4.40 (4.40, 0.40) Genesative et al. 2013, B 12.2 13.7 14.1 13.7 11.1 10.7 1.0% 4.40 (4.40, 14.00, 11.0) Genesative et al. 2013, B 12.2 13.8 15.1 12.1 1.1 10.7 1.0% 4.40 (4.40, 14.00, 11.0) Genesative et al. 2014, A 13.7 13.7 12.7 2 13.6 13.2 23.1 9% 4.0 (12.10, 4.7, 11.0) Genesative et al. 2014, A 13.7 13.7 12.7 2 13.6 13.2 23.1 9% 4.0 (12.10, 4.7, 11.0) Genesative et al. 2014, A 13.7 13.7 12.7 2 13.6 13.2 21.5 % 4.00 (12.4, 7.4, 11.1 10.0 % 4.0 (12.4, 7.4, 11.1 10.0 % 4.0 % 4.0 (12.4, 7.4, 11.1 10.0 % 4.0 % 4.0 % 4.0 (12.4, 7.4, 11.1											
Faukaner et al. 2013_A 140 143 30 122.3 14.3 30 2.6% 77.0 (b.46, 14.9) Faukaner et al. 2013_B 137.0 12.3 14.3 15.6 30 2.6% 3.06 (c.11.0.91) Faukaner et al. 2019_B 140 27 22 138 28 (c.10.94) Faukaner et al. 2019_A 133 3.3.4 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Faukaner et al. 2019_A 133 3.3.4 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Gambasa et al. 2019_A 133 3.3.4 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Gambasa et al. 2019_A 133 3.3.4 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Gambasa et al. 2019_A 133 3.3.4 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Gambasa et al. 2019_A 133 3.3.4 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Gambasa et al. 2019_A 134 33 13.4 13 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Gambasa et al. 2013_A 143 133 13.4 11 129 30.51 11 0.2% 4.06 (c.2.77, 30.77) Gambasa et al. 2013_A 143 13 13.4 12 13 12.6 12 16.4 (c. 3.10) Gambasa et al. 2013_A 143 13 13.4 12 13 12.6 12 16.4 (c. 3.10) Gambasa et al. 2013_B 16.4 31 13.2 13 12.4 13.1 12 0.7% 2.41 (c.1.37, 16.18) Gambasa et al. 2013_B 16.4 13 12.3 13.4 14 18 33 14.4 18 30 14.6 0.00 [b.01, 16.01] Gambasa et al. 2013_B 16.4 13 15.7 17 12.4 13.7 19 1.8% 140 [b.68, 10.68] Gambasa et al. 2023_A 130.3 15 16 17 12.3 13.8 12 7.8 12.8 11.6 0.3% 4.040 [c.2.3, 77.3] Gambasa et al. 2023_A 130.3 15.7 17 12.2 13 13.8 15.7 2 31 13.8 15.7		124.5	124.5	15	60		17.3	60	4.1%		
Faukhar et al 2013_B Faukhar et al 2016_A 134 21 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Deijle et al. 2022_B	123.2	123.2	15.2	59	122	13.2	59	5.2%	1.20 [-3.94, 6.34]	
Evidence and 2016 \vec{A} 134 21 25 125 10 25 1.1% 9.00 $[2.10, 20.10]$ Therm et al. 2016 \vec{A} 134 21 25 125 10 25 1.1% 9.00 $[2.10, 20.10]$ Therm et al. 2018 \vec{A} 137 12 138 28 21 20 20 24 20.12 21.2 20.10] Gambass et al. 2020 \vec{A} 133 33.49 11 10 20 30.51 11 0.24 4.00 $[2.27, 30.77]$ Generate et al. 2020 \vec{A} 134 13.44 31 138.15 14.4 33 2.7% 2.46 $[4.29, 8.81]$ Generate et al. 2020 \vec{A} 134 13.45 11 23.15 14.6 33 2.7% 2.46 $[4.29, 8.81]$ Generate et al. 2020 \vec{A} 134 13.24 31 128.15 14.6 33 2.7% 2.46 $[4.29, 8.81]$ How et al. 2013 \vec{A} 10.6 10.8 12 13.10.2 14 4.0 14.0 0.5 10 How et al. 2013 \vec{A} 10.6 10.8 12 13.10.2 14 4.0 14.0 0.5 10 How et al. 2013 \vec{A} 10.6 12 12 13.10.2 11.1 13 15 1.0 4.0 \vec{A} 50.0 $[6.0, 1.50.1]$ How et al. 2013 \vec{A} 137 17 12 22 41 14 16 33 21 4.0 \vec{A} 50.0 $[6.0, 1.50.1]$ How et al. 2013 \vec{A} 137 17 12 12 4.1 14 16 33 14.4% 50.0 $[6.0, 1.50.1]$ Laporet et al. 2023 \vec{A} 130.3 13 3 10 12 24 13.2 16 11 13 16 1.0 16 \vec{A} 14.0 \vec{A} 13.0 \vec{A} 14.0 \vec{A} 10.0 \vec{A} 14.0 \vec{A} 15.0 \vec{A} 14.0 \vec{A} 15.0 \vec{A} 14.0 \vec{A} 15.0 \vec{A} 10.0 \vec{A} 11.0 \vec{A} 10.0 \vec{A} 10.	aulkner et al. 2013_A	140	140	14.3	30	132.3	14.3	30	2.6%	7.70 [0.46, 14.94]	
Fundere et al. 2016_B fundere et al. 2016_A fundere et al. 2016_A fundere et al. 2017_A fundere funder	aulkner et al. 2013_B	137.9	137.9	12	30	134	15.5	30	2.8%	3.90 [-3.11, 10.91]	
Gambass et al. 2019. A 133 33.40 11 129 30.51 11 0.2% 4.00 [22.77, 30.77] Gambass et al. 2019. 133 33.40 11 129 30.51 11 0.2% 4.00 [22.77, 30.77] Gambass et al. 2020. B 141 134 31 135.10 16.6 16.0 10 247, 30.77 127 127 127 127 127 127 127 127 127 1	ulkner et al. 2016_A	134	134	21	25	125	19	25	1.1%	9.00 [-2.10, 20.10]	
Sambassi et al. 2019_B 133 33.40 11 129 30.51 11 0.2% 4.00[22.77,0377]	ulkner et al. 2016_B	140	140	27	22	138	28	22	0.5%	2.00 [-14.25, 18.25]	
Geleswic et al. 2020_A 188.46 16 35 15.7 13.82 33 2.8% 2.76 (4.29, 9.81) marked al. 2012_A 120.7 13.4 61 18.4 31 18.2 16.6 61 2.76 (4.24, 25.0 8.61) marked al. 2013_A 130.5 18.8 12 13.83 16.6 61 2.77 42.4 (4.27, 9.6 5.60) marked al. 2013_A 130.5 19.8 12 13.18.2 16.2 15.2 17.8 (4.67, 9.6 17.0) marked al. 2013_B 13.8 16.3 12 13.18.2 16.2 15.2 17.8 (4.67, 9.6 17.0) marked al. 2013_B 13.8 16.3 12 13.18.2 16.3 12 0.7% 4.56 (1.64.67, 10.79.0) marked al. 2013_B 13.8 16.3 12 13.18.2 16.3 12 0.7% 4.56 (1.64.67, 10.79.0) marked al. 2013_B 13.8 17.3 17 16 12.30 13.8 13.8 13.8 13.8 13.8 13.8 13.8 13.8	Sambassi et al. 2019_A	133	133 3	33.49	11	129	30.51	11	0.2%	4.00 [-22.77, 30.77]	
© jelesovik et al. 2020_B 141 13.94 31 138.16 14.6 31 2.7% 2.24 (427, 985) min et al. 2013_A 1202 46 65 1126 167 65 476 1.00 1405 6.00 min et al. 2013_A 135.5 134 80 12 13.92 162 167 65 476 1.00 1405 6.00 min et al. 2013_A 135.5 134 80 12 13.92 162 12 0.7% 4.45 163.1 (6.70) min et al. 2013_A 135.5 134 80 13.8 35 140 138 35 140 140 140 140 140 140 140 140 140 140	Sambassi et al. 2019_B	133	133 3	33.49	11	129	30.51	11	0.2%	4.00 [-22.77, 30.77]	
Jin et J. 2013, A 120.2 12.4 65 119.2 10.7 65 6.4% 1.00 [4.40, 6.06] Jin et J. 2013, A 133.5 118.5 112 131.62 112 11.7 65 6.4% 1.00 [4.40, 6.06] Jin et J. 2013, A 133.5 118.5 11.3	Gjellesvik et al. 2020_A	138.46	38.46	16	35	135.7	13.62	33	2.8%	2.76 [-4.29, 9.81]	
Jin et al. 2013_B 119.7 13.2 63 119.9 63 4.9% 0.80 (±5.0.6.10) Crisk et al. 2013_B 10.8 10.8 113.93 118.9 16.2 0.7% 4.56 (±4.8) 10.76 Crisk et al. 2019_B 10.46 12 13.180 118.9 15.2 0.7% 4.56 (±4.8) 10.76 10.76 Crisk et al. 2019_B 147 21 32 144 16 32 1.6% 6.00 (±5.15, 15, 15) 11.60 </td <td>Gjellesvik et al. 2020_B</td> <td>141</td> <td>141 1</td> <td>13.94</td> <td>31</td> <td>138.16</td> <td>14.6</td> <td>31</td> <td>2.7%</td> <td>2.84 [-4.27, 9.95]</td> <td></td>	Gjellesvik et al. 2020_B	141	141 1	13.94	31	138.16	14.6	31	2.7%	2.84 [-4.27, 9.95]	
Gik et al. 2013, A 136.5 12 131.92 15.2 12 0.7% 4.58 [6.94, 18.70] Consol et al. 2013, D 136.3 12 131.92 18.1 13 31 4.47 2.011, 15.01 Consol et al. 2023, B 126.3 130.4 131.3 31 4.47 2.011, 15.01	lin et al. 2013_A	120.2	120.2	12.4	65	119.2	16.7	65	5.4%	1.00 [-4.06, 6.06]	
Gik et al. 2013, A 136.5 12 131.92 15.2 12 0.7% 4.58 [6.94, 18.70] Consol et al. 2013, D 136.3 12 131.92 18.1 13 31 4.47 2.011, 15.01 Consol et al. 2023, B 126.3 130.4 131.3 31 4.47 2.011, 15.01	lin et al. 2013 B	119.7	119.7	13.2	63	118.9	16.9	63	4.9%	0.80 [-4.50, 6.10]	
Gene et al. 2015_B 136.6 112. 35 138.9 14.0% 52.10(7.99).3.70(7.9	Kirk et al. 2013_A	136.5	136.5	19.8	12	131.92	15.2	12	0.7%		
Kawoyk et al. 2019_A Kawoyk et al. 2019_B Lapointe et al. 2023_A Lapointe et al. 2023_A Lapointe et al. 2023_A Lapointe et al. 2023_C Lapointe et al. 2024_C Lapointe et al. 2014_A Lapointe et al. 2014_B Lapointe et al. 2014_A Lapointe et al. 2014_B Lapointe et al. 2014_B Lapointe et al. 2014_B Lapointe et al. 2014_B Lapointe e	Kirk et al. 2013 B	134.33	34.33	16.3	12	131.92	18.1	12	0.7%	2.41 [-11.37, 16.19]	
Gave, yet al. 2019_B 147 21 32 11 144 18 31 144, 500 (50.1,50.1) appointe al. 2023_A 130.3 17 16 1229 128 16 (1.3%, 1.40 (4.03, 11.83) appointe al. 2023_A 130.3 17 16 1229 128 16 (1.3%, 1.40 (4.03, 11.83) appointe al. 2023_A 127.8 18.55 8 133.63 17.94 8 0.4% -5.75 (2.38, 12.33) ese tal. 2013_A 127.8 18.55 8 133.63 17.94 8 0.4% -5.75 (2.38, 12.33) ese tal. 2013_A 127.8 18.55 8 133.63 17.94 8 0.4% -5.75 (2.38, 12.33) ese tal. 2013_A 127.8 18.55 8 123.63 17.94 8 0.4% -5.75 (2.38, 12.33) ese tal. 2013_A 127.8 18.55 8 123.63 17.94 8 0.4% -5.75 (2.38, 12.33) ese tal. 2014_A 137 15.7 23 135 13.3 23 19% 1.10 (7.31, 9.51) MacKeyLyons et al. 2024_11 15.7 94 1229 16.7 14 20 0.75% -6.0 (2.34, 7.3, 9.51) MacKeyLyons et al. 2024_13 1.1 7 18.4 00 129.3 18.1 90 4.8% 2.40 (2.39, 7.3) MacKeyLyons et al. 2024_13 13 15 20 137 11 22 2.5% 2.00 (4.46, 5.46) MacKeyLyons et al. 2024_13 13 15 20 137 11 22 2.5% 2.00 (4.46, 5.46) MacKeyLyons et al. 2024_13 130 15 64 62 130 17 62 4.4% 0.00 (5.55, 55, 55) macKeyLyons et al. 2028_14 2.7 23 13.5 18 22 12% 5.00 (5.47, 15.74) Microme et al. 2014_B 7.84 8 8 7.62.5 8 8 1.1% 1.63 (6.21, 9.47) Microme et al. 2014_B 7.84 8 8 7.62.5 8 8 8 1.1% 1.63 (5.21, 9.47) Microme et al. 2014_B 7.7 88 8 8 7.62.5 8 8 8 1.1% 1.63 (5.21, 9.47) Microme et al. 2014_B 7.7 88 8 8 7.62.5 8 8 8 1.1% 1.63 (5.21, 9.47) Microme et al. 2014_B 7.7 9 22 7.7 11 12 22 2.0% 2.00 (3.47, 15.74) Microme et al. 2014_B 7.7 88 8 8 7.62.5 8 8 8 1.1% 1.63 (5.21, 9.47) Microme et al. 2014_B 7.7 88 8 8 7.62.5 8 8 8 1.1% 1.63 (5.21, 9.47) Microme et al. 2014_B 7.7 88 8 8 7.62.5 8 8 8 1.1% 1.63 (5.21, 9.47) Microme et al. 2014_B 7.7 88 8 7.62.5 7.5 10.2 65 7.5 10.0 613 7.8.18, 144 Delle et al. 2022_B 7.4 3 9.7 60 7.5 10.2 65 7.5 10.0 613 7.8.4 10.6 Microme et al. 2014_B 7.7 88 8 8 7.62.5 7.5 10.2 65 7.5 10.0 614 7.8.41 Microme et al. 2014_B 7.7 88 10 31 10.3 7.7 10 22 2.0% 2.00 (3.41, 8.41) Microme et al. 2014_B 7.7 8 11.2 65 7.5 10.2 65 7.5 10.0 60 (5.14, 8.44) Microme et al. 2014_B 7.7 8 11.2 65 7.5 10.2 65 7.5		136.8	136.8	11.2	35	138.9	13.8	35	4.0%	-2.10 [-7.99, 3.79]	
Gawayk et al. 2019_B 147 21 32 141 16 32 16% 6.00[3.15, 15.15]					31	144		31			
appointe et al. 2023_A 1303 17 16 128.9 12.8 13 1.3% 1.40 1.68.0 1.60.6 appointe et al. 2023_C 123.3 18.7 17 127.4 16 17 1.0% 4.50.16.80 16.60 appointe et al. 2023_C 123.3 18.7 17 127.4 16 17 1.0% 4.50.16.80 16.60 appointe et al. 2023_C 123.5 16.7 23 14.4% 10.77.31 9.51 acmone tal. 2006_B 135.5 16.7 94 6.4% 5.90.127.10.53 1.0% 4.00.16.85.7.73 Work et al. 2022_A 13.8 15.7 4 123.3 11.6 4.4% 0.00.16.55.5.55 5.55 Stakabara et al. 2022_A 13.0 13.5 14.7 22.4 13.8 16.7 19.6 2.4.1.3% 16.6.12.3.2.67 10.0 1.0 1.00.6.55.5.55 10.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0											
Lipionte et al. 2023_B 1223_B 123 13.7 19 1.8% 1.00 [6.88, 10.68] Lapointe et al. 2023_C 123.8 127.8 128.8 127.8 128.8 123.8 Lee et al. 2013_B 123.83 127.8 128.8 128.8 128.8 128.8 128.8 128.8 Lee et al. 2013_B 123.8 127.5 23 133.5 167.7 23 14.% 170.16.8 11.66 1.66.0 Lemon et al. 2002_B 137.7 18.4 90 4.8% 2.00 [2.94.7, 10.53] 1.61.9 MacKay-Lyons et al. 2022_A 137 15 13 20 17% 42.47% .00 [2.65.7, 62.47] Stankhars et al. 2022_A 137 15 62 130 17 62 4.47% .00 [2.67.4, 15.7] Stankhars et al. 2022_B 137.8 135 13 20 137.4 14.8 91.3% 124 13% 130.6 124.1 130.6 124.1 130.6 124.1 140.1 100.05 127.6											
appointe al. 202_{1} C 123.3 18.7 17 17.4 16 17 1.0% 4.00 [6.80, 16.60]											<u> </u>
Lee et al. 2013. A 127.88 18.86 8 132.63 17.94 8 0.4% -5.75 [22.83, 12.33]											
Lee et al. 2013_B I 22.6.3 I 23.6.3 I 26 I 22.6.3 I 27.5 I 23 I 23 I 23 I 23 I 23 I 24 I 25											
Lence at J. 2008, B Lence at J. 2004, A Lence at					-						
Lemon et al. 2008_B 135.2 17.5 23 133.5 16.7 23 14.4% 1.70[-8.19, 11.59] MacKay-Lyons et al. 2022A 131.7 18.4 90 129.3 18.1 90 4.8% 2.40 [2.93, 7.73] MacKay-Lyons et al. 2022B 131.7 18.4 90 129.3 18.1 90 4.8% 2.40 [2.93, 7.73] MacKay-Lyons et al. 2022 M 133 13 20 133 11 20 2.5% - 4.00 [2.40, 6.46] Moore et al. 2014_B 133 13 20 133 11 20 2.5% - 4.00 [2.40, 6.46] Satababar et al. 2022_B 129 16 62 130 17 62 4.1% - 1.00 [-6.81, 4.61] Satababar et al. 2022_B 129 16 62 130 17 62 4.1% - 1.00 [-6.81, 4.61] Satababar et al. 2022_B 129 16 62 130 17 62 4.1% - 1.00 [-6.81, 4.61] Satababar et al. 2020_B 14.7 140 23.4 29 131.4 14.8 29 13.% 16.40 [6.22, 6.57] Mijkman et al. 2017_B 139.6 20.4 2.4 133.8 15 24 13.% 5.80 [-4.31, 15.63] Subtotal (95% CI) - 1.146 53 (P = 0.51); P = 0% Teart for overall effect. 2 = 4.61 (P = 0.00001) Tit20 EPP Teart for overall effect. 2 = 4.61 (P = 0.00001) Tit20 EP Taukmer et al. 2013_B 78.8 8 8 78.25 8 8 1.1% 163 [-6.21, 9.47] Delije et al. 2022_A 74.9 9.6 60 75.3 9.7 60 5.8% -0.40 [-3.85, 3.05] Delije et al. 2022_A 74.9 9.6 60 75.3 9.7 10 22 7.3 00 1.25% -0.00 [-3.81, 3.01] Taukmer et al. 2013_B 8.04 8 30 79.5 16.13 30 1.7% 0.09 [-5.64, 7.34] Taukmer et al. 2013_B 78.8 8 4 78.27 8 10.3 0 3.3% -0.028 [-4.8, 4.30] Delije et al. 2022_A 74.9 9.6 60 75.3 9.7 13 3.3% -0.28 [-4.8, 4.30] Delije et al. 2022_A 74.9 9.6 60 75.3 0.9 11 0.36% -0.40 [-3.85, 3.05] Delije et al. 2022_A 74.9 11.7 9.8 10.9 11 0.36% -0.40 [-1.4, 8.44] Delije et al. 2023_A 75.8 11.2 65 75 10.2 65 5.1% 0.05 [-5.47, 7.49] Delije et al. 2023_B 75.8 1.41 1.5 35 83.42 7.35 33 3.3% -0.28 [-4.8, 4.30] Delije et al. 2023_B 75.8 1.41 1.7 7.8 10.9 11 0.36% -0.40 [-1.4, 8.44] Delije et al. 2023_B 75.8 1.41 1.7 7.8 10.9 11 0.36% -0.40 [-1.4, 8.44] Delije et al. 2023_B 75.8 1.41 1.7 7.8 10.9 11 0.36 1.2 0.86 [-5.6, 8.5] Delije et al. 2022_B 74.9 1.1 7.7 17.7 7.9 12.4 2.4 2.4 4.11.28 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41, 12.8 [-4.41					-						
Mackay-yone et al. 2022A Mackay-yone et al. 2014 Mackay-yone et al. 2017 Mackay-yone et al. 2018 Mackay-yone et al. 2019 Mackay-yone et al.											
MacKay-Lyone et al. 2014 MacKay-Lyone et al. 2014 More et al. 2014 More et al. 2014 BS 13 More et al. 2014 BS 13 More et al. 2014 BS 13 More et al. 2014 BS 13 Stability and al. 2022 Milkman et al. 2017 BS 13 Stability and BS Stability and BS Stabilit											
Moore et al. 2014_B 137 27 20 143 19 20 0.7% -6.00 [-20.47, 6.46] Potempa et al. 1995_B 136.4 4 23 131.5 4 7 20 2.5% -2.00 [-0.46, 5.46] Potempa et al. 1995_B 136.4 4 23 131.5 4 7 2 2 2.5% -2.00 [-0.46, 5.46] Potempa et al. 2022_A 130 15 6 4 13 1 1 20 2 1 1											
Moore et al. 2014_B 135 135 20 137 11 20 2.5% -2.00 [9.46, 5.46] Sakabizar at al. 2022_A 130 15 64 130 17 64 4.4% .000 [5.55, 5.56] Sakabizar at al. 2022_B 140 23.1 7.29 13.4 14.8 29 1.3% 16.40 [6.23, 26.57] Sandberg et al. 2027_B 147.8 23.7 29 13.4 14.8 29 1.3% 16.40 [5.23, 26.57] Wijkman et al. 2017_B 139.6 20.4 124 133.8 15 24 1.3% 5.00 [-3.7, 15.74] Wijkman et al. 2017_B 139.6 20.4 124 133.8 15 24 1.3% 5.00 [-3.27, 15.74] Vietorgonshit 1.44 100.0% 2.75 [1.63, 300 [-3.21, 3.21]											
Potempa et al. 1995, B 136, 4 4 23 131, 5 4, 7 23 21, 5% 4, 40 (2.38, 742) Sakakbara et al. 2022, B 129 16 62 130 17 64 4, 44% 0.00 (5.55, 5.55, 5.55) Sakakbara et al. 2022, B 128 16 62 130 17 62 4, 1% -1.00 (6.81, 4.81] Sakakbara et al. 2027, A 140 23, 29 131, 418 29 1, 2% 5.00 (5.74, 15.74) Wijkman et al. 2017, A 140 23, 429 135 18 29 1, 2% 5.00 (5.74, 15.74) Wijkman et al. 2017, B 136 20, 424 133, 8 15 124 100, % 2.75 (1.38, 3.92) Heterogeneity: Turl = 0.00; Chi ⁺ = 3.411, df = 35 (P = 0.51); P = 0% Feet for overall effect; Z = 4.61 (P < 0.00001) 11.2 DBP Acheampong et al. 2018, B 79, 88 8 8 78, 25 8 8 1.1% 1.63 (5.21, 9.47] Delije et al. 2022, B 74, 3 9, 7 59 74, 3 8 59 6.7% 0.00 (3.24, 3.3, 15.34) Tukkner et al. 2013, A 19 8, 1 0 75, 1 10 30 3, 3% 3.00 (0.41, 8.4, 9.4) Delije et al. 2022, B 74, 3 9, 7 59 74, 3 8 59 6.7% 0.00 (3.24, 7.34) Tukkner et al. 2016, A 77 10 25 73 11 22 2, 2.3% 0.00 (1.54, 9.54) Tukkner et al. 2016, A 77 10 25 73 11 0, 25 1, 33 0, 17% 0.80 (5.47, 7.44) Sambassi et al. 2019, A 792 11, 9 11 79, 8 10, 9 11 0, 8% 0.60 (1.014, 8.94) Sambassi et al. 2020, B 67, 15 8, 34 48 6.59 9, 73 31 3, 5% 0.02 (4.38, 4.49) Jeileet ket al. 2020, B 67, 15 8, 34 48 6.59 9, 73 31 3, 5% 0.02 (4.38, 4.49] In et al. 2013, A 76, 51 12, 65 75 10, 26 55, 15% 0.00 (1.24, 4.54, 4.30) Gielleet ket al. 2020, B 67, 15 8, 34 48 6.59 9, 73 31 3, 5% 0.02 (4.38, 4.49] In et al. 2013, B 76, 75 11, 92 7, 74 10, 28 7, 74 10, 28 4, 4.84, 14, 94 Gielleet ket al. 2013, B 76, 75 11, 92 7, 74 13, 75 8, 75 10, 26 5, 75, 10, 26 5, 14%, 0.00 (1.43, 4.94) Gielleet ket al. 2013, B 76, 75 11, 92 7, 74 10, 84 4, 93 7, 94 Gielleet ket al. 2013, B 76, 75 11, 92 7, 74 13, 75 7, 74 194 Sambassi et al. 2013, A 76, 81 12, 85 80, 71 7, 73 3, 10 17 1, 16% -0.00 (4.30, 1.299) Conce tal. 2013, A 76, 75 12, 74, 77 7, 74 8, 72, 9 8, 53 33 0, 32 2, 96 0, 00, 10, 4.30, 199, 199 Conce tal. 2013, A 76, 75 18, 82 9 9, 23 19, % 6.20 (1.45, 1.29) Conce tal. 2013, A 76, 75 18 7, 74 11, 164 7, 74 11 16% 7, 70 (1.43, 736] Conc											
Sakabizare et al. 2022_A 130 f5 64 130 17 64 4.4% 0.00 (555,555) Sakabizare et al. 2022_B 147.8 23.7 29 131.4 14.8 29 1.3% 16.40 (6.23, 26.57) Wijkman et al. 2017_A 140 23.4 29 133.8 15 24 1.3% 5.80 [-4.3, 15.93] Subtata (19% C1) 0.00 Chi ⁺ = 34.11, 14 = 3 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 3 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 3 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 3 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 3 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 3 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 30 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 30 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.11, 61 = 30 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.31, 61 = 30 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.31, 61 = 50 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.00001) Heterogeneity: Tat' = 0.00, Chi ⁺ = 34.31, 61 = 50 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.51); P = 0% Fest for overall effect: Z + 4.61 (P = 0.51); P = 0%											
Sakakbara et al. 2022_B 129 16 62 130 17 62 4.1% -1.00 (6.81, 48.1] Wijkman et al. 2017_A 140 23.4 29 131.5 18.4 29 12.% 5.00 [6.74, 15.74] Wijkman et al. 2017_B 136 0.00 (r.1% = 34.11, df = 36.00 (r.1% = 34.11, df = 30.00 (r.1% = 34.11, df = 36.00 (r.1% = 34.11, df = 30.00 (r.1% = 34.11, df = 30.											
Sandberg et al. 2020. B 147.8 23.7 29 131.4 14.8 29 13.8 16.40 [62.3, 26.57] Wijkman et al. 2017. A 139.6 20.4 24 133.8 15 24 1.3% 5.80 [-5.3, 15.93] Subtotal (95% CI) 1146 1144 100.0% 2.75 [1.58, 3.92] Test for overall effect. Z = 4.61 (P < 0.00001)											
Wijkmar et al. 2017_A 140 23.4 29 1.2% 5.00 [5.7,4] Wijkmar et al. 2017_B 139.6 20.4 24 133 5.00 [4.3,3] 15.9.4] Subtotal (05% CI) 1144 100.0% 2.75 [1.58,3.92] Fest for overall effect: Z = 4.61 (P < 0.00001)											
Subtotal (95% Cf) 1 1146 1144 100.0% 2.75 [1.58, 3.92] Test for overall effect: $Z = 4.61 (P < 0.00001)$ 1.1.2 DBP Acheampong et al. 2018, B 79.88 8 76.25 8 8 1.1% 1.63 [-6.21, 9.47] Delije et al. 2022, B 74.3 9.7 59 74.3 8 59 6.7% 0.00 [-3.21, 3.21] Faulkner et al. 2013, A 81.9 8.1 30 78.1 10 30 3.3% 3.80 [-6.51, 8.41] Faulkner et al. 2013, A 81.9 8.1 30 78.1 10 30 3.3% 3.80 [-5.54, 7.34] Fulkner et al. 2016, A 77 10 2.5 73 10 25 2.3% 4.00 [-1.54, 9.54] Fulkner et al. 2016, A 77 10 2.5 73 10 25 2.3% 4.00 [-1.48, 9.54] Gambassi et al. 2019, A 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.84] Gambassi et al. 2019, A 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.84] Gjelleswik et al. 2020, A 83.14 11.58 35 83.42 7.35 33 3.3% -0.28 [-4.86, 4.30] Gjelleswik et al. 2020, A 83.14 11.58 35 83.42 7.35 13 3.3% -0.28 [-4.87, 4.99] In et al. 2013, A 79.42 9.2 12 75 7.9 12 74.67 8.7 12 1.6% 4.42 [2.44, 11.28] Krik et al. 2013, A 79.42 9.2 12 75 7.9 12 74.67 8.7 12 1.6% 4.42 [2.44, 11.28] Krik et al. 2013, A 79.42 9.2 12 75 7.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 6.30] He et al. 2013, A 79.42 9.2 12 75 7.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 6.30] Krik et al. 2013, A 79.42 9.2 12.6 35 72.9 9.5 35 2.2% 6.30 [10.7 11.53] Krik et al. 2013, A 79.42 9.2 12 75 7.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 6.30] Krik et al. 2013, A 79.42 9.2 12.6 35 72.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 6.30] He et al. 2013, A 79.42 9.2 12.6 37 7.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 6.30] He et al. 2013, A 79.42 9.2 12.6 37 7.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 6.30] He et al. 2013, A 79.42 9.2 12.6 37 7.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 6.30] He et al. 2013, A 79.5 12.6 8 7.2 12 6 12 7.2 12 6.6 3.6 1.0 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0											
Heterogeneity: Tau ² = 0.00; Ch ² = 34.11, df = 35 (P = 0.51); l ² = 0% Test for overall effect: Z = 4.61 (P < 0.00001) 1.12 DBP Acheampong et al. 2018_B 79.88 8 8 78.25 8 8 1.11% 1.63 [-6.21, 9.47] Delije et al. 2022_A 74.9 9.6 60 75.3 9.7 60 58.% -0.40 [-3.85, 3.05] Delije et al. 2022_B 74.3 9.7 59 74.3 8 59 6.7% 0.00 [-3.21, 3.21] Faulkner et al. 2013_A 81.9 8.1 30 78.1 10 30 3.3% 3.80 [-0.81, 8.41] Faulkner et al. 2016_B 77 9 22 75 11 22 2.0% 2.00 [-3.4, 7.94] Gambassi et al. 2016_B 77 9 22 75 11 22 2.0% 2.00 [-3.4, 7.94] Gambassi et al. 2019_B 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gambassi et al. 2020_B 87.15 8.34 34 86.59 9.73 31 3.5% 0.56 [-3.87, 4.99] Jin et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.96 [-3.87, 4.99] Jin et al. 2013_B 74 11.1 63 74.8 10.6 63 4.8% -0.80 [-2.88, 4.48] Jin et al. 2013_B 74.2 1.2 12 75 7.9 12 1.5% 4.42 [-2.44, 11.28] Kirk et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] Jin et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.6% 2.00 [-4.85, 8.65] Kirk et al. 2013_A 79.42 9.2 12 75 7.9 9.5 32.5% 0.530 [107, 11.53] Kirk et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.6% 2.00 [-2.88, 6.48] Kirk et al. 2013_A 75.8 11.2 65 75 [-0.2 16 5.2.5% 0.30 [107, 11.53] Kirk et al. 2013_A 76.63 12 31 8 10 31 8.3 10 31 2.8% 0.00 [-2.88, 6.48] Kirk et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 1.50] Lapointe et al. 2023_A 75.6 11.7 12.67 7.9 12 1.5% 0.7% 0.00 [-4.28, 4.8] Japointe et al. 2023_A 66 9.5.1 6 67.2 12 16 1.2% 0.00 [-4.85, 6.58] Kirk et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.70, 3.29] MacKay-Lyons et al. 2022_A 75.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_A 77.6 12 8 71.17 12.67 8 0.7% 4.400 [-14.10, 6.10] Lenon et al. 2023_A 77.6 12 8 71.17 12.67 8 0.7% 4.400 [-14.10, 6.10] Lenon et al. 2022_A 77.6 11.2 08 71 11 64 5.7% 1.00 [-2.48, 4.48] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 5.00 [-1152, 1.52] Sakakibara et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.51, 2.25] Sakakibara et		100.0	100.0	20.4		100.0	10				•
Acheampong et al. 2018_B 7.88 8 8 7.825 8 8 1.1% 1.163 1.62 1.9.471 Delije et al. 2022_A 74.3 9.7 59 74.3 8 59 6.7% 0.00 1.3.21 1.3.21 Faulkner et al. 2013_A 81.9 8.1 30 78.1 10 30 3.3% 3.80 1.6.1 1.3 1.1 1.3 1.1 1.3 1.1 1.3 1.1 1.4 1.1 1.3 1.1 1.3 1.1 1.3 1.1 1.3 1.1 1.3 1.1 1.3					35 (P =	0.51); l²	= 0%				
Deijie et al. 2022_A 74.9 9.6 60 75.3 9.7 60 5.8% -0.0 (5.385, 3.05) Deijie et al. 2022_B 74.3 9.7 65 74.3 8 65 67.% 0.00 (5.32, 3.21) Faulkner et al. 2013_A 81.9 8.1 30 78.1 10 30 3.3% 3.80 (-0.81.8.41) Fulkner et al. 2016_A 77 10 25 73 10 25 2.3% 4.00 [-1.54, 9.54] Fulkner et al. 2016_B 77 9 2.2 75 11 22 2.0% 2.00 [-3.94, 7.94] Gambassi et al. 2019_B 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14.8.94] Gambassi et al. 2020_A 83.14 11.5 35 83.42 7.35 33 3.3% -0.22 [4.46, 4.30] Gjellesvik et al. 2020_B 87.15 8.34 34 86.59 9.73 31 3.5% 0.56 [-3.87, 4.99] Jin et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] Jin et al. 2013_A 79.4 2 12 75 7.9 12 1.6% 2.00 [-4.66, 8.65] Krik et al. 2013_A 79.4 2 9.2 12 75 7.9 12 1.6% 2.00 [-4.66, 8.65] Krawcyk et al. 2013_A 79.4 2 9.2 12 75 7.9 12 1.6% 2.00 [-4.66, 8.65] Krawcyk et al. 2013_A 79.4 2 9.2 12 75 7.9 12 1.6% 2.00 [-4.68, 8.65] Krawcyk et al. 2013_A 79.4 2 9.2 12 75 7.9 12 1.6% 2.00 [-4.68, 8.65] Krawcyk et al. 2013_A 79.4 2 9.2 12 75 7.9 12 1.6% 2.00 [-4.68, 8.65] Krawcyk et al. 2013_A 79.4 2 12 6 35 7.2 9.9 55 25 2.5% 6.30 [-1.07, 11.53] Lapointe et al. 2023_A 88 9.10 32 83 10 31 2 2 2.9% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 88 9.5 16 67.2 12 16 12% 0.00 [-4.60, 8.65] Krawcyk et al. 2013_A 77.63 3.2 19 65.3 7.8 19 1.6% -0.30 [-6.70, 8.30] Lapointe et al. 2023_A 68 9.5 16 67.2 12 6 16 1.2% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 6 10 1.2% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 68 9.5 17.3 12 (2.67 8 0.7% -4.00 [-1.40, 6.10] Lapointe et al. 2023_A 77.6 3.3 14.8 8.0 8% 4.50 [-4.57, 13.57] MacKay-Lyons et al. 2022_B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2013_A 77.6 1.3 81 11 94 72.2 12 94 6.4% 4.40 [1.07, 70] MacKay-Lyons et al. 2022_B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014_B 83 11 20 88 10 20 1.6% 5.30 [-1.67, 5.295] Moore et al. 2022_B 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.31, 12.87] Mickay-Lyons et al. 2022_B 77.5 11.8 23 70.9 9.8 23 1.9% 6.20 [0.16, 1	.1.2 DBP										
Deijie et al. 2022_A 74.9 9.6 60 75.3 9.7 60 5.8% -0.40 [-3.85, 3.05] 74.3 8 59 6.7% 0.00 [-3.21, 3.21] 74.5 74.3 8 59 6.7% 0.00 [-5.21, 3.21] 75.5 16.13 30 78.1 10 30 3.3% 380 [-0.81, 8.41] 75.5 16.13 30 7.95 16.13 30 1.7% 0.90 [-5.4, 7.34] 75.5 16.13 30 7.95 16.13 30 1.7% 0.90 [-5.4, 7.34] 75.5 17.5 10 25 2.3% 4.00 [-1.54, 9.54] 75.5 17.5 10 25 2.3% 4.00 [-1.64, 9.54] 75.5 17.5 10 25 2.3% 4.00 [-1.64, 8.54] 75.5 17.5 1.0 25 2.3% 4.00 [-1.64, 8.54] 75.5 17.5 1.0 22 7.5 11 2.2 2.0% 2.0 [-3.94, 7.94] 75.5 16.13 30 7.7 9 2.2 75 11 2.2 2.0% 2.0 [-3.94, 7.94] 75.5 16.13 30 7.7 9 2.2 75 7.1 0.2 2 7.5 7.3 3.3 3.% 0.28 [4.86, 4.30] 75.5 16.3 3.3% 0.28 [4.86, 4.30] 75.5 13.3 3.3% 0.28 [4.86, 4.30] 75.5 13.3 3.3% 0.28 [4.86, 4.30] 75.5 13.5 8.34 7.5 12 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] 75.5 11.2 65 75 10.2 65 5.1% 0.80 [-4.28, 4.48] 75.5 11.2 65 75 10.2 65 5.1% 0.80 [-4.28, 4.48] 75.5 11.2 65 75 10.2 65 5.1% 0.80 [-4.59, 2.99] 75.5 12 7.5 7.9 12 1.6% 4.22 [0.14, 6.8, 6.55] 75.5 10.2 65 6.30 [-0.7, 11.53] 75.5 2.9% 6.30 [1.7, 11.53] 75.5 2.9% 6.30 [1.7, 11.53] 75.5 2.9% 6.30 [1.7, 11.53] 75.5 2.9% 6.30 [1.7, 11.53] 75.5 2.9% 0.00 [-4.09, 4.30] 75.5 1.3 75.5 2.9% 0.00 [-4.09, 4.30] 75.5 1.3 75.5 2.9% 0.00 [-5.7, 8.50] 75.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		79.88	79.88	8	8	78.25	8	8	1.1%	1.63 [-6.21, 9.47]	
Deilje et al. 2022_B 74.3 9.7 59 74.3 8 59 6.7% 0.00 [3.21, 3.21] Faulkner et al. 2013_A 81.9 8 1 30 79.5 16.13 30 1.7% 0.90 [5.54, 7.34] Faulkner et al. 2016_A 77 10 25 73 10 25 2.3% 4.00 [1.54, 9.54] Fulkner et al. 2016_B 77 9 2.2 75 11 2.2 2.0% 2.00 [3.94, 7.94] Gambassi et al. 2019_B 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gambassi et al. 2020_A 83.14 11.58 35 83.42 7.35 33 3.3% -0.28 [4.86, 4.30] Gjellesvik et al. 2020_A 83.14 11.58 35 83.42 7.35 33 3.3% -0.28 [4.86, 4.80] Jin et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] Jin et al. 2013_B 74 11. 1 63 74.8 10.6 63 4.8% -0.80 [-4.59, 2.99] Jin et al. 2013_B 74 11. 1 63 77.9 12 7.467 8.7 12 1.6% 2.00 [-4.65, 8.65] Krik et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.6% 2.00 [-4.65, 8.65] Krawcyk et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.0% 4.150 [-4.86, 7.36] Krawcyk et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.5% 6.30 [1.07, 11.53] Krawcyk et al. 2013_B 76.61 7.2 8.72.19 9.5 35 2.5% 6.30 [1.07, 11.53] Krawcyk et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.0% 4.50 [-4.56, 8.65] Krawcyk et al. 2013_B 76.67 7.2 12 76 7.8 19 1.5% 4.40 [-4.66, 8.65] Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-6.76, 8.30] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.00 [4.00, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.00 [-6.76, 8.56] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.00 [-6.76, 8.56] Lapointe et al. 2023_A 68 9.5 11 31 8.3 10 31 2.8% 2.50 [-6.76, 8.30] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.00 [-6.76, 8.5, 6.25] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 6.3 7.% 10.0 [-2.48, 4.83] Lapointe et al. 2023_A 77.6 23 814 8.4 23 3.2% -1.70 [-6.33, 2.93] Lapointe et al. 2023_A 77.6 17.7 2.8 72.17 12.67 8 0.7% 4.00 [-4.10, 6.10] Lapointe et al. 2023_A 77.6 11.9 44 72.2 12 44 6.4% 4.40 [-1.10, 7.70] MacKay-Lyons et al. 2022_A 77.7 12.7 2.8 2.9 2.3 1.9% -0.50 [-6.75, 2.98] Lapointe et al. 2024_A 79.7 7.8 7.7 12.67 8 0.7% 4.00 [-4.10, 0.70] MacKay-Lyons et al. 2022_A 76.6 11.9 44 72.2											_ _
Faulkner et al. 2013_A 81.9 8.1 30 78.1 10 30 3.3% 3.80 [-0.81, 8.41] Fulkner et al. 2016_B 77 10 25 73 10 25 2.3% 4.00 [-1.54, 9.54] Gambassi et al. 2016_B 77 9 22 75 11 22 2.0% 2.00 [-3.94, 7.94] Gambassi et al. 2019_A 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gambassi et al. 2020_B 71.5 8.34 34 86.59 9.73 31 3.5% 0.28 [4.86, 4.30] Gjellesvik et al. 2020_B 87.15 8.34 34 86.59 9.73 31 3.5% 0.28 [4.86, 4.30] Jin et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-4.65, 8.64] Jin et al. 2013_A 79.4 2 9.2 12 75 7.9 12 1.5% 4.42 [2.48, 4.48] Jin et al. 2013_B 74.4 11.1 63 74.8 10.6 63 4.8% -0.80 [-4.59, 2.99] Kirk et al. 2013_A 79.4 2 9.2 12 75 7.9 12 1.5% 4.42 [2.48, 4.48] Jin et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.6% 6.30 [1.07, 11.63] Kirk et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.6% 4.20 [-4.65, 8.65] Kirk et al. 2013_A 79.2 12 74.67 8.7 12 1.6% 4.20 [-4.65, 7.66] Kirk et al. 2013_A 79.2 12 74.67 8.7 12 1.6% 4.20 [-4.66, 7.68] Kirk et al. 2013_B 8.2.2 14.1 35 80.7 10.7 35 2.0% (-3.01 (-7.11.63) Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.00 [-4.59, 6.38] Krawcyk et al. 2013_A 77.6 3 3.42 83 10 32 2.9% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_A 68 9.5 16 0.71 12.68 8 0.8% 4.50 [-4.57, 13.57] Lapointe et al. 2023_A 68 9.5 16 0.72 12 68 8.8 0.8% 4.50 [-4.57, 13.57] Lapointe et al. 2023_A 77.6 3 3.41 8.4 23 3.2% -1.70 [-6.33, 2.93] Lapointe et al. 2023_A 77.6 11.9 47.22 12 49 6.3% 4.40 [-14.10, 6.10] Lapointe et al. 2023_A 77.6 11.9 47.22 12 44 6.4% 4.40 [-10, 7.70] MacKay-Lyons et al. 2022_B 77.4 11.9 23 71.4 8.6 23 1.9% 6.20 [-1.52, 1.52] Sakakbara et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [-3.52, 9.52] Moore et al. 2024_A 77 4 11.9 23 71.2 8.8 23 1.9% 6.20 [-3.51, 2.25] Sandberg et al. 2022_B 77.4 11.8 23 70.9 9.8 23 1.8% 6.20 [-3.51, 2.25] Sandberg et al. 20											_ _
Faulkner et al. 2013_B 80.4 8 30 79.5 16.13 30 1.7% 0.90 [-5.54, 7.34] Fulkner et al. 2016_B 77 9 22 75 11 22 2.3% 4.00 [-15.4, 9.54] Gambassi et al. 2019_A 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gambassi et al. 2020_A 83.14 11.58 35 83.42 7.35 33 3.3% -0.28 [-4.86, 4.30] Gjellesvik et al. 2020_A 83.14 11.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] Jin et al. 2013_B 74 11.1 66 74 16 63 4.8% -0.80 [-4.59, 2.99] Kirk et al. 2013_B 74.67 7.9 12 1.6% 2.0% 6.30 [10.7, 11.63] Kirk et al. 2013_B 79.2 12.6 35 72.9 9.5 2.5% 6.30 [10.7, 11.63]											+
Fulkner et al. 2016_ \overline{A} 77 10 25 73 10 25 2.3% 4.00 [-1.54, 9.54] Gambassi et al. 2016_ \overline{B} 77 9 22 75 11 22 2.0% 2.0(5.34, 7.94] Gambassi et al. 2019_ \overline{B} 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gambassi et al. 2020_ \overline{B} 83.14 11.58 35 63.42 7.3 33 3.3% -0.28 [-4.86, 4.30] Gjellesvik et al. 2020_ \overline{B} 87.15 8.34 34 86.59 9.73 31 3.5% -0.60 [-2.88, 4.48] Jin et al. 2013_ \overline{A} 75.8 11.2 65 75 10.2 65 6.1% 0.80 [-2.88, 4.48] Jin et al. 2013_ \overline{A} 79.2 12 75 7.9 12 1.5% 4.48[, 4.30] Jin et al. 2013_ \overline{A} 79.42 9.2 12 75 7.9 12 1.5% 4.48[, 4.30] Kirk et al. 2013_ \overline{A} 79.42 9.2 12 75 7.9 12 1.5% 4.48[, 4.30] Kirk et al. 2013_ \overline{A} 79.42 9.2 12 75 7.9 15 35 2.5% 6.30 [1.07, 11.53] Kirk et al. 2013_ \overline{A} 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [1.07, 11.53] Kirk et al. 2013_ \overline{B} 76.67 1.9 12 74.67 8.7 12 1.6% 2.00 [-4.36, 7.36] Kirk et al. 2013_ \overline{B} 82.2 14.1 35 80.7 10.7 35 2.0% 1.50 [-4.36, 6.36] Krawcyk et al. 2019_ \overline{B} 83 10 31 83 10 31 2.8% 0.40 [-4.36, 6.736] Lapointe et al. 2023_ \overline{A} 66 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_ \overline{A} 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_ \overline{A} 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.85, 6.25] Lapointe et al. 2023_ \overline{A} 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_ \overline{A} 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_ \overline{A} 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_ \overline{A} 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_ \overline{A} 77.6 3 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lapointe et al. 2023_ \overline{A} 77.7 6.2 3 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] MacKay-Lyons et al. 2022_ \overline{A} 76.6 11.1 94 72.2 12 74 74 6.8 0.8% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_ \overline{A} 76.7 11.7 2.8 70.9 9.8 23 1.8% 6.00 [-3.30, [-2.43, 4.48] MacKay-Lyons et al. 2022_ \overline{A} 77.7 11.7 2.8 70.9 9.8 23 1.8% 6.00 [-3.32, 2.95] MacKay-Lyons et al. 2022_ \overline{A} 77.4 11.9 23 70.9 9.8 23 1.8% 6.20 [-3.168, 2.52] MacKay-											<u> </u>
Fulkner et al. 2016_B 77 9 22 75 11 22 2.0% 2.00 [-3.94, 7.94] Gambassi et al. 2019_B 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gambassi et al. 2020_A 83.14 11.58 35 83.42 7.35 33 3.3% -0.28 [-4.86, 4.30] Gjellesvik et al. 2020_A 83.14 11.58 35 83.42 7.35 33 3.3% -0.28 [-4.86, 4.30] Gjellesvik et al. 2020_A 87.15 8.34 34 86.59 9.73 31 3.5% 0.66 [-3.87, 4.9] Jin et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-4.88, 4.48] Jin et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.5% 4.42 [-2.44, 11.28] Kirk et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.5% 4.42 [-2.44, 11.28] Kono et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.5% 6.30 [1.07, 11.53] Krawcyk et al. 2019_A 85 10 31 83 10 31 2.8% 2.00 [-2.98, 6.98] Krawcyk et al. 2019_A 85 10 31 83 10 31 2.8% 2.00 [-2.98, 6.98] Krawcyk et al. 2013_B 66.7 7.9 6 17 73.3 10 17 1.5% -0.30 [-8.65, 6.25] Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-8.65, 6.25] Lapointe et al. 2023_B 66 12.3 19 65.3 7.8 19 1.6% -0.30 [-8.65, 6.25] Lapointe et al. 2023_B 66.1 7.2 8 72.17 1.6% 8 0.8% 4.50 [-4.77, 13.57] Lee et al. 2013_B 7.7 6.3 3.24 8 73.13 12.66 8 0.8% 4.50 [-4.71, 15.7] Lenon et al. 2022_A 76.6 11.1 94 72.2 12 94 6.4% 4.50 [-4.10, 1.40, 0.10] Lenon et al. 2022_A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_A 77.5 11.8 23 70.9 9.8 23 1.9% 0.00 [-4.30, 4.80] Moore et al. 2014_A 84 10 20 81 11 20 88 10 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2024_A 7.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_A 77.5 11.8 23 70.9 9.8 23 1.9% 0.00 [-4.23, 4.83] Moore et al. 2024_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Mightman et al. 2027_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Mightman et al. 2027_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.53, 12.8] Mightman et al. 2027_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.53, 12.8] Mightman et al. 2027_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.53, 12.8] Mightman et al. 2027_A 77.5 1				10							
Gambassi et al. 2019_A 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gambassi et al. 2019_B 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gjellesvik et al. 2020_B 87.15 8.34 34 86.59 9.73 31 3.5% -0.28 [-4.86, 4.30] Jin et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] Jin et al. 2013_A 79.4 12.1 63 7.9 12 1.5% 4.24 [-2.44, 11.28] Kirk et al. 2013_A 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [1.07, 11.53] Kono et al. 2013_A 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [1.07, 11.53] Krawcyk et al. 2019_B 83 10 32 83 10 32 2.9% 0.00 [-4.50, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.5% -2.60 [-9.19, 3.99] Lapointe et al. 20		77	77	9		75	11	22			
Gambassi et al. 2019_B 79.2 11.9 11 79.8 10.9 11 0.8% -0.60 [-10.14, 8.94] Gjellesvik et al. 2020_A 83.14 11.58 35 83.42 7.35 33 3.3% -0.28 [-4.86, 4.30] Gjellesvik et al. 2020_A 77.5 8.14.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] Jin et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-4.59, 2.99] Kirk et al. 2013_A 79.42 9.2 12 75 7.9 12 1.5% 4.42 [-2.44, 11.28] Kirk et al. 2013_A 79.42 9.2 12 75 7.9 12 1.5% 4.42 [-2.44, 11.28] Kirk et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.5% 4.42 [-2.44, 11.28] Kirk et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.5% 6.30 [1.07, 11.53] Krawcyk et al. 2019_B 83 10 32 83 10 32 2.8% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 12% 0.80 [-6.70, 8.00] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 12% 0.80 [-6.70, 8.00] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 12% 0.80 [-6.70, 8.00] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 12% 0.80 [-6.70, 8.00] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.00] Lapointe et al. 2023_A 68 9.5 16 67.2 12 12 6 1.2% 0.80 [-6.70, 8.00] Lapointe et al. 2023_C 70.7 9.6 17 7.3.3 10 17 1.6% -0.30 [-6.85, 6.25] Lapointe et al. 2023_A 68 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lennon et al. 2022_C 70.7 9.6 11.7 73.3 10 17 1.6% -0.20 [-6.20, 5.80] MacKay-Lyons et al. 2022_Z 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_Z 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.48, 4.83] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 5.50 [-11.52, 1.52] Sandberg et al. 2022_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.00 [0.31, 5.2, 9.52] MacKay-Lyons et al. 2022_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.00 [0.31, 5.2, 9.52] Mijkman et al. 2020_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.00 [0.31, 2.87] Mijkman et al. 2027_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.00 [0.31, 2.87] Mijkman et al. 2027_A 77.5 11.8 23 70.9 9.8 23 1.8% 6.00 [0.31, 2.87] Mijkman et al. 2027_B 77.5 11.8 23 70.9 9.8 23 1.8% 6.00 [0.3, 12.87] Mijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3				11.9							
Gjellesvik et al. 2020_A 83.14 11.88 35 83.42 7.35 33 3.3% -0.26 [4.86, 4.30] Gjellesvik et al. 2020_B 87.15 8.34 36 86.59 9.73 31 3.5% 0.56 [-3.87, 4.99] In et al. 2013_A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.48] Jin et al. 2013_A 79.4 11.1 63 74.8 10.6 63 4.8% -0.80 [-4.58, 4.49] Kirk et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.5% 4.20 [-4.65, 8.65] Kono et al. 2013_A 79.2 12.6 5 72.9 9.5 35 2.5% 6.30 [1.07, 11.53] Kono et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.0% 1.50 [-4.36, 7.36] Krawcyk et al. 2019_A 85 10 31 83 10 31 2.2.9% 0.00 [-4.90, 4.90] Lapointe et al. 2013_A 76.6 11.3 16.7 1.2 16 1.2% 0.80 [-2.88, 6.30] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_A 77.6 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2013_A 77.6 3.24 8 73.17 12.67 8 0.7% 4.00 [-4.10, 6.10] Lennon et al. 2002_B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.50, 5.80] MacKay-Lyons et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022A 77.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022A 77.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022A 77.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022A 77.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022A 77.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022A 77.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022A 77.6 12.8 21 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 3.00 [-3.22, 9.22] MacKay-Lyons et al. 2022_A 77.2 9 64 71 11 64 5.7% 0.00 [-4.52, 4.48] Moore et al. 2014_A 77.6 12.8 24 70.9 9.8 23 1.9% 0.00 [-4.22, 4.22] Moore et al. 2014_A 77.6 11.8 23 70.9 9.8 23 1.9% 0.00 [-4.22, 4.22] Moore et al. 2014_A 77.7 11.9 77.9 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Mujkman et al. 2017_A 77.7 11.2 87 74.8 7.9 24 1.9% 3.00 [-3.											
Gjellesvik et al. 2020_B 87.15 8.34 34 86.59 9.73 31 3.5% 0.56 [-3.87, 4.99]											
Jin et al. 2013 A 75.8 11.2 65 75 10.2 65 5.1% 0.80 [-2.88, 4.49] Jin et al. 2013 B 74 11.1 63 74.8 10.6 63 4.8% -0.80 [-2.88, 4.49] Jin et al. 2013 A 79.4 9.2 9.2 12 75 7.9 12 1.5% 4.42 [-2.44, 11.28] Kirk et al. 2013 A 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [10.7, 11.53] Kono et al. 2013 A 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [10.7, 11.53] Krawcyk et al. 2019 A 85 10 31 83 10 31 2.8% 2.0% 1.50 [-4.36, 7.36] Krawcyk et al. 2019 A 85 10 31 83 10 32 2.8% 0.00 [-4.90, 4.90] Lapointe et al. 2023 A 68 9.5 16 67.2 12 16 (-7.8, 8.00) Lapointe et al. 2023 A 68 9.5 16 67.2 12 16 (-7.8, 8.00) Lapointe et al. 2023 B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-6.85, 6.25] Lee et al. 2013 A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2013 B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.30, 2.93] Lee et al. 2023 A 66 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022 7 7.7 9.6 11.1 94 72.2 12 94 6.3% 1.20 [-2.43, 4.83] Moore et al. 2022 A 76.6 11.1 94 72.2 12 94 6.3% 4.50 [-4.57, 13.57] MacKay-Lyons et al. 2022 A 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2022 A 72 9 64 71 11 0.6% 3.00 [-3.52, 9.52] MacKay-Lyons et al. 2022 A 77.4 11.9 23 71.2 8.8 10 20 1.6% 3.00 [-3.52, 9.52] Sakakibara et al. 2022 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2022 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2027 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2027 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2027 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2027 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2027 A 77.4 11.9 23 71.2 8.8 23 1.9% 0.00 [-4.2											
Jin et al. 2013_B 74 11.1 63 74.8 10.6 63 4.8% $-0.80[-4.59, 2.99]$ Kirk et al. 2013_A 79.42 9.2 12 75 7.9 12 1.5% $4.42[-2.44, 11.28]$ Kirk et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.5% $2.09[-4.65, 8.65]$ Kono et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.5% $6.30[1.07, 11.53]$ Krawcyk et al. 2019_A 85 10 31 83 10 31 2.8% $2.00[-2.98, 6.98]$ Krawcyk et al. 2019_B 83 10 32 83 10 32 2.9% $0.00[-4.90, 4.90]$ Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% $0.80[-6.70, 8.30]$ Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% $-0.30[-8.85, 6.25]$ Lapointe et al. 2023_C 70.7 9.6 17 73.3 10 17 1.6% $-0.30[-8.85, 6.25]$ Lee et al. 2013_B 68.17 7.2 8 7.17 12.67 8 0.7% $-4.00[-14.10, 6.10]$ Lenon et al. 2028_A 77.63 3.24 8 73.13 12.68 8 0.8% $4.50[-4.57, 13.57]$ Lee et al. 2013_B 66.11 7.2 8 72.17 12.67 8 0.7% $-4.00[-14.10, 6.10]$ Lenon et al. 2028_B 68.17 7.2 8 72.17 12.67 8 0.7% $-4.00[-16.32, 2.93]$ Lenon et al. 2028_A 79.7 7.6 23 81.4 8.4 23 3.2% $-1.70[-6.33, 2.93]$ Lenon et al. 2028_A 79.7 7.6 23 81.4 8.4 23 3.2% $-1.70[-6.33, 2.93]$ Lenon et al. 2022_B 74.9 9.8 90 73.7 14.6 90 5.3% $1.20[-6.20, 5.80]$ MacKay-Lyons et al. 2022_A 72 9 64 71 11 20 1.6% $-5.00[-11.52, 1.52]$ MacKay-Lyons et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% $-0.20[-6.20, 5.80]$ MacKay-Lyons et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% $-0.20[-6.20, 5.80]$ MacKay-Lyons et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% $-0.20[-6.20, 5.80]$ MacKay-Lyons et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% $-0.20[-6.20, 5.80]$ Moore et al. 2014_A 84 10 20 81 11 20 1.6% $-5.00[-11.52, 1.52]$ Sandberg et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% $-0.20[-6.20, 5.80]$ Moore et al. 2014_A 74.9 9.8 90 73.7 14.6 90 5.3% $-1.20[-2.43, 4.83]$ Moore et al. 2017_A 77.5 11.8 23 70.9 9.8 23 1.8% $-6.00[-3.3, 2.9.52]$ Hore generg et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% $-6.20[-0.51, 15.2, 15.2]$ Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% $-6.20[-0.51, 15.2, 15.2]$ Heterogenety: Tau ² = 0.00; Chi ³ = 28.93, df = 35 (P = -0.6); I ³ = 0.											
Kirk et al. 201 $\frac{3}{2}$ A 79.42 9.2 12 75 7.9 12 1.5% 4.42 [-2.44, 11.28] Kirk et al. 2013_B 76.67 7.9 12 74.67 8.7 12 1.6% 2.00 [-4.65, 8.65] Kirk et al. 2013_A 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [1.07, 11.53] Kno et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.0% 1.50 [-4.36, 7.36] Krawcyk et al. 2019_A 85 10 31 83 10 32 2.9% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-6.85, 6.25] Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -2.60 [-9.19, 3.99] Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.3% 4.50 [-4.57, 13.57] Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.3% 4.50 [-4.57, 13.57] Lee et al. 2013_B 66.17 7.2 12 71 12.67 8 0.7% -4.00 [-14.10, 6.10] Lennon et al. 2022_B 65 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 5.00 [-11.52, 1.52] Sakakibara et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sakakibara et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sakakibara et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.4 11.9 23 71.2 8.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_A 77.4 11.9 23 71.2 8.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_A 77.4 11.9 23 71.2 8.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_A 77.4 11.9 23 71											
Kirk etal. 2013 B 76.67 7.9 12 74.67 8.7 12 1.6% 2.00 [-4.65, 8.65] Kono et al. 2013 A 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [1.07, 11.53] Kono et al. 2013 B 82.2 14.1 35 80.7 10.7 35 2.0% 1.50 [-4.36, 7.36] Krawcyk et al. 2019 A 85 10 31 83 10 31 2.8% 2.00 [-2.98, 6.98] Lapointe et al. 2023 A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023 C 70.7 9.6 17 7.3 10 17 1.6% -0.30 [-6.85, 6.25] Leapointe et al. 2023 C 70.7 9.6 17 7.3 10 17 1.6% -0.30 [-6.85, 6.25] Leapointe et al. 2013 A 68.17 7.2 8 72.17 12.67 8 0.7% -4.00 [-14.10, 6.10] Leanon et al. 2008 B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.20, 5.80] MacKay-											
Kono et al. 2013 A 79.2 12.6 35 72.9 9.5 35 2.5% 6.30 [1.07, 11.53] Kono et al. 2013 B 82.2 14.1 35 80.7 10.7 35 2.0% 1.50 [4.36, 7.36] Krawcyk et al. 2019 A 85 10 31 83 10 32 2.9% 0.00 [-4.90, 4.90] Lapointe et al. 2023 A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023 B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-6.85, 6.25] Lapointe et al. 2023 C 70.7 9.6 17 7.3.3 10 17 1.6% -0.30 [-6.85, 6.25] Lapointe et al. 2023 B 65 12.3 19 65.3 7.8 19 1.6% -0.40 [-4.57, 13.57] Lee et al. 2013 A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2023 B 68.17 7.2 8 72.17 12.67 8 0.7% -4.00 [-14.10, 6.10] Lennon et al. 2008 A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.30, 3.2.93] MacKay-Lyons et al. 2022 A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022 A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022 A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022 A 77.6 12 8 11 10 20 1.6% -5.00 [-11.52, 1.52] Sakakibara et al. 2022 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sakakibara et al. 2022 B 72 12 62 72 12 62 3.9% 0.00 [-4.22, 4.22] Sahaberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017 B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017 B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017 B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017 B 77.8											
Kono et al. 2013_B 82.2 14.1 35 80.7 10.7 35 2.0% 1.50 [-4.36, 7.36] Krawcyk et al. 2019_A 85 10 31 83 10 31 2.8% 2.00 [-2.98, 6.98] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -2.60 [-9.19, 3.99] Lee et al. 2013_A 70.7 9.6 17 73.3 10 17 1.6% -2.60 [-9.19, 3.99] Lee et al. 2013_B 68.17 7.2 8 7.2.7 8 0.7% -4.00 [-4.57, 13.57] Lee et al. 2013_B 68.17 7.2 8 7.2.7 8 0.7% -0.02 [-6.20, 5.80] Lennon et al. 2008_A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] Lennon et al. 2014_A 84 10 20 1.6% -5.00 [-11.52, 1.52]											
Krawcyk et al. 2019_A 85 10 31 83 10 31 2.8% 2.00 [-2.98, 6.98] Krawcyk et al. 2019_B 83 10 32 83 10 32 2.9% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_C 70.7 9.6 17 7.33 10 17 1.6% -0.30 [-6.85, 6.25] Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2008_A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] Lennon et al. 2028_B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.20, 5.80] MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83]											
Krawcyk et al. 2019_B 83 10 32 83 10 32 2.9% 0.00 [-4.90, 4.90] Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-6.85, 6.25] Lapointe et al. 2023_C 70.7 9.6 17 73.3 10 17 1.6% -2.60 [-9.19, 3.99] Lee et al. 2013_B 68.17 7.2 8 77.7 12.67 8 0.7% -4.00 [-14.10, 6.10] Lee et al. 2008_A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] Lennon et al. 2024_A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022_A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2014_A 84 10 20 1.6% -5.00 [-11.52, 1.52]											
Lapointe et al. 2023_A 68 9.5 16 67.2 12 16 1.2% 0.80 [-6.70, 8.30] Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-6.85, 6.25] Lapointe et al. 2023_C 70.7 9.6 17 73.3 10 17 1.6% -0.30 [-6.85, 6.25] Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2013_B 68.17 7.2 8 72.17 12.67 8 0.7% -4.00 [-14.10, 6.10] Lennon et al. 2008_A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] Lennon et al. 2022_B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014_A 84 10 20 81 11 20 88 10 -20 1.6% 5.00 [-11.52, 1.52] Sakakibara et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [-1.52, 1.52] Sakakibara et al. 2022_B 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2017_A 77.1 7.7 7.9 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Wijkman et al. 2017_B 77.8 12.6 26 7.6); I ⁺ = 0%											
Lapointe et al. 2023_B 65 12.3 19 65.3 7.8 19 1.6% -0.30 [-6.85, 6.25] Lapointe et al. 2023_C 70.7 9.6 17 73.3 10 17 1.6% -2.60 [-9.19, 3.99] Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2013_B 68.17 7.2 8 72.17 12.67 8 0.7% -4.00 [-14.10, 6.10] Lennon et al. 2008_A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.30, 2.93] Lennon et al. 2008_B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.20, 5.80] MacKay-Lyons et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2014_B 83 11.2 08 81 10 20 1.6% 5.00 [-11.52, 1.52] Sakakibara et al. 2022_B 72 12 62 72 12 62 3.9% 0.00 [-4.24, 4.48] Sakakibara et al. 2022_B 77.5 11.8 23 70.9 9.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.1 17.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_A 77.1 17.7 17 72 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Heterogeneity: Tau ² = 0.00; Chi ² = 28.93, df = 35 (P = 0.76); I ² = 0%											
Lapointe et al. 2023_C 70.7 9.6 17 73.3 10 17 1.6% -2.60 [9.19, 3.99] Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% $4.50 [-4.57, 13.57]$ Lee et al. 2013_B 68.17 7.2 8 72.17 12.67 8 0.7% $4.00 [-4.57, 13.57]$ Lennon et al. 2008_A 99.7 7.6 23 81.4 8.4 23 3.2% $-1.70 [-6.33, 2.93]$ Lennon et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% $4.40 [1.10, 7.70]$ MacKay-Lyons et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% $4.40 [1.10, 7.70]$ MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% $1.20 [-2.43, 4.83]$ Moore et al. 2014_A 84 10 20 81 11 20 1.6% $-5.00 [-11.52, 1.52]$ Moore et al. 2022_A 72 9 64 71 111 64 5.7% $1.00 [-2.48, 4.48]$ Sakakibara et al. 2022_B 72 12 62 72 12 62 3.9% $0.00 [-4.22, 4.22]$ Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% $6.20 [0.15, 12.25]$ Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% $6.20 [0.15, 12.25]$ Sandberg et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_A 77.1 7.7 1 7.7 92 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% $3.00 [-3.02, 9.02]$ Wijkman et al. 2017_B 77.8 136 (P = 0.76); P = 0%											
Lee et al. 2013_A 77.63 3.24 8 73.13 12.68 8 0.8% 4.50 [-4.57, 13.57] Lee et al. 2013_B 68.17 7.2 8 72.17 12.67 8 0.7% -4.00 [-14.10, 6.10] Lennon et al. 2008_A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] Lennon et al. 2008_B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.20, 5.80] MacKay-Lyons et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 5.00 [-11.52, 1.52] Sakakibara et al. 2022_A 72 9 64 71 11 64 5.7% 1.00 [-2.48, 4.48] Sakakibara et al. 2022_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020_A 77.4 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Subtotal (95% CI) 1173 1168 100.0% 1.28 [0.45, 2.12]											
Lee et al. 2013 B 68.17 7.2 8 72.17 12.67 8 0.7% -4.00 [-14.10, 6.10] Lennon et al. 2008 A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] Lennon et al. 2008 B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.20, 5.80] MacKay-Lyons et al. 2022 A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022 B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014 A 84 10 20 81 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2014 B 83 11 20 88 10 20 1.6% -5.00 [-11.52, 1.52] Sakakibara et al. 2022 B 72 12 62 72 12 62 3.9% 0.00 [-4.22, 4.22] Sakakibara et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.8% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017 A 77.5 11.8 23 70.9 9.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017 B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Subtotal (95% Cl) 1173 1168 100.0% 1-3.28 [0.45, 2.12]											
Lennon et al. 2008 A 79.7 7.6 23 81.4 8.4 23 3.2% -1.70 [-6.33, 2.93] Lennon et al. 2008 B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.20, 5.80] MacKay-Lyons et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014 A 84 10 20 81 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2012 A 72 9 64 71 11 64 5.7% 1.00 [-2.48, 4.48] Sakakibara et al. 2022 A 72 9 64 71 11 64 5.7% 1.00 [-4.22, 4.2] Sakakibara et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020 A 77.4 11.9 23 71.2 8.8 23 1.9% 6.60 [0.33, 12.87] Wijkman et al. 2017 A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017 B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Subtotal (95% Cl) 1173 1168 100.0% 1.28 [0.45, 2.12]											
Lennon et al. 2008_B 81.8 11.6 23 82 9 23 1.9% -0.20 [-6.20, 5.80] MacKay-Lyons et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-6.24, 3.4.8] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2014_B 83 11 20 88 10 20 1.6% 5.00 [-11.52, 1.52] Sakakibara et al. 2022_A 72 9 64 71 11 64 5.7% 1.00 [-2.48, 4.48] Sakakibara et al. 2022_B 72 12 62 72 12 62 3.9% 0.00 [-4.22, 4.22] Sandberg et al. 2020_B 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Subtotal (95% Cl) 1173 1168 100.0% 1-28 [0.45, 2.12]											
MacKay-Lyons et al. 2022A 76.6 11.1 94 72.2 12 94 6.4% 4.40 [1.10, 7.70] MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [2.4.3, 4.83] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2014_B 83 11 20 88 10 20 1.6% -5.00 [-11.52, 1.52] Sakakibara et al. 2022_B 72 9 64 71 11 64 5.7% 1.00 [2.48, 4.48] Sandberg et al. 2020_B 77.4 11.9 23 71.2 62 3.9% 0.00 [4.22, 4.22] Sandberg et al. 2020_B 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.5 11.8 23 70.9 9.4 4.4% 2.30 [-1.69, 6.29]											
MacKay-Lyons et al. 2022B 74.9 9.8 90 73.7 14.6 90 5.3% 1.20 [-2.43, 4.83] Moore et al. 2014_A 84 10 20 81 11 20 1.6% 3.00 [-3.52, 9.52] Moore et al. 2014_B 83 11 20 88 10 20 1.6% 5.00 [-11.52, 1.52] Sakakibara et al. 2022_A 72 9 64 71 11 64 5.7% 1.00 [-2.48, 4.48] Sakakibara et al. 2022_B 72 12 62 3.9% 0.00 [-4.22, 4.22]											
Moore et al. 2014_A 84 10 20 81 11 20 1.6% $3.00[-3.52, 9.52]$ Moore et al. 2014_B 83 11 20 88 10 20 1.6% $5.00[-11.52, 1.52]$ Sakakibara et al. 2022_A 72 9 64 71 11 64 5.7% 1.00[-2.48, 4.48] Sakakibara et al. 2022_B 72 12 62 72 12 62 72 12 62 72 12 62 73.9% 0.00[-4.22, 4.22] Sandberg et al. 2020_B 77.4 11.9 23 71.2 8.8 23 1.8% 6.60[0.33, 12.87] Sandberg et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30[-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 7.9% 24 1.9% 3.00[-3.02, 9.02] Wijkman et al. (95% Cl) 1173 1168 100.0% 1.28 0.45, 2.12] Image: float											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
Sakakibara et al. 2022_A 72 9 64 71 11 64 5.7% 1.00 [-2.48, 4.48] Sakakibara et al. 2022_B 72 12 62 72 12 62 3.9% 0.00 [-4.22, 4.22] Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020_B 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 7.9% 3.00 [-3.02, 9.02]											
Sakakibara et al. 2022_B 72 12 62 72 12 62 3.9% 0.00 [-4.22, 4.22] Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020_B 77.5 11.8 23 7.09 9.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 7.9% 3.00 [-3.02, 9.02]											
Sandberg et al. 2020_A 77.4 11.9 23 71.2 8.8 23 1.9% 6.20 [0.15, 12.25] Sandberg et al. 2020_B 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.1 7.7 29 74.8 7.8 2.9 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 2.4 7.9 2.4 1.9% 3.00 [-3.02, 9.02] Subtotal (95% Cl) 1173 1168 100.0% 1.28 [0.45, 2.12] +											
Sandberg et al. 2020_B 77.5 11.8 23 70.9 9.8 23 1.8% 6.60 [0.33, 12.87] Wijkman et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 7.9 24 1.9% 3.00 [-3.02, 9.02] Subtotal (95% Cl) 1173 1168 100.0% 1.28 [0.45, 2.12] ♦ Heterogeneity: Tau ² = 0.00; Chi ² = 28.93, df = 35 (P = 0.76); I ² = 0% 1168 100.0% 1.28 [0.45, 2.12] ♦											
Wijkman et al. 2017_A 77.1 7.7 29 74.8 7.8 29 4.4% 2.30 [-1.69, 6.29] Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Subtotal (95% Cl) 1173 1168 100.0% 1.28 [0.45, 2.12] ● Heterogeneity: Tau ² = 0.00; Chi ² = 28.93, df = 35 (P = 0.76); I ² = 0% 1168 100.0% 1.28 [0.45, 2.12] ●											
Wijkman et al. 2017_B 77.8 12.8 24 74.8 7.9 24 1.9% 3.00 [-3.02, 9.02] Subtotal (95% Cl) 1173 1168 100.0% 1.28 [0.45, 2.12] Heterogeneity: Tau ² = 0.00; Chi ² = 28.93, df = 35 (P = 0.76); l ² = 0%											
Subtotal (95% CI) - 1173 1168 100.0% 1.28 [0.45, 2.12] Heterogeneity: Tau ² = 0.00; Chi ² = 28.93, df = 35 (P = 0.76); I ² = 0%											
Heterogeneity: Tau ² = 0.00; Chi ² = 28.93, df = 35 (P = 0.76); l ² = 0%		77.8	11.8			74.8	7.9				
		L12 _ CO -	- 00 00			0.70	- 00/	1108	100.0%	1.20 [0.45, 2.12]	
$1 = 51 \text{ for overall effect. } \mathcal{L} = 5.02 \text{ (P} = 0.003)$					35 (P =	U.76); I ²	= 0%				
	est for overall effect: $\angle = 3.02$	∠ (P = 0.0	r = 0.003	3)							
-20 -10 0 10 20											
Favours Baseline FavoursPost-interven											Favours Baseline FavoursPost-interventation

FIGURE 2 (Continued)

18

	C	ontrol		Inte	erventio	n		Mean Difference	Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
2.1 SBP									
cheampong et al. 2018	5.63	8	8	-13.6	12.06	5	1.7%	19.23 [7.29, 31.17]	
eijle et al. 2022	-1.2	14.3	59	-0.3	16.3	60	7.8%	-0.90 [-6.41, 4.61]	
aulkner et al. 2013	-3.9	14.08	30	-7.7	14.3	30	4.6%	3.80 [-3.38, 10.98]	—
ulkner et al. 2016	-2	27.5	22	-9	20.1	25	1.2%	7.00 [-6.93, 20.93]	
ambassi et al. 2019	-4	32.1	11	-4	32.1	11	0.3%	0.00 [-26.83, 26.83]	
ellesvik et al. 2020	-2.84	14.2	31	-2.76	14.9	33	4.6%	-0.08 [-7.21, 7.05]	
n et al. 2013	-0.8	15.38	63	-1	15.01	65	8.5%	0.20 [-5.07, 5.47]	
rk et al. 2013	-2.41	17.27	12	-4.58	17.27	12	1.2%	2.17 [-11.65, 15.99]	
rawcyk et al. 2019	-6	19	32	-5	20.29	31	2.5%	-1.00 [-10.71, 8.71]	
apointe et al. 2023	-4.9	17.5	17	-1.4	15.3	16	1.9%	-3.50 [-14.70, 7.70]	
apointe et al. 2023_2	-4.9	17.5	17	-1.9	13.8	19	2.2%	-3.00 [-13.38, 7.38]	
ee et al. 2013	0.5	20.39	8	5.75	18.46	8	0.6%	-5.25 [-24.31, 13.81]	
ennon et al. 2008	-1.7	17.11	23	-1.1	14.64	23	2.8%	-0.60 [-9.80, 8.60]	
lacKay-Lyons et al. 2022	-2.4	18.25	90	-5.9	16.22	94	9.4%	3.50 [-1.50, 8.50]	+
oore et al. 2014	2	12.1	20	6	24	20	1.7%	-4.00 [-15.78, 7.78]	
otempa et al. 1995	-4.9	4.39	23	-7.1	3.89	19	37.6%	2.20 [-0.31, 4.71]	+=-
akakibara et al. 2022	1	16.5	62	0	16.1	64	7.3%	1.00 [-4.69, 6.69]	_ _
andberg et al. 2020	-16.4	20.73	23	-23.4	16.62	23	2.0%	7.00 [-3.86, 17.86]	
/ijkman et al. 2017	-5.8	18.31	24	-5	21.22	29	2.1%	-0.80 [-11.44, 9.84]	
ubtotal (95% CI)			575			587	100.0%	1.63 [0.09, 3.16]	•
.2.2 DBP									
aiile at al. 2022	0	0.0	50	0.4	0.6	60	7 20/	0 40 [2 72 . 2 02]	
eijle et al. 2022	0	8.9	59	0.4	9.6	60	7.3%	-0.40 [-3.73, 2.93]	<u> </u>
aulkner et al. 2013	-0.9	13.96	30	-3.8	9.19	30	2.2%	2.90 [-3.08, 8.88]	
aulkner et al. 2013 ulkner et al. 2016	-0.9 -2	13.96 10.1	30 22	-3.8 -4	9.19 10	30 25	2.2% 2.4%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76]	
aulkner et al. 2013 ulkner et al. 2016 Gambassi et al. 2019	-0.9 -2 0.6	13.96 10.1 11.4	30 22 11	-3.8 -4 0.6	9.19 10 11.4	30 25 11	2.2% 2.4% 0.9%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53]	
aulkner et al. 2013 ulkner et al. 2016 ambassi et al. 2019 jellesvik et al. 2020	-0.9 -2 0.6 -0.56	13.96 10.1 11.4 9.1	30 22 11 31	-3.8 -4 0.6 0.28	9.19 10 11.4 10.1	30 25 11 33	2.2% 2.4% 0.9% 3.6%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86]	
aulkner et al. 2013 ulkner et al. 2016 ambassi et al. 2019 jellesvik et al. 2020 n et al. 2013	-0.9 -2 0.6 -0.56 0.8	13.96 10.1 11.4 9.1 10.85	30 22 11 31 63	-3.8 -4 0.6 0.28 -0.8	9.19 10 11.4 10.1 10.73	30 25 11 33 65	2.2% 2.4% 0.9% 3.6% 5.7%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34]	
aulkner et al. 2013 ulkner et al. 2016 ambassi et al. 2019 jellesvik et al. 2020 n et al. 2013 rk et al. 2013	-0.9 -2 0.6 -0.56 0.8 -2	13.96 10.1 11.4 9.1 10.85 8.3	30 22 11 31 63 12	-3.8 -4 0.6 0.28 -0.8 -4.42	9.19 10 11.4 10.1 10.73 8.62	30 25 11 33 65 12	2.2% 2.4% 0.9% 3.6% 5.7% 1.8%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19]	
aulkner et al. 2013 ulkner et al. 2016 iambassi et al. 2019 jellesvik et al. 2020 n et al. 2013 irk et al. 2013 rawcyk et al. 2019	-0.9 -2 0.6 -0.56 0.8 -2 0	13.96 10.1 11.4 9.1 10.85 8.3 10	30 22 11 31 63 12 32	-3.8 -4 0.6 0.28 -0.8 -4.42 -2	9.19 10 11.4 10.1 10.73 8.62 10	30 25 11 33 65 12 31	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94]	
aulkner et al. 2013 ulkner et al. 2016 iambassi et al. 2019 jellesvik et al. 2020 n et al. 2013 irk et al. 2013 rawcyk et al. 2019 apointe et al. 2023	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8	30 22 11 31 63 12 32 17	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8	9.19 10 11.4 10.1 10.73 8.62 10 10.9	30 25 11 33 65 12 31 16	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94] 3.40 [-3.69, 10.49]	
aulkner et al. 2013 ulkner et al. 2016 ambassi et al. 2019 ijellesvik et al. 2020 in et al. 2013 irk et al. 2013 rawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8	30 22 11 31 63 12 32 17 17	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3	9.19 10 11.4 10.1 10.73 8.62 10 10.9 10.8	30 25 11 33 65 12 31 16 19	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94] 3.40 [-3.69, 10.49] 2.30 [-4.43, 9.03]	
aulkner et al. 2013 ulkner et al. 2016 ambassi et al. 2019 jellesvik et al. 2020 n et al. 2013 irk et al. 2013 rawcyk et al. 2019 apointe et al. 2023_2 apointe et al. 2013	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 2.6 4	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01	30 22 11 31 63 12 32 17 17 8	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41	30 25 11 33 65 12 31 16 19 8	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94] 3.40 [-3.69, 10.49] 2.30 [-4.43, 9.03] 8.50 [-2.49, 19.49]	
aulkner et al. 2013 iulkner et al. 2016 Sambassi et al. 2019 Sjellesvik et al. 2020 in et al. 2013 Cirk et al. 2013 Grawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2 ee et al. 2013 ennon et al. 2008	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 2.6 4 0.2	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54	30 22 11 31 63 12 32 17 17 8 23	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23	30 25 11 33 65 12 31 16 19 8 23	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94] 3.40 [-3.69, 10.49] 2.30 [-4.43, 9.03] 8.50 [-2.49, 19.49] -1.50 [-6.97, 3.97]	
aulkner et al. 2013 ulkner et al. 2016 Sambassi et al. 2019 Sjellesvik et al. 2020 in et al. 2013 irk et al. 2013 irawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2 ee et al. 2013 ennon et al. 2008 facKay-Lyons et al. 2022	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88	30 22 11 31 63 12 32 17 17 17 8 23 90	-3.8 -4 0.6 0.28 -0.8 -4.42 -0.8 0.3 -4.5 1.7 -4.4	9.19 10 11.4 10.7 8.62 10 10.9 10.8 11.41 8.23 11.57	30 25 11 33 65 12 31 16 19 8 23 94	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94] 3.40 [-3.69, 10.49] 2.30 [-4.43, 9.03] 8.50 [-2.49, 19.49] -1.50 [-6.97, 3.97] 3.20 [-0.34, 6.74]	
ulkner et al. 2013 ulkner et al. 2016 ambassi et al. 2019 iellesvik et al. 2020 n et al. 2013 rk et al. 2013 gawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023 apointe et al. 2023 ee et al. 2013 ennon et al. 2008 acKay-Lyons et al. 2022 otempa et al. 1995	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1	30 22 11 31 63 12 32 17 17 17 8 23 90 23	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7 -4.4 -4	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1	30 25 11 33 65 12 31 16 19 8 23 94 19	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94] 3.40 [-3.69, 10.49] 2.30 [-4.43, 9.03] 8.50 [-2.49, 19.49] -1.50 [-6.97, 3.97] 3.20 [-0.34, 6.74] -1.00 [-2.28, 0.28]	
aulkner et al. 2013 ulkner et al. 2016 iambassi et al. 2019 jellesvik et al. 2020 n et al. 2013 irk et al. 2013 rawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2 ee et al. 2013 ennon et al. 2008 lacKay-Lyons et al. 2022 otempa et al. 1995 akakibara et al. 2022	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12	30 22 11 31 63 12 32 17 17 8 23 90 23 62	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7 -4.4 -4 -1	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1	30 25 11 33 65 12 31 16 19 8 23 94 19 64	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3%	2.90 [-3.08, 8.88] 2.00 [-3.76, 7.76] 0.00 [-9.53, 9.53] -0.84 [-5.54, 3.86] 1.60 [-2.14, 5.34] 2.42 [-4.35, 9.19] 2.00 [-2.94, 6.94] 3.40 [-3.69, 10.49] 2.30 [-4.43, 9.03] 8.50 [-2.49, 19.49] -1.50 [-6.97, 3.97] 3.20 [-0.34, 6.74] -1.00 [-2.28, 0.28] 1.00 [-2.88, 4.88]	
aulkner et al. 2013 ulkner et al. 2016 Sambassi et al. 2019 Sjellesvik et al. 2020 in et al. 2013 irawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2 ee et al. 2013 ennon et al. 2008 facKay-Lyons et al. 2022 iotempa et al. 1995 iakakibara et al. 2020	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0 -6.6	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12 10.93	30 22 11 31 63 12 32 17 17 17 8 23 90 23 62 23	-3.8 -4 0.6 0.28 -0.8 -4.42 -0.8 0.3 -4.5 1.7 -4.4 -4 -1 -6.2	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1 10.69	30 25 11 33 65 12 31 16 19 8 23 94 19 64 23	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3% 2.1%	$\begin{array}{c} 2.90 \left[-3.08, 8.88 \right] \\ 2.00 \left[-3.76, 7.76 \right] \\ 0.00 \left[-9.53, 9.53 \right] \\ -0.84 \left[-5.54, 3.86 \right] \\ 1.60 \left[-2.14, 5.34 \right] \\ 2.42 \left[-4.35, 9.19 \right] \\ 2.00 \left[-2.94, 6.94 \right] \\ 3.40 \left[-3.69, 10.49 \right] \\ 2.30 \left[-4.43, 9.03 \right] \\ 8.50 \left[-2.49, 19.49 \right] \\ -1.50 \left[-6.97, 3.97 \right] \\ 3.20 \left[-0.34, 6.74 \right] \\ -1.00 \left[-2.28, 0.28 \right] \\ 1.00 \left[-2.88, 4.88 \right] \\ -0.40 \left[-6.65, 5.85 \right] \end{array}$	
aulkner et al. 2013 ulkner et al. 2016 iambassi et al. 2019 jellesvik et al. 2020 n et al. 2013 irk et al. 2013 arawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023 apointe et al. 2023 ee et al. 2013 ennon et al. 2008 lacKay-Lyons et al. 2022 otempa et al. 1995 akakibara et al. 2022 andberg et al. 2020 /ijkman et al. 2017	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0 -6.6	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12	30 22 11 31 63 12 32 17 17 8 23 90 23 62	-3.8 -4 0.6 0.28 -0.8 -4.42 -0.8 0.3 -4.5 1.7 -4.4 -4 -1 -6.2	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1	30 25 11 33 65 12 31 16 19 8 23 94 19 64 23 29	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3%	$\begin{array}{c} 2.90 \left[-3.08, 8.88 \right] \\ 2.00 \left[-3.76, 7.76 \right] \\ 0.00 \left[-9.53, 9.53 \right] \\ -0.84 \left[-5.54, 3.86 \right] \\ 1.60 \left[-2.14, 5.34 \right] \\ 2.42 \left[-4.35, 9.19 \right] \\ 2.00 \left[-2.94, 6.94 \right] \\ 3.40 \left[-3.69, 10.49 \right] \\ 2.30 \left[-4.43, 9.03 \right] \\ 8.50 \left[-2.49, 19.49 \right] \\ -1.50 \left[-6.97, 3.97 \right] \\ 3.20 \left[-0.34, 6.74 \right] \\ -1.00 \left[-2.28, 0.28 \right] \\ 1.00 \left[-2.88, 4.88 \right] \\ -0.40 \left[-6.65, 5.85 \right] \\ -0.70 \left[-5.99, 4.59 \right] \end{array}$	
aulkner et al. 2013 julkner et al. 2016 Sambassi et al. 2019 Sjellesvik et al. 2020 in et al. 2013 Grawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2 ee et al. 2013 ennon et al. 2008 MacKay-Lyons et al. 2022 Potempa et al. 1995 Sakakibara et al. 2022 Sambberg et al. 2020 Vijkman et al. 2017 Subtotal (95% CI)	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0 -6.6 -3	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12 10.93 11.18	30 22 11 31 63 12 32 17 17 8 23 90 23 62 23 62 23 24 547	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7 -4.4 -4 -1 -6.2 -2.3	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1 10.69 7.75	30 25 11 33 65 12 31 16 19 8 23 94 19 64 23 29 562	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3% 2.1% 2.9%	$\begin{array}{c} 2.90 \left[-3.08, 8.88 \right] \\ 2.00 \left[-3.76, 7.76 \right] \\ 0.00 \left[-9.53, 9.53 \right] \\ -0.84 \left[-5.54, 3.86 \right] \\ 1.60 \left[-2.14, 5.34 \right] \\ 2.42 \left[-4.35, 9.19 \right] \\ 2.00 \left[-2.94, 6.94 \right] \\ 3.40 \left[-3.69, 10.49 \right] \\ 2.30 \left[-4.43, 9.03 \right] \\ 8.50 \left[-2.49, 19.49 \right] \\ -1.50 \left[-6.97, 3.97 \right] \\ 3.20 \left[-0.34, 6.74 \right] \\ -1.00 \left[-2.28, 0.28 \right] \\ 1.00 \left[-2.88, 4.88 \right] \\ -0.40 \left[-6.65, 5.85 \right] \end{array}$	
aulkner et al. 2013 iulkner et al. 2016 Sambassi et al. 2019 Sjellesvik et al. 2020 in et al. 2013 (irk et al. 2013 (irawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2 ee et al. 2013 ennon et al. 2008 MacKay-Lyons et al. 2022 iotempa et al. 1995 iakakibara et al. 2022 Gandberg et al. 2020 Vijkman et al. 2017 Gubtotal (95% CI) leterogeneity: Tau ² = 0.00;	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0 -6.6 -3	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12 10.93 11.18 3.07, df	30 22 11 31 63 12 32 17 17 8 23 90 23 62 23 62 23 24 547	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7 -4.4 -4 -1 -6.2 -2.3	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1 10.69 7.75	30 25 11 33 65 12 31 16 19 8 23 94 19 64 23 29 562	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3% 2.1% 2.9%	$\begin{array}{c} 2.90 \left[-3.08, 8.88 \right] \\ 2.00 \left[-3.76, 7.76 \right] \\ 0.00 \left[-9.53, 9.53 \right] \\ -0.84 \left[-5.54, 3.86 \right] \\ 1.60 \left[-2.14, 5.34 \right] \\ 2.42 \left[-4.35, 9.19 \right] \\ 2.00 \left[-2.94, 6.94 \right] \\ 3.40 \left[-3.69, 10.49 \right] \\ 2.30 \left[-4.43, 9.03 \right] \\ 8.50 \left[-2.49, 19.49 \right] \\ -1.50 \left[-6.97, 3.97 \right] \\ 3.20 \left[-0.34, 6.74 \right] \\ -1.00 \left[-2.28, 0.28 \right] \\ 1.00 \left[-2.88, 4.88 \right] \\ -0.40 \left[-6.65, 5.85 \right] \\ -0.70 \left[-5.99, 4.59 \right] \end{array}$	
aulkner et al. 2013 iulkner et al. 2016 Sambassi et al. 2019 Sjellesvik et al. 2020 in et al. 2013 irk et al. 2013 irawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023_2 ee et al. 2013 ennon et al. 2008 facKay-Lyons et al. 2022 otempa et al. 1995 iakakibara et al. 2020 Vijkman et al. 2017	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0 -6.6 -3	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12 10.93 11.18 3.07, df	30 22 11 31 63 12 32 17 17 8 23 90 23 62 23 62 23 24 547	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7 -4.4 -4 -1 -6.2 -2.3	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1 10.69 7.75	30 25 11 33 65 12 31 16 19 8 23 94 19 64 23 29 562	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3% 2.1% 2.9%	$\begin{array}{c} 2.90 \left[-3.08, 8.88 \right] \\ 2.00 \left[-3.76, 7.76 \right] \\ 0.00 \left[-9.53, 9.53 \right] \\ -0.84 \left[-5.54, 3.86 \right] \\ 1.60 \left[-2.14, 5.34 \right] \\ 2.42 \left[-4.35, 9.19 \right] \\ 2.00 \left[-2.94, 6.94 \right] \\ 3.40 \left[-3.69, 10.49 \right] \\ 2.30 \left[-4.43, 9.03 \right] \\ 8.50 \left[-2.49, 19.49 \right] \\ -1.50 \left[-6.97, 3.97 \right] \\ 3.20 \left[-0.34, 6.74 \right] \\ -1.00 \left[-2.28, 0.28 \right] \\ 1.00 \left[-2.88, 4.88 \right] \\ -0.40 \left[-6.65, 5.85 \right] \\ -0.70 \left[-5.99, 4.59 \right] \end{array}$	
aulkner et al. 2013 ulkner et al. 2016 iambassi et al. 2019 jellesvik et al. 2020 n et al. 2013 irk et al. 2013 arawcyk et al. 2019 apointe et al. 2023 apointe et al. 2023 apointe et al. 2023 ee et al. 2013 ennon et al. 2008 lacKay-Lyons et al. 2022 otempa et al. 1995 akakibara et al. 2022 andberg et al. 2020 /ijkman et al. 2017 ubtotal (95% CI) eterogeneity: Tau ² = 0.00;	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0 -6.6 -3	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12 10.93 11.18 3.07, df	30 22 11 31 63 12 32 17 17 8 23 90 23 62 23 62 23 24 547	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7 -4.4 -4 -1 -6.2 -2.3	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1 10.69 7.75	30 25 11 33 65 12 31 16 19 8 23 94 19 64 23 29 562	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3% 2.1% 2.9%	$\begin{array}{c} 2.90 \left[-3.08, 8.88 \right] \\ 2.00 \left[-3.76, 7.76 \right] \\ 0.00 \left[-9.53, 9.53 \right] \\ -0.84 \left[-5.54, 3.86 \right] \\ 1.60 \left[-2.14, 5.34 \right] \\ 2.42 \left[-4.35, 9.19 \right] \\ 2.00 \left[-2.94, 6.94 \right] \\ 3.40 \left[-3.69, 10.49 \right] \\ 2.30 \left[-4.43, 9.03 \right] \\ 8.50 \left[-2.49, 19.49 \right] \\ -1.50 \left[-6.97, 3.97 \right] \\ 3.20 \left[-0.34, 6.74 \right] \\ -1.00 \left[-2.28, 0.28 \right] \\ 1.00 \left[-2.88, 4.88 \right] \\ -0.40 \left[-6.65, 5.85 \right] \\ -0.70 \left[-5.99, 4.59 \right] \end{array}$	
aukner et al. 2013 Jukner et al. 2016 ambassi et al. 2019 Jukner et al. 2019 Jukner et al. 2019 aukoyk et al. 2020 and et al. 2013 aukoyk et al. 2019 apointe et al. 2023 apointe et al. 2023 apointe et al. 2023 apointe et al. 2023 acKay-Lyons et al. 2022 betwepa et al. 2022 andberg et al. 2020 ijkman et al. 2017 Jubtotal (95% CI) eterogeneity: Tau ² = 0.00;	-0.9 -2 0.6 -0.56 0.8 -2 0 2.6 2.6 4 0.2 -1.2 -5 0 -6.6 -3	13.96 10.1 11.4 9.1 10.85 8.3 10 9.8 9.8 11.01 10.54 12.88 2.1 12 10.93 11.18 3.07, df	30 22 11 31 63 12 32 17 17 8 23 90 23 62 23 62 23 24 547	-3.8 -4 0.6 0.28 -0.8 -4.42 -2 -0.8 0.3 -4.5 1.7 -4.4 -4 -1 -6.2 -2.3	9.19 10 11.4 10.73 8.62 10 10.9 10.8 11.41 8.23 11.57 2.1 10.1 10.69 7.75	30 25 11 33 65 12 31 16 19 8 23 94 19 64 23 29 562	2.2% 2.4% 0.9% 3.6% 5.7% 1.8% 3.3% 1.6% 1.8% 0.7% 2.7% 6.4% 49.4% 5.3% 2.1% 2.9%	$\begin{array}{c} 2.90 \left[-3.08, 8.88 \right] \\ 2.00 \left[-3.76, 7.76 \right] \\ 0.00 \left[-9.53, 9.53 \right] \\ -0.84 \left[-5.54, 3.86 \right] \\ 1.60 \left[-2.14, 5.34 \right] \\ 2.42 \left[-4.35, 9.19 \right] \\ 2.00 \left[-2.94, 6.94 \right] \\ 3.40 \left[-3.69, 10.49 \right] \\ 2.30 \left[-4.43, 9.03 \right] \\ 8.50 \left[-2.49, 19.49 \right] \\ -1.50 \left[-6.97, 3.97 \right] \\ 3.20 \left[-0.34, 6.74 \right] \\ -1.00 \left[-2.28, 0.28 \right] \\ 1.00 \left[-2.88, 4.88 \right] \\ -0.40 \left[-6.65, 5.85 \right] \\ -0.70 \left[-5.99, 4.59 \right] \end{array}$	-20 -10 0 10 20 Favours Control Favours Intervention

post-stroke rehabilitation programs. SBP, systolic blood pressure; DBP, diastolic blood pressure; SD, standard deviation; IV, inverse variance; CI, confidence interval; df, degree of freedom.

found insignificant changes [MD -13.61 m (95% CI -39.95 to 12.73), P < 0.05, $I^2 = 31\%$] (Supplementary File 9). Furthermore, BBS (n = 123) improved significantly at discharge than baseline [MD -3.39 (95% CI -5.04 to -1.75), P < 0.05, $I^2 = 52\%$], as well as changes between control and intervention groups from one article (45) (n = 40) (P < 0.05) (Supplementary File 10).

Contrarily, TUG (39, 46) (n = 62) test has an insignificant change after post-stroke rehabilitation at discharge [MD 1.76 (-0.49 to 4.01), P > 0.05, $I^2 = 0\%$] and the comparison of baseline and discharge changes between the control and intervention groups [MD 2.67 (-0.81 to 6.14), P > 0.05, $I^2 = 0\%$] (Supplementary File 11). These results suggest an

	В	aseline		Post-ir	terventa	ation		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Acheampong et al. 2018_A	80.4	6.8	5	77	6.6	5	1.5%	3.40 [-4.91, 11.71]	
Acheampong et al. 2018_B	82.88	8	8	77.63	8	8	1.7%	5.25 [-2.59, 13.09]	
Fulkner et al. 2016_A	59	9	25	59	12	25	3.0%	0.00 [-5.88, 5.88]	
Fulkner et al. 2016_B	65	16	22	62	14	22	1.3%	3.00 [-5.88, 11.88]	
Gambassi et al. 2019_A	71.5	11.9	11	65.1	9.5	11	1.3%	6.40 [-2.60, 15.40]	
Gambassi et al. 2019 B	74.8	14.4	11	76.5	11.2	11	0.9%	-1.70 [-12.48, 9.08]	
Han et al. 2017_A	91.4	20.96	10	89.4	19.22	10	0.3%	2.00 [-15.63, 19.63]	· · · · · · · · · · · · · · · · · · ·
Han et al. 2017_B	95.1	15.25	10	93.5	16.42	10	0.5%	1.60 [-12.29, 15.49]	
Jin et al. 2013_A	75.1	11.9	65	71.1	11	65	6.7%	4.00 [0.06, 7.94]	
Jin et al. 2013_B	73.8	12.1	63	73.6	11	63	6.3%	0.20 [-3.84, 4.24]	
Lapointe et al. 2023_A	68.7	13.6	16	68.7	11.3	16	1.4%	0.00 [-8.66, 8.66]	
Lapointe et al. 2023_B	69.3	11.3	19	69.5	10	19	2.2%	-0.20 [-6.98, 6.58]	
Lapointe et al. 2023_C	71.4	11.3	17	67.5	13.2	17	1.5%	3.90 [-4.36, 12.16]	
Lee et al. 2013_A	87.5	12.72	8	91.13	11.97	8	0.7%	-3.63 [-15.73, 8.47]	· · · · · · · · · · · · · · · · · · ·
Lee et al. 2013_B	94.5	21.8	8	91	20.63	8	0.2%	3.50 [-17.30, 24.30]	
Lennon et al. 2008_A	72.3	10.2	23	72.9	10.9	23	2.8%	-0.60 [-6.70, 5.50]	
_ennon et al. 2008_B	70.1	10.2	23	70.9	11.3	23	2.7%	-0.80 [-7.02, 5.42]	
Potempa et al. 1995_A	76.5	3.6	19	76.5	2.5	19	26.6%	0.00 [-1.97, 1.97]	+
Potempa et al. 1995_B	72.9	3.2	23	74	3	23	32.2%	-1.10 [-2.89, 0.69]	-=+
Sandberg et al. 2020_A	77.3	15.5	23	72.6	10.5	23	1.8%	4.70 [-2.95, 12.35]	
Sandberg et al. 2020_B	79.8	14	29	78.1	11.9	29	2.3%	1.70 [-4.99, 8.39]	<u> </u>
Wijkman et al. 2017_A	62.4	20.8	29	68.4	19.3	29	1.0%	-6.00 [-16.33, 4.33]	
Wijkman et al. 2017_B	56.2	14.6	24	55.1	20.3	24	1.0%	1.10 [-8.90, 11.10]	
Total (95% CI)	491					491	100.0%	0.26 [-0.76, 1.28]	•

B

	C	ontrol		Inte	erventio	on		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Acheampong et al. 2018	-5.25	8	8	-3.4	6.7	5	4.4%	-1.85 [-9.93, 6.23]	
Fulkner et al. 2016	-3	15.1	22	0	10.8	25	5.0%	-3.00 [-10.60, 4.60]	
Gambassi et al. 2019	1.7	13.1	11	-6.4	10.9	11	2.9%	8.10 [-1.97, 18.17]	
Han et al. 2017	-1.6	15.87	10	-2	20.15	10	1.2%	0.40 [-15.50, 16.30]	
Jin et al. 2013	-0.2	11.59	63	-4	11.48	65	15.9%	3.80 [-0.20, 7.80]	
Lapointe et al. 2023	-3.9	12.4	17	0	12.6	16	4.0%	-3.90 [-12.44, 4.64]	
Lapointe et al. 2023_2	-3.9	12.4	17	0.2	10.7	19	4.9%	-4.10 [-11.71, 3.51]	
Lee et al. 2013	-3.5	21.24	8	3.63	12.36	8	1.0%	-7.13 [-24.16, 9.90]	
Lennon et al. 2008	0.8	10.79	23	0.6	10.57	23	7.3%	0.20 [-5.97, 6.37]	
Potempa et al. 1995	1.1	3.1	23	0	3.19	19	45.4%	1.10 [-0.81, 3.01]	+
Sandberg et al. 2020	-1.7	13.07	29	-4.7	13.7	23	5.3%	3.00 [-4.35, 10.35]	
Wijkman et al. 2017	-1.1	18.13	24	6	20.09	29	2.8%	-7.10 [-17.40, 3.20]	
Total (95% CI)			255			253	100.0%	0.66 [-1.08, 2.39]	•
Heterogeneity: Tau ² = 0.77	7; Chi² =	11.88, 0	df = 11	(P = 0.3	87); ² =	7%			
Test for overall effect: Z =				,					-20 -10 0 10 20 Favours Control Favours Intervention

FIGURE 3

Heart rate changes (A) baseline to post-intervention and (B) difference in pre- and post-intervention at the control and intervention groups after poststroke rehabilitation programs. SD, standard deviation; IV, inverse variance; CI, confidence interval; df, degree of freedom.

	Ba	aseline		Post-in	terventa	ation		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
4.2.1 HDL_Aerobic_Exercis	e								
Fulkner et al. 2016_A	1.11	0.3	25	1.15	0.32	25	26.8%	-0.04 [-0.21, 0.13]	
Gjellesvik et al. 2020_A	1.43	0.44	33	1.44	0.44	33	17.6%	-0.01 [-0.22, 0.20]	
Krawcyk et al. 2019_B	1.4	0.4	32	1.4	0.4	32	20.6%	0.00 [-0.20, 0.20]	_
Lapointe et al. 2023_A	1.3	0.4	16	1.4	0.4	16	10.3%	-0.10 [-0.38, 0.18]	
Lapointe et al. 2023_B	1.4	0.6	19	1.4	0.5	19	6.4%	0.00 [-0.35, 0.35]	
Tang et al. 2013_A	1.4	0.4	22	1.4	0.3	22	18.2%	0.00 [-0.21, 0.21]	
Subtotal (95% CI)			147			147	100.0%	-0.02 [-0.11, 0.07]	•
Heterogeneity: Tau ² = 0.00; 0	Chi² = 0.4	16, df =	5 (P =	0.99); l ² =	= 0%				
Test for overall effect: Z = 0.5	50 (P = 0	.62)							
4.2.2 HDL_Resistance_Trai	ning								
Moore et al. 2014_A	1.3	0.4	20	1.6	0.6	20	1.5%	-0.30 [-0.62, 0.02]	
Zou et al. 2015_A	1.11	0.08	28	1.29	0.07	28	98.5%	-0.18 [-0.22, -0.14]	
Subtotal (95% CI)			48			48	100.0%	-0.18 [-0.22, -0.14]	•
Heterogeneity: Tau ² = 0.00; 0	Chi² = 0.5	55, df =	1 (P =	0.46); l ² =	= 0%				
Test for overall effect: Z = 9.1	2 (P < 0	.00001)						
4.2.3 HDL_Standard_Care									
Acheampong et al. 2018_B	1.22	8	8	1.21	8	8	0.0%	0.01 [-7.83, 7.85] 🔸	
Faulkner et al. 2013_B	1.28	0.52	30	1.43	0.55	30	2.0%	-0.15 [-0.42, 0.12]	
Fulkner et al. 2016_B	1.13	0.3	22	1.15	0.32	22	4.3%	-0.02 [-0.20, 0.16]	
Gjellesvik et al. 2020_B	1.49	0.48	34	1.51	0.47	29	2.6%	-0.02 [-0.26, 0.22]	
Kirk et al. 2013_B	1.1	0.3	12	1.1	0.2	12	3.5%	0.00 [-0.20, 0.20]	
Lapointe et al. 2023_C	1.3	0.3	17	1.3	0.3	17	3.6%	0.00 [-0.20, 0.20]	
	1.15	0.3	90	1.17	0.3	90	18.9%	-0.02 [-0.11, 0.07]	— <u>—</u>
MacKay-Lyons et al. 2022B	1.14	0.09	28	1.15	0.09	28	65.2%	-0.01 [-0.06, 0.04]	
Zou et al. 2015_B			241			236	100.0%	-0.01 [-0.05, 0.02]	•
Zou et al. 2015_B	Chi² = 1.0	06, df =	7 (P =	0.99); l² =	= 0%				

B

	Ba	seline	9	Post-in	terventa	ation		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
4.6.1 LDL_Aerobic_Exercise	•								
Deijle et al. 2022_A	2.3	0.7	60	2.4	0.8	60	36.9%	-0.10 [-0.37, 0.17]	
Gjellesvik et al. 2020_B	2.74	1.05	34	2.7	0.93	29	11.2%	0.04 [-0.45, 0.53]	
Lapointe et al. 2023_A	1.6	0.5	16	1.8	0.5	16	22.2%	-0.20 [-0.55, 0.15]	
Lapointe et al. 2023_B	1.7	0.5	19	1.9	0.7	19	17.8%	-0.20 [-0.59, 0.19]	
Tang et al. 2013_A Subtotal (95% Cl)	2.5	0.8	22 151	2.4	0.8	22 146	11.9% 100.0%	0.10 [-0.37, 0.57] -0.10 [-0.26, 0.06]	•
Heterogeneity: Tau ² = 0.00; C	hi² = 1.5	58, df =	= 4 (P =	0.81); l ² =	= 0%				
Test for overall effect: Z = 1.2	1 (P = 0	.23)							
4.6.2 LDL_Resistance_traini	•								
Moore et al. 2014_A	2.5	0.9	20	2.5	0.9	20	32.6%	0.00 [-0.56, 0.56]	
Tang et al. 2013_B	2.3	0.7	25	2.1	0.7	25	67.4%	0.20 [-0.19, 0.59]	
Subtotal (95% CI)			45			45	100.0%	0.13 [-0.18, 0.45]	
Heterogeneity: Tau ² = 0.00; C			= 1 (P =	0.56); l ² =	= 0%				
Test for overall effect: Z = 0.83	3 (P = 0	.41)							
4.6.3 LDL Standard Care									
Acheampong et al. 2018 B	3.2	8	8	3.8	8	8	0.0%	-0.60 [-8.44, 7.24]	← · · · · · · · · · · · · · · · · · · ·
Deijle et al. 2022 B	2.3	0.7	59	2.5	0.8	59	29.2%	-0.20 [-0.47, 0.07]	_ _
Gjellesvik et al. 2020 B	2.74	1.05	34	2.7	0.93	29	9.0%	0.04 [-0.45, 0.53]	
MacKay-Lyons et al. 2022B	2.24	0.9	90	2.23	0.8	90	34.7%	0.01 [-0.24, 0.26]	_
Zou et al. 2015 B	3.35	0.58	28	3.33	0.49	28	27.1%	0.02 [-0.26, 0.30]	_
Subtotal (95% CI)			219			214	100.0%	-0.05 [-0.19, 0.10]	•
Heterogeneity: Tau ² = 0.00; C	hi² = 1.7	'8, df =	= 4 (P =	0.78); l ² =	= 0%				
Test for overall effect: Z = 0.62	2 (P = 0	.54)							
									-1 -0.5 0 0.5 1
									Favours baseline Favours Post-interventation
GURE 4									
Continued)									

С									
	Ba	aseline	•	Post-in	terventa	ation		Mean Difference	Mean Difference
Study or Subgroup	Mean SD Total Mean SD		SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI		
Acheampong et al. 2018_A	2.26	1.15	5	1.92	0.77	5	0.5%	0.34 [-0.87, 1.55]	
Acheampong et al. 2018_B	3.2	8	8	3.8	8	8	0.0%	-0.60 [-8.44, 7.24]	· · · · · · · · · · · · · · · · · · ·
Deijle et al. 2022_A	2.3	0.7	60	2.4	0.8	60	9.7%	-0.10 [-0.37, 0.17]	
Deijle et al. 2022_B	2.3	0.7	59	2.5	0.8	59	9.6%	-0.20 [-0.47, 0.07]	
Gjellesvik et al. 2020_A	2.51	0.93	33	2.31	0.88	33	3.7%	0.20 [-0.24, 0.64]	- -
Gjellesvik et al. 2020_B	2.74	1.05	34	2.7	0.93	29	2.9%	0.04 [-0.45, 0.53]	
Lapointe et al. 2023_A	1.6	0.5	16	1.8	0.5	16	5.9%	-0.20 [-0.55, 0.15]	+
Lapointe et al. 2023_B	1.7	0.5	19	1.9	0.7	19	4.7%	-0.20 [-0.59, 0.19]	+
MacKay-Lyons et al. 2022A	2.24	0.8	94	1.94	0.8	94	13.5%	0.30 [0.07, 0.53]	-
MacKay-Lyons et al. 2022B	2.24	0.9	90	2.23	0.8	90	11.4%	0.01 [-0.24, 0.26]	+
Moore et al. 2014_A	2.5	0.9	20	2.5	0.9	20	2.3%	0.00 [-0.56, 0.56]	
Moore et al. 2014_B	2.5	0.7	20	2.4	0.7	20	3.7%	0.10 [-0.33, 0.53]	
Sakakibara et al. 2022_A	1.9	0.8	64	1.9	0.8	64	9.2%	0.00 [-0.28, 0.28]	+
Sakakibara et al. 2022_B	1.8	0.9	62	2	1	62	6.3%	-0.20 [-0.53, 0.13]	+
Tang et al. 2013_A	2.5	0.8	22	2.4	0.8	22	3.2%	0.10 [-0.37, 0.57]	
Tang et al. 2013_B	2.3	0.7	25	2.1	0.7	25	4.7%	0.20 [-0.19, 0.59]	
Zou et al. 2015_B	3.35	0.58	28	3.33	0.49	28	8.9%	0.02 [-0.26, 0.30]	+
Total (95% CI)			659			654	100.0%	0.01 [-0.08, 0.09]	+
Heterogeneity: Tau ² = 0.00; 0	Chi² = 15	.46, df	= 16 (P	= 0.49);	l² = 0%				
Test for overall effect: Z = 0.1	7 (P = 0	.87)	,						-2 -1 0 1 2 Favours baseline Favours Post-interventation

D

	С	ontrol		Inte	rventi	on		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Acheampong et al. 2018	0.6	8	8	-0.34	1.01	5	0.0%	0.94 [-4.67, 6.55] 🔸	
Deijle et al. 2022	0.2	0.7	59	0.1	0.7	60	20.7%	0.10 [-0.15, 0.35]	
Gjellesvik et al. 2020	-0.04	0.9	29	-0.2	0.9	33	6.5%	0.16 [-0.29, 0.61]	
Krawcyk et al. 2019	-1	0.92	32	-1.2	1.12	31	5.1%	0.20 [-0.31, 0.71]	
Lapointe et al. 2023	0.5	0.6	17	0.2	0.5	16	9.3%	0.30 [-0.08, 0.68]	
Lapointe et al. 2023_2	0.5	0.6	17	0.2	0.6	19	8.5%	0.30 [-0.09, 0.69]	
MacKay-Lyons et al. 2022	-0.01	0.85	90	-0.3	0.8	94	23.0%	0.29 [0.05, 0.53]	
Moore et al. 2014	-0.1	0.7	20	0	0.9	20	5.2%	-0.10 [-0.60, 0.40]	
Sakakibara et al. 2022	0.2	0.9	62	0	0.8	64	14.8%	0.20 [-0.10, 0.50]	
Tang et al. 2013	-0.2	0.7	25	-0.1	0.8	22	7.0%	-0.10 [-0.53, 0.33]	
Total (95% CI)			359			364	100.0%	0.18 [0.06, 0.29]	-
Heterogeneity: Tau ² = 0.00; Test for overall effect: Z = 3			,	= 0.85)	; I ² = 0	%		-	-0.5 -0.25 0 0.25 0.5 Favours Control Favours Intervention

FIGURE 4

Subgroup analysis from baseline to post-intervention changes. (A) High-density lipoprotein and (B) low-density lipoprotein, (C) low-density lipoprotein difference on baseline and post-intervention, (D) low-density lipoprotein changes in the control and intervention groups after post-stroke rehabilitation programs. SD, standard deviation; IV, inverse variance; CI, confidence interval; df, degree of freedom.

overall deterioration in functional outcomes in different measures. In line with previous studies, our study also emphasizes that standardized and personalized measurement tools must be developed to prescribe exercise for people with stroke, concerning exercise principles such as specificity, overload, and reversibility for better outcomes (74).

Furthermore, FBG from seven articles (38, 48, 49, 54, 58, 62, 73) (n = 544) found significant changes at discharge [MD 0.15 (95% CI 0.04–0.26), P < 0.05, $I^2 = 0\%$] and the comparison of baseline and discharge changes between the control and intervention group [MD 0.17 (95% CI 0.03–0.30), P < 0.05, $I^2 = 0\%$] (Supplementary File 12). Moreover, homocysteine level

changes from two articles (48, 49) (n = 87) found an insignificant (P > 0.05) improvement after the post-stroke rehabilitation program (Supplementary File 13).

3.7 Publication bias and sensitivity analysis

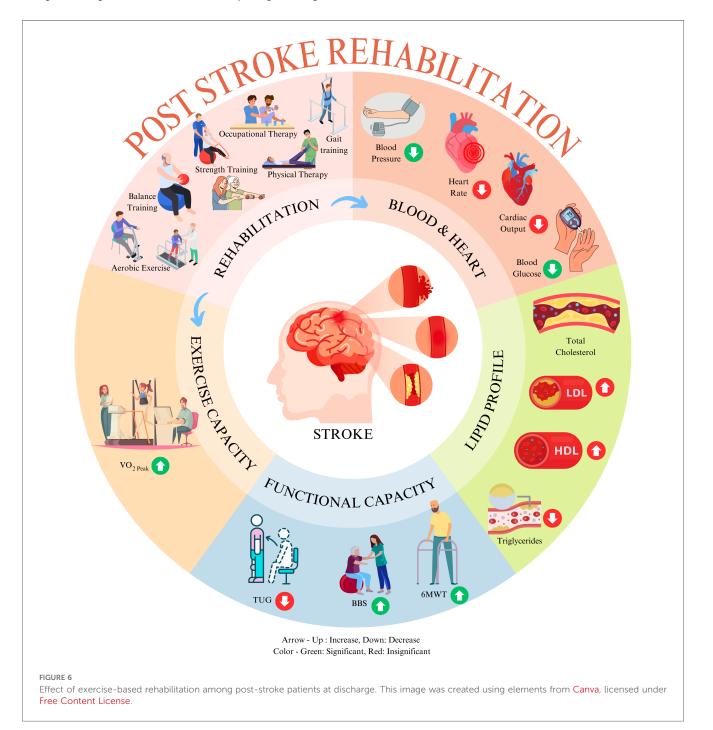
We analyzed publication bias (75) using the funnel plot for variables, which included over ten studies; none of our results presented potential bias (shown in Supplementary Files 4, 6, 8, 10, 11). Sensitivity analysis (76) was done using the leave-oneout method. If any studies significantly impact overall results on

	Ba	aseline		Post-in	terventat	ion		Mean Difference	Mean Difference
tudy or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
.1.1 Exercise									
guiar et al. 2020 A	22.2	4.4	11	23	4.6	11	0.4%	-0.80 [-4.56, 2.96]	
guiar et al. 2020 B	22.3	6.7	11	22.7	7.2	11	0.2%	-0.40 [-6.21, 5.41]	
eijle et al. 2022 B	22	6.4	59	21.6	6	59	1.1%	0.40 [-1.84, 2.64]	+-
jellesvik et al. 2020 A	31.83	11.18	36	34.88	10.56	33	0.2%	-3.05 [-8.18, 2.08]	
Blobas et al. 2012 B	21.7	7.8	18	20.9	7.8	18	0.2%	0.80 [-4.30, 5.90]	
lan et al. 2017 A	20.76	6.97	10	21.99	6.58	10	0.2%	-1.23 [-7.17, 4.71]	
an et al. 2017 B	22.37	7.25	10	28.05	7.57	10	0.1%	-5.68 [-12.18, 0.82]	<u> </u>
lus et al. 2020 B	17.4	4.21	13	19.1	3.55	13	0.6%	-1.70 [-4.69, 1.29]	
ang et al. 2023 A	14.05	6.47	6	19.29	7.64	6	0.1%	-5.24 [-13.25, 2.77]	
ang et al. 2023 B	15.8	3.37	10	14.53	3.35	10	0.7%	1.27 [-1.68, 4.22]	-
apointe et al. 2023 A	21.1	4.5	16	22.5	5.3	16	0.5%	-1.40 [-4.81, 2.01]	<u> </u>
apointe et al. 2023 B	18.9	5.5	19	20.6	5.6	19	0.5%	-1.70 [-5.23, 1.83]	
apointe et al. 2023 C	19.3	8.4	17	18	7.6	17	0.2%	1.30 [-4.08, 6.68]	
ee et al. 2013 A	16	2.79	8	17.83	3.09	8	0.7%	-1.83 [-4.71, 1.05]	+
ee et al. 2013 B	20.08	5.79	8	20.3	7	8	0.1%	-0.22 [-6.51, 6.07]	
ennon et al. 2008 A	10.6	1.6	23	12	2.2	23	4.6%	-1.40 [-2.51, -0.29]	-
ennon et al. 2008 B	11.1	1.8	23	11.1	1.9	23	5.0%	0.00 [-1.07, 1.07]	+
lacKay-Lyons et al. 2022A	18.9	5.8	94	19.7	5.2	94	2.3%	-0.80 [-2.37, 0.77]	-+-
lacKay-Lyons et al. 2022B	19.5	5.7	90	19.4	5.8	90	2.0%	0.10 [-1.58, 1.78]	+
lacko et al. 2005 B	14.7	1	29	14.9	1	29	21.6%	-0.20 [-0.71, 0.31]	•
Noore et al. 2005_D	18	5	20	21	5	20	0.6%	-3.00 [-6.10, 0.10]	
Potempa et al. 1995 B	15.1	1.1	23	15.2	0.9	23	17.0%	-0.10 [-0.68, 0.48]	↓ · · · · · · · · · · · · · · · · · · ·
Quaney et al. 2009 A	14.76	4.23	19	14.47	5.13	19	0.6%	0.29 [-2.70, 3.28]	
Quanev et al. 2009_A	14.67	5.42	19	14.39	4.99	19	0.5%	0.28 [-3.03, 3.59]	
Revnolds et al. 2003_D	17.5	2.9	10	20.1	4.9	10	0.5%	-2.60 [-6.13, 0.93]	
Reynolds et al. 2021 B	14.4	3.7	10	17.4	4.4	10	0.5%	-3.00 [-6.56, 0.56]	
stoller et al. 2015 B	14.4	5.6	7	18	5.9	7	0.3%	-3.20 [-9.23, 2.83]	
Sutbevaz et al. 2010 A	12.42	0.91	15	12.48	0.83	15	14.7%	-0.06 [-0.68, 0.56]	+
Sutbeyaz et al. 2010 B	13.19	1.31	15	13.7	1.37	15	6.2%	-0.51 [-1.47, 0.45]	
Sutbeyaz et al. 2010_B	12.4	0.86	15	12.5	0.76	15	17.0%	-0.10 [-0.68, 0.48]	1
ang et al. 2013 A	16.9	7.1	21	12.5	0.76	21	0.3%	-0.50 [-4.76, 3.76]	
ang et al. 2013_A	16.9	6.1	25	17.4	5.3	21	0.3%	-0.30 [-4.76, 3.76] 0.30 [-2.87, 3.47]	
ang et al. 2013_B Subtotal (95% CI)	10.9	0.1	710	10.0	0.0		100.0%	-0.29 [-0.53, -0.05]	
leterogeneity: Tau ² = 0.00; C	hi² = 24	80 df=		= 0 78) 12	= 0%		/0	1.10 [0.00, 0.00]	1
Test for overall effect: $Z = 2.3$			51 (1	5.10), 1	070				
.1.2 Health education									
ijellesvik et al. 2020_B	35.35	8.85	34	31.76	6.85	31	44.9%	3.59 [-0.24, 7.42]	
Noore et al. 2014_B Subtotal (95% CI)	18	5	20 54	18	5	20 51	55.1% 100.0%	0.00 [-3.10, 3.10] 1.61 [-1.89, 5.11]	
leterogeneity: Tau² = 3.29; C est for overall effect: Z = 0.9			1 (P = 0	.15); I² =	51%				
									<u> </u>
									-20 -10 0 10 20

B

	Control Intervention		on		Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Aguiar et al. 2020	0.4	6.96	11	0.8	4.5	11	2.1%	-0.40 [-5.30, 4.50]	+
Deijle et al. 2022	-0.4	6.2	58	2.9	5.7	60	8.6%	-3.30 [-5.45, -1.15]	-
Gjellesvik et al. 2020	-3.59	8	31	3.05	10.9	33	2.3%	-6.64 [-11.30, -1.98]	
Globas et al. 2012	-0.8	7.8	18	5.5	5.86	18	2.5%	-6.30 [-10.81, -1.79]	
Han et al. 2017	5.68	7.41	10	1.23	6.78	10	1.3%	4.45 [-1.78, 10.68]	+
Hus et al. 2020	1.7	3.9	13	3.4	2	10	7.0%	-1.70 [-4.16, 0.76]	-
Kang et al. 2023	-1.27	3.4	10	5.24	7.1	6	1.4%	-6.51 [-12.57, -0.45]	-
Lapointe et al. 2023	-1.3	8	17	1.4	4.9	16	2.5%	-2.70 [-7.20, 1.80]	
Lapointe et al. 2023_2	-1.3	8	17	1.7	5.5	19	2.4%	-3.00 [-7.54, 1.54]	
Lee et al. 2013	0.22	6.45	8	1.83	2.95	8	2.1%	-1.61 [-6.52, 3.30]	
Lennon et al. 2008	0	1.85	23	1.4	1.97	23	18.4%	-1.40 [-2.50, -0.30]	•
MacKay-Lyons et al. 2022	-0.1	5.75	90	3.2	5.75	94	12.1%	-3.30 [-4.96, -1.64]	-
Moore et al. 2014	0	5	20	3	5	20	4.8%	-3.00 [-6.10, 0.10]	-
Potempa et al. 1995	0.1	1.01	23	2.2	1.1	19	25.3%	-2.10 [-2.74, -1.46]	•
Quaney et al. 2009	-0.28	521	19	-0.29	4.74	19	0.0%	0.01 [-234.27, 234.29]	· · · · · · · · · · · · · · · · · · ·
Reynolds et al. 2021	3	4.09	10	2.6	4.26	10	3.6%	0.40 [-3.26, 4.06]	+
Tang et al. 2013	-0.3	5.7	25	0.5	7.1	21	3.4%	-0.80 [-4.57, 2.97]	+
Total (95% CI)			403			397	100.0%	-2.27 [-3.01, -1.54]	1
Heterogeneity: Tau ² = 0.45;	Chi ² = 2	1.36, 0	df = 16	(P = 0.1	7); 2 =	= 25%		-	
Test for overall effect: Z = 6									-50 -25 Ó 25 50
	v.		,						Favours Intervention Favours Control

FIGURE 5


(A) VO₂ changes baseline to post-intervention and (B) difference in pre- and post-intervention at the control and intervention groups. SD, standard deviation; IV, inverse variance; CI, confidence interval; df, degree of freedom.

any variables, we excluded that study from the analysis. Moreover, our findings suggest that all post-rehabilitation interventions enact no potential risk on outcomes.

4 Discussion

This systematic review and meta-analysis sought to evaluate the extent to which a rehabilitation program impacts cardiac health (BP, HR, and CO), lipid profile variables (HDL and LDL), exercise capacity (VO_{2peak}), and functional capacity (6MWT) in patients after stroke. We included all RCTs that evaluated these changes among stroke survivors at any stage. Using the

meta-analysis method, we analyzed the outcome data for the mean difference at discharge from baseline from all groups and changes (baseline to post-intervention) at discharge between control and intervention groups. The results of all variables at discharge are graphically presented in Figure 6. This result provides a comprehensive conclusion on the overall exercise-based rehabilitation programs practiced for patients with stroke. Notably, our study indicated that, whereas BP, functional, and exercise capacity improved significantly following rehabilitation programs, lipid level control was insignificant but ameliorative. These findings support modifying the post-stroke rehabilitation protocol and prioritizing cardiac health as a surrogate measure of rehabilitation outcome.

BP reduction is vital to controlling stroke risk factors (26). Numerous pieces of evidence stated that >5.2 mmHg reduction of SBP can reduce the odds of having a recurrent stroke by up to 22% (77). Among combined exercise training groups, SBP and DBP reduction was significant. However, subgroup analysis showed an inconsistent effect, supporting both findings from a Cochrane review among 2,797 patients and a meta-analysis, which compared only aerobic exercise effects after rehabilitation and found an inconsistent effect on SBP and DBP (77, 78). Our analysis indicates that the underlying reason for this inconsistency could be the effect of exercise intensity. A recent RCT study emphasized that the intensity of training programs during stroke rehabilitation is pivotal to improving cardiac health and functional capacity (79). High-intensity treadmill training at a peak heart rate of 85%-95% (40) and high-intensity aerobic exercise training (brisk walking, cycling, marching) among 50 stroke patients showed significantly improved functional capacity (49). Nevertheless, growing evidence suggests that exercise intensity and exercise-induced fatigue burden patient recovery during rehabilitation (20).

HR is a precursory variable for assessing and reducing cardiovascular risk factors (80). After ischemic stroke, a higher HR at baseline correlated to higher cardiovascular risk and mortality (81). Mean HR increased to 10 beats/minute (bpm) from baseline (60 bpm), increasing the cardiovascular risk hazard ratio to approximately 0.39 (82, 83). Thirty-day mortality increases by 2.5% in ischemic stroke patients with atrial fibrillation for mean HR increases each one bpm over 80 bpm (81). HR and HRV changes occur inversely (84). Nozoe et al. illustrated that early mobilization after an ischemic stroke would cause neurological deterioration, which diverges the sympathetic nervous activity to affect HRV, identified by the fraction of low frequency and high frequency (19). In clinical practice, to identify and adjust the HRV to find the best possible training program for a stroke patient, a new training method called "the self-generate physiological coherence system" was designed based the brain-heart interaction and pressure concept, on demonstrating higher recovery and patient satisfaction (20). Our findings, backed by other studies, found that after a rehabilitation program, the resting HR of stroke patients decreased insignificantly (18, 80). These findings suggest that to develop a personalized rehabilitation program, one needs to focus on HRV and plan to decrease resting HR.

Furthermore, increased HDL reduces the risk of ischemic stroke (85). Conversely, an LDL level of <3.9 mmol/L after stroke can minimize cardiovascular risk (86). Our study is in line with previous findings that the reduction of LDL and TC and improvement of HDL are insignificant after post-stroke rehabilitation (25, 77). However, we found that after resistance exercise, HDL improvement was significant. Yang and colleagues (87) found a robust correlation between a decrease in total cholesterol/HDL ratio and an increase in VO_{2peak}, although the level of evidence was reported as low. Our meta-analysis of four RCTs on post-stroke rehabilitation reported an improvement in VO_{2peak} in comparing baseline and discharge changes between the control and intervention group in MD -2.97 ml/kg/min

(95% CI –3.01 to –1.54). This finding is similar to two other meta-analyses, 1 of 13 RCTs in MD 2.53 ml/kg/min (95% CI 1.78–3.29) and another of 12 RCTs in MD 2.27 ml/kg/min (95% CI 1.58–2.95) on cardiorespiratory fitness in stroke patients' after exercise (88, 89). Therefore, 1 ml/kg/min of VO_{2peak} improvement reduces 15% of mortality risk among coronary artery patients (90). However, mortality risk after stroke increases by elevated HR rather than the level of VO_{2peak} of patients with stroke (81). Furthermore, a Cochrane review stated that cardiorespiratory fitness training is feasible for the stroke population and improves walking capability and balance (78). Our findings also showed that stroke survivors covered significantly greater walking distances in 6MWT and BBS scores improved after rehabilitation.

Improving health-related knowledge among stroke patients can also improve their cardiac health (91). One of our included studies used an Android health application among 1,299 stroke patients to remind them about a healthy lifestyle through voice and text message services. Significant improvements in their cardiac health, such as BP and lipid profile, were found (51). A nurse-led health education study, including 268 patients, showed similar findings (47). Furthermore, In line with previous studies, specific exercisebased rehabilitation (aerobic, resistance) can sufficiently improve post-stroke blood pressure and functional or exercise capacity; yet, the improvement on some cardiac variables (HR, CO) or lipid profile variables (LDL, TC) is still inconclusive (55, 57, 64, 73). A growing number of RCT studies compared the effects of exercise-based rehabilitation with sham groups, while the intervention group exhibits a higher impact due to program design (55, 65, 72). To alleviate these, we recommend more crossover randomized control trials on our study variables among poststroke patients. However, answering the root cause of this decline is beyond our study objectives; more fundamental studies on the mechanism of NSC are recommended, as mentioned before. Thus, our study, in line with other meta-analyses, suggests that aerobic exercise has higher benefits than other exercise training and should be included as a fundamental exercise program for stroke survivors (23, 25).

Moreover, Stoller and colleagues (70) experimented with robotassisted training and illustrated that the recommended intensity is not consistently achievable among stroke patients. Increasing exercise repetition might positively impact stroke patients' exercise outcomes (92), which requires robust evidence from clinical studies. Some studies mentioned that the HRR was at a high-intensity level (70%–85%); the evidence is still disseminated to determine the optimal exercise intensity level for stroke patients (54–56, 62). Nonetheless, during follow-up, the impact of exercise was found to have a deterioration than at the discharge level (54, 62), which may hinder overall health among stroke survivors; practicing health education (40, 59, 62) and home-based (38, 48, 69) and community-based (42) exercise programs might be beneficial and improve post-stroke QoL and mortality.

Eventually, we recommend further studies in a large cohort in a randomized and cross-over control trial setting using modern technology such as a smartwatch and functional nearinfrared spectroscopy to compare exercise with different intensities and repetition with health education with long-term follow-up to find the rehabilitation effects on cardiac health. A meta-analysis is required to find different exercises that impact blood pressure changes and report the risk of fatigue, syncope, and mortality rate.

4.1 Limitation

Post-stroke rehabilitation intensely focused on the functional outcome rather than cardiac health, which led to the inclusion of fewer articles on our study topic. Our study selection criteria were not limited to treatment methods, intensity, or the stroke timeline, which generalizes our findings on rehabilitation practice. Due to data unavailability, we could not include all studies in all variables during the meta-analysis; a subgroup analysis on the time of stroke incidence and the impact of exercise was also unattainable. Considering the significance of hemodynamic changes among this population, we suggest that future research on the effect of post-stroke rehabilitation should report changes in the hemodynamic variables as reciprocal measures.

5 Conclusion

Our study revealed that current exercise-based rehabilitation programs significantly improve blood pressure and exercise capacity in patients with stroke at discharge. However, lipoprotein changes remained inconclusive. Although ameliorative changes were noted in most variables, more research is needed to determine optimum exercise intensity, type combination, and health education to reduce post-stroke complications and mortality.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author.

Author contributions

MM: Conceptualization, Data curation, Formal Analysis, Investigation, Methodology, Resources, Software, Validation,

References

1. Sposato LA, Hilz MJ, Aspberg S, Murthy SB, Bahit MC, Hsieh C-Y, et al. Poststroke cardiovascular complications and neurogenic cardiac injury. J Am Coll Cardiol. (2020) 76:2768–85. doi: 10.1016/j.jacc.2020.10.009 Visualization, Writing - original draft, Writing - review & editing. ZT: Conceptualization, Formal Analysis, Investigation, Validation, Visualization, Writing - review & editing. XL: Data curation, Formal Analysis, Software, Writing - review & editing. WS: Conceptualization, Data curation, Methodology, Software, Validation, Visualization, Writing - review & editing. KM: Data curation, Formal Analysis, Methodology, Software, Validation, Writing - review & editing. ML: Conceptualization, Formal Analysis, Methodology, Software, Writing - review & editing. MK: Conceptualization, Methodology, Validation, Visualization, Writing review & editing. YW: Conceptualization, Methodology, Resources, Software, Writing review & editing. HZ: Conceptualization, Methodology, Project administration, Resources, Supervision, Validation, Writing review & editing.

Funding

The author(s) declare that financial support was received for the research and/or publication of this article. This study was funded by the Key Project of China Rehabilitation Research Center, grant number 2023ZX-02.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fcvm.2025. 1457899/full#supplementary-material

2. Towfighi A, Cheng EM, Ayala-Rivera M, McCreath H, Sanossian N, Dutta T, et al. Randomized controlled trial of a coordinated care intervention to improve risk factor control after stroke or transient ischemic attack in the safety net:

secondary stroke prevention by uniting community and chronic care model teams early to end disparities (SUCCEED). *BMC Neurol.* (2017) 17:24. doi: 10.1186/s12883-017-0792-7

3. Roth EJ. Heart disease in patients with stroke: incidence, impact, and implications for rehabilitation part 1: classification and prevalence. *Arch Phys Med Rehabil.* (1993) 74:752–60. doi: 10.1016/0003-9993(93)90038-C

4. Schneck MJ. Chapter 143—cardiac complications and ECG abnormalities after stroke. In: Caplan LR, Biller J, Leary MC, Lo EH, Thomas AJ, Yenari M, et al. editors. *Primer on Cerebrovascular Diseases (Second Edition)*. San Diego: Academic Press (2017). p. 749–53.

5. Sjöholm A, Skarin M, Churilov L, Nilsson M, Bernhardt J, Lindén T. Sedentary behaviour and physical activity of people with stroke in rehabilitation hospitals. *Stroke Res Treat.* (2014) 2014:1–7. doi: 10.1155/2014/591897

6. Gunnoo T, Hasan N, Khan MS, Slark J, Bentley P, Sharma P. Quantifying the risk of heart disease following acute ischaemic stroke: a meta-analysis of over 50 000 participants. *BMJ Open.* (2016) 6:e009535. doi: 10.1136/bmjopen-2015-009535

7. Scheitz JF, Nolte CH, Doehner W, Hachinski V, Endres M. Stroke-heart syndrome: clinical presentation and underlying mechanisms. *Lancet Neurol.* (2018) 17:1109–20. doi: 10.1016/S1474-4422(18)30336-3

8. Gopinath R, Ayya SS. Neurogenic stress cardiomyopathy: what do we need to know. *Ann Card Anaesth.* (2018) 21:228–34. doi: 10.4103/aca.ACA_176_17

9. Chen Z, Venkat P, Seyfried D, Chopp M, Yan T, Chen J. Brain-heart interaction: cardiac complications after stroke. *Circ Res.* (2017) 121:451–68. doi: 10.1161/CIRCRESAHA.117.311170

10. Escudero-Martínez I, Morales-Caba L, Segura T. Atrial fibrillation and stroke: a review and new insights. *Trends Cardiovasc Med.* (2023) 33(1):23–9. doi: 10.1016/j. tcm.2021.12.001

11. Sposato LA, Chaturvedi S, Hsieh C-Y, Morillo CA, Kamel H. Atrial fibrillation detected after stroke and transient ischemic attack: a novel clinical concept challenging current views. *Stroke*. (2022) 53:e94–103. doi: 10.1161/STROKEAHA.121.034777

12. Efremidis M, Vlachos K, Kyriakopoulou M, Mililis P, Martin CA, Bazoukis G, et al. The RV1-V3 transition ratio: a novel electrocardiographic criterion for the differentiation of right versus left outflow tract premature ventricular complexes. *Heart Rhythm O2.* (2021) 2:521–8. doi: 10.1016/j.hroo.2021.07.009

13. Abdul-Rahim AH, Lees KR. Paroxysmal atrial fibrillation after ischemic stroke: how should we hunt for it? *Expert Rev Cardiovasc Ther*. (2013) 11:485–94. doi: 10. 1586/erc.13.21

14. Vasconcelos M, Vasconcelos L, Ribeiro V, Campos C, Di-Flora F, Abreu L, et al. Incidence and predictors of stroke in patients with rheumatic heart disease. *Heart*. (2021) 107:748–54. doi: 10.1136/heartjnl-2020-318054

15. Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, et al. Factors influencing the decline in stroke mortality: a statement from the American Heart Association/American stroke association. *Stroke*. (2014) 45:315–53. doi: 10. 1161/01.str.0000437068.30550.cf

16. Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery. *Stroke*. (2016) 47:e98–169. doi: 10.1161/STR.00000000000098

17. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and exercise recommendations for stroke survivors. *Stroke.* (2014) 45:2532–53. doi: 10.1161/STR.0000000000022

18. Scherbakov N, Barkhudaryan A, Ebner N, von Haehling S, Anker SD, Joebges M, et al. Early rehabilitation after stroke: relationship between the heart rate variability and functional outcome. *ESC Heart Fail.* (2020) 7:2983–91. doi: 10.1002/ehf2.12917

19. Nozoe M, Yamamoto M, Kobayashi M, Kanai M, Kubo H, Shimada S, et al. Heart rate variability during early mobilization in patients with acute ischemic stroke. *ENE*. (2018) 80:50-4. doi: 10.1159/000492794

20. Wang Y, Xiao G, Zeng Q, He M, Li F, Lin J, et al. Effects of focus training on heart rate variability in post-stroke fatigue patients. *J Transl Med.* (2022) 20:59. doi: 10.1186/s12967-022-03239-4

21. Boss HM, Van Schaik SM, Witkamp TD, Geerlings MI, Weinstein HC, Van den Berg-Vos RM. Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke. *Int J Stroke*. (2017) 12:724–31. doi: 10.1177/1747493017702666

22. Kelly JO, Kilbreath SL, Davis GM, Zeman B, Raymond J. Cardiorespiratory fitness and walking ability in subacute stroke patients. *Arch Phys Med Rehabil.* (2003) 84:1780-5. doi: 10.1016/S0003-9993(03)00376-9

23. Stoller O, de Bruin ED, Knols RH, Hunt KJ. Effects of cardiovascular exercise early after stroke: systematic review and meta-analysis. *BMC Neurol.* (2012) 12:45. doi: 10.1186/1471-2377-12-45

24. Ghai S, Ghai I, Lamontagne A. Virtual reality training enhances gait poststroke: a systematic review and meta-analysis. *Ann N Y Acad Sci.* (2020) 1478:18–42. doi: 10. 1111/nyas.14420

25. D'Isabella NT, Shkredova DA, Richardson JA, Tang A. Effects of exercise on cardiovascular risk factors following stroke or transient ischemic attack: a systematic review and meta-analysis. *Clin Rehabil.* (2017) 31:1561–72. doi: 10.1177/0269215517709051

26. Boulouis G, Morotti A, Goldstein JN, Charidimou A. Intensive blood pressure lowering in patients with acute intracerebral haemorrhage: clinical outcomes and haemorrhage expansion. Systematic review and meta-analysis of randomised trials. *J Neurol Neurosurg Psychiatry.* (2017) 88:339–45. doi: 10.1136/jnnp-2016-315346

27. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Br Med J.* (2021) 372:n71. doi: 10.1136/bmj.n71

28. Methley AM, Campbell S, Chew-Graham C, McNally R, Cheraghi-Sohi S. PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. *BMC Health Serv Res.* (2014) 14:579. doi: 10. 1186/s12913-014-0579-0

29. Amir-Behghadami M, Janati A. Population, intervention, comparison, outcomes and study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. *Emerg Med J.* (2020) 37:387–387. doi: 10.1136/emermed-2020-209567

30. Rosenzweig R. Center for History and New Media. Zotero [Computer software] (2016).

31. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan — a web and mobile app for systematic reviews. Syst Rev. (2016) 5:210. doi: 10.1186/s13643-016-0384-4

32. Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. *Phys Ther.* (2003) 83:713–21. doi: 10.1093/ptj/83.8.713

33. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. Rob 2: a revised tool for assessing risk of bias in randomised trials. *Br Med J.* (2019) 366: 14898. doi: 10.1136/bmj.14898

34. Wang C, Redgrave J, Shafizadeh M, Majid A, Kilner K, Ali AN. Aerobic exercise interventions reduce blood pressure in patients after stroke or transient ischaemic attack: a systematic review and meta-analysis. *Br J Sports Med.* (2019) 53:1515–25. doi: 10.1136/bjsports-2017-098903

35. Review Manager (RevMan) [Computer program]. Version 5.4. The Cochrane Collaboration. (2020).

36. Sterne JAC, Sutton AJ, Ioannidis JPA, Terrin N, Jones DR, Lau J, et al. Recommendations for examining and interpreting funnel plot asymmetry in metaanalyses of randomised controlled trials. *Br Med J.* (2011) 343:d4002–d4002. doi: 10.1136/bmj.d4002

37. Deijle IA, Hemmes R, Boss HM, De Melker EC, Van Den Berg BTJ, Kwakkel G, et al. Effect of an exercise intervention on global cognition after transient ischemic attack or minor stroke: the MovelT randomized controlled trial. *BMC Neurol.* (2022) 22:289. doi: 10.1186/s12883-022-02805-z

38. Faulkner J, Tzeng Y-C, Lambrick D, Woolley B, Allan PD, O'Donnell T, et al. A randomized controlled trial to assess the central hemodynamic response to exercise in patients with transient ischaemic attack and minor stroke. *J Hum Hypertens*. (2017) 31:172–7. doi: 10.1038/jhh.2016.72

39. Gambassi BB, Coelho-Junior HJ, Paixão dos Santos C, de Oliveira Gonçalves I, Mostarda CT, Marzetti E, et al. Dynamic resistance training improves cardiac autonomic modulation and oxidative stress parameters in chronic stroke survivors: a randomized controlled trial. *Oxid Med Cell Longevity*. (2019) 2019:1–12. doi: 10. 1155/2019/5382843

40. Gjellesvik TI, Becker F, Tjønna AE, Indredavik B, Nilsen H, Brurok B, et al. Effects of high-intensity interval training after stroke (the HIIT-stroke study): a multicenter randomized controlled trial. *Arch Phys Med Rehabil.* (2020) 101:939–47. doi: 10.1016/j.apmr.2020.02.006

41. Hsu C-C, Fu T-C, Huang S-C, Chen CP-C, Wang J-S. Increased serum brainderived neurotrophic factor with high-intensity interval training in stroke patients: a randomized controlled trial. *Ann Phys Rehabil Med.* (2021) 64:101385. doi: 10.1016/ jrehab.2020.03.010

42. Kang D, Park J, Eun S-D. The efficacy of community-based exercise programs on circulating irisin level, muscle strength, cardiorespiratory endurance, and body composition for ischemic stroke: a randomized controlled trial. *Front Neurol.* (2023) 14:1187666. doi: 10.3389/fneur.2023.1187666

43. Kim J, Jun HP, Yim J. Effects of respiratory muscle and endurance training using an individualized training device on the pulmonary function and exercise capacity in stroke patients. *Med Sci Monit.* (2014) 20:2543–9. doi: 10.12659/MSM. 891112

44. Lapointe T, Houle J, Sia YT, Payette M, Trudeau F. Addition of high-intensity interval training to a moderate intensity continuous training cardiovascular rehabilitation program after ischemic cerebrovascular disease: a randomized controlled trial. *Front Neurol.* (2023) 13:963950. doi: 10.3389/fneur.2022.963950

45. Moore SA, Hallsworth K, Jakovljevic DG, Blamire AM, He J, Ford GA, et al. Effects of community exercise therapy on metabolic, brain, physical, and cognitive function following stroke: a randomized controlled pilot trial. *Neurorehabil Neural Repair.* (2015) 29:623–35. doi: 10.1177/1545968314562116

46. Moore SA, Jakovljevic DG, Ford GA, Rochester L, Trenell MI. Exercise induces peripheral muscle but not cardiac adaptations after stroke: a randomized controlled pilot trial. *Arch Phys Med Rehabil.* (2016) 97:596–603. doi: 10.1016/j. apmr.2015.12.018

47. Olaiya MT, Cadilhac DA, Kim J, Ung D, Nelson MR, Srikanth VK, et al. Effectiveness of an intervention to improve risk factor knowledge in patients with stroke: a randomized controlled trial. *Stroke.* (2017) 48:1101–3. doi: 10.1161/STROKEAHA.116.016229

48. Sakakibara BM, Lear SA, Barr SI, Goldsmith CH, Schneeberg A, Silverberg ND, et al. Telehealth coaching to improve self-management for secondary prevention after stroke: a randomized controlled trial of stroke coach. *Int J Stroke*. (2022) 17:455–64. doi: 10.1177/17474930211017699

49. Tang A, Eng JJ, Krassioukov AV, Madden KM, Mohammadi A, Tsang MYC, et al. Exercise-induced changes in cardiovascular function after stroke: a randomized controlled trial. *Int J Stroke*. (2014) 9:883–9. doi: 10.1111/ijs.12156

50. Tollár J, Nagy F, Csutorás B, Prontvai N, Nagy Z, Török K, et al. High frequency and intensity rehabilitation in 641 subacute ischemic stroke patients. *Arch Phys Med Rehabil.* (2021) 102:9–18. doi: 10.1016/j.apmr.2020.07.012

51. Yan LL, Gong E, Gu W, Turner EL, Gallis JA, Zhou Y, et al. Effectiveness of a primary care-based integrated mobile health intervention for stroke management in rural China (SINEMA): a cluster-randomized controlled trial. *PLoS Med.* (2021) 18: e1003582. doi: 10.1371/journal.pmed.1003582

52. Acheampong IK, Moses MO, Baffour-Awuah B, Essaw E, Mensah W, Afrifa D, et al. Effectiveness of combined and conventional exercise trainings on the biochemical responses of stroke patients. *J Exerc Rehabil.* (2018) 14:473–80. doi: 10. 12965/jer.1836200.100

53. Aguiar LT, Nadeau S, Britto RR, Teixeira-Salmela LF, Martins JC, Samora GAR, et al. Effects of aerobic training on physical activity in people with stroke: a randomized controlled trial. *NRE*. (2020) 46:391–401. doi: 10.3233/NRE-193013

54. Faulkner J, Lambrick D, Woolley B, Stoner L, Wong L-K, McGonigal G. Effects of early exercise engagement on vascular risk in patients with transient ischemic attack and nondisabling stroke. *Journal of Stroke & Cerebrovascular Diseases*. (2013) 22(8): e388–96. doi: 10.1016/j.jstrokecerebrovasdis.2013.04.014

55. Globas C, Becker C, Cerny J, Lam JM, Lindemann U, Forrester LW, et al. Chronic stroke survivors benefit from high-intensity aerobic treadmill exercise: a randomized control trial. *Neurorehabil Neural Repair.* (2012) 26:85–95. doi: 10. 1177/1545968311418675

56. Han EY, Im SH. Effects of a 6-week aquatic treadmill exercise program on cardiorespiratory fitness and walking endurance in subacute stroke patients: a PILOT TRIAL. *J Cardiopulm Rehabil Prev.* (2018) 38:314–9. doi: 10.1097/HCR. 00000000000243

57. Jin H, Jiang Y, Wei Q, Chen L, Ma G. Effects of aerobic cycling training on cardiovascular fitness and heart rate recovery in patients with chronic stroke. *NRE*. (2013) 32:327–35. doi: 10.3233/NRE-130852

58. Kirk H, Kersten P, Crawford P, Keens A, Ashburn A, Conway J. The cardiac model of rehabilitation for reducing cardiovascular risk factors post transient ischaemic attack and stroke: a randomized controlled trial [with consumer summary]. *Clin Rehabil.* (2014) 28(4):339–49. doi: 10.1177/0269215513502211

59. Kono Y, Yamada S, Yamaguchi J, Hagiwara Y, Iritani N, Ishida S, et al. Secondary prevention of new vascular events with lifestyle intervention in patients with noncardioembolic mild ischemic stroke: a single-center randomized controlled trial. *Cerebrovascular Diseases*. (2013) 36(2):88–97. doi: 10.1159/000352052

60. Lee SY, Kang S-Y, Im SH, Kim BR, Kim SM, Yoon HM, et al. The effects of assisted ergometer training with a functional electrical stimulation on exercise capacity and functional ability in subacute stroke patients. *Ann Rehabil Med.* (2013) 37:619. doi: 10.5535/arm.2013.37.5.619

61. Lennon O, Carey A, Gaffney N, Stephenson J, Blake C. A pilot randomized controlled trial to evaluate the benefit of the cardiac rehabilitation paradigm for the non-acute ischaemic stroke population [with consumer summary]. *Clin Rehabil.* (2008) 22(2):125–33. doi: 10.1177/0269215507081580

62. MacKay-Lyons M, Gubitz G, Phillips S, Giacomantonio N, Firth W, Thompson K, et al. Program of rehabilitative exercise and education to avert vascular events after non-disabling stroke or transient ischemic attack (PREVENT trial): a randomized controlled trial. *Neurorehabil Neural Repair.* (2022) 36:119–30. doi: 10.1177/15459683211060345

63. Macko RF, Ivey FM, Forrester LW, Hanley D, Sorkin JD, Katzel LI, et al. Treadmill exercise rehabilitation improves ambulatory function and cardiovascular fitness in patients with chronic stroke: a randomized, controlled trial. *Stroke.* (2005) 36:2206–11. doi: 10.1161/01.STR.0000181076.91805.89

64. Potempa K, Lopez M, Braun LT, Szidon JP, Fogg L, Tincknell T. Physiological outcomes of aerobic exercise training in hemiparetic stroke patients. *Stroke.* (1995) 26(1):101–5. doi: 10.1161/01.STR.26.1.101

65. Quaney BM, Boyd LA, McDowd JM, Zahner LH, Jianghua He, Mayo MS, et al. Aerobic exercise improves cognition and motor function poststroke. *Neurorehabil Neural Repair*. (2009) 23:879–85. doi: 10.1177/1545968309338193

66. Reynolds H, Steinfort S, Tillyard J, Ellis S, Hayes A, Hanson ED, et al. Feasibility and adherence to moderate intensity cardiovascular fitness training following stroke: a pilot randomized controlled trial. *BMC Neurol.* (2021) 21:132. doi: 10.1186/s12883-021-02052-8

67. Ribeiro TS, Chaves Da Silva TC, Carlos R, De Souza E Silva EMG, Lacerda MO, Spaniol AP, et al. Is there influence of the load addition during treadmill training on

cardiovascular parameters and gait performance in patients with stroke? A randomized clinical trial. NRE. (2017) 40:345–54. doi: 10.3233/NRE-161422

68. Sandberg K, Kleist M, Enthoven P, Wijkman M. Hemodynamic responses to inbed cycle exercise in the acute phase after moderate to severe stroke: a randomized controlled trial. *J Clin Hypertens*. (2021) 23:1077–84. doi: 10.1111/jch.14232

69. Steen Krawcyk R, Vinther A, Petersen NC, Faber J, Iversen HK, Christensen T, et al. Effect of home-based high-intensity interval training in patients with lacunar stroke: a randomized controlled trial. *Front Neurol.* (2019) 10:664. doi: 10.3389/ fneur.2019.00664

70. Stoller O, De Bruin ED, Schindelholz M, Schuster-Amft C, De Bie RA, Hunt KJ. Efficacy of feedback-controlled robotics-assisted treadmill exercise to improve cardiovascular fitness early after stroke: a randomized controlled pilot trial. *J Neurol Phys Ther.* (2015) 39:156–65. doi: 10.1097/NPT.00000000000095

71. Sutbeyaz ST, Koseoglu F, Inan L, Coskun O. Respiratory muscle training improves cardiopulmonary function and exercise tolerance in subjects with subacute stroke: a randomized controlled trial. *Clin Rehabil.* (2010) 24:240–50. doi: 10.1177/ 0269215509358932

72. Wijkman MO, Sandberg K, Kleist M, Falk L, Enthoven P. The exaggerated blood pressure response to exercise in the sub-acute phase after stroke is not affected by aerobic exercise. *J Clin Hypertens.* (2018) 20:56–64. doi: 10.1111/jch.13157

73. Zou J, Wang Z, Qu Q, Wang L. Resistance training improves hyperglycemia and dyslipidemia, highly prevalent among nonelderly, nondiabetic, chronically disabled stroke patients. *Arch Phys Med Rehabil.* (2015) 96:1291–6. doi: 10.1016/j.apmr.2015. 03.008

74. Levy T, Laver K, Killington M, Lannin N, Crotty M. A systematic review of measures of adherence to physical exercise recommendations in people with stroke. *Clin Rehabil.* (2019) 33:535–45. doi: 10.1177/0269215518811903

75. Song F, Hooper L, Loke YK. Publication bias: what is it? How do we measure it? How do we avoid it? *OAJCT*. (2013) 71:71–81. doi: 10.2147/OAJCT.S34419

76. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M. *Cochrane Handbook for Systematic Reviews of Interventions Version 6.3.* Cochrane Handbook for Systematic Reviews of Interventions (2022). Available online at: www.training. cochrane.org/handbook

77. Brouwer R, Wondergem R, Otten C, Pisters MF. Effect of aerobic training on vascular and metabolic risk factors for recurrent stroke: a meta-analysis. *Disabil Rehabil.* (2021) 43:2084–91. doi: 10.1080/09638288.2019.1692251

78. Saunders DH, Sanderson M, Hayes S, Kilrane M, Greig CA, Brazzelli M, et al. Physical fitness training for stroke patients. *Cochrane Database Syst Rev.* (2016) 3: CD003316. doi: 10.1002/14651858.CD003316.pub6

79. Rodrigues L, Moncion K, Eng JJ, Noguchi KS, Wiley E, de Las Heras B, et al. Intensity matters: protocol for a randomized controlled trial exercise intervention for individuals with chronic stroke. *Trials.* (2022) 23:442. doi: 10.1186/s13063-022-06359-w

80. Tang S, Xiong L, Fan Y, Mok VCT, Wong KS, Leung TW. Stroke outcome prediction by blood pressure variability, heart rate variability, and baroreflex sensitivity. *Stroke*. (2020) 51:1317–20. doi: 10.1161/STROKEAHA.119.027981

81. Yao S, Chen X, Liu J, Chen X, Zhou Y. Effect of mean heart rate on 30-day mortality in ischemic stroke with atrial fibrillation: data from the MIMIC-IV database. *Front Neurol.* (2022) 13:1017849. doi: 10.3389/fneur.2022.1017849

82. Aboyans V, Criqui MH. Can we improve cardiovascular risk prediction beyond risk equations in the physician's Office? *J Clin Epidemiol.* (2006) 59:547–58. doi: 10. 1016/j.jclinepi.2005.11.002

83. Lee J-D, Kuo Y-W, Lee C-P, Huang Y-C, Lee M, Lee T-H. Initial inhospital heart rate is associated with long-term survival in patients with acute ischemic stroke. *Clin Res Cardiol.* (2022) 111:651–62. doi: 10.1007/s00392-021-01953-5

84. Kazmi SZH, Zhang H, Aziz W, Monfredi O, Abbas SA, Shah SA, et al. Inverse correlation between heart rate variability and heart rate demonstrated by linear and nonlinear analysis. *PLoS One.* (2016) 11:e0157557. doi: 10.1371/journal. pone.0157557

85. Sacco RL, Benson RT, Kargman DE, Boden-Albala B, Tuck C, Lin I-F, et al. High-Density lipoprotein cholesterol and ischemic stroke in the ElderlyThe northern Manhattan stroke study. *JAMA*. (2001) 285:2729–35. doi: 10.1001/jama. 285.21.2729

86. Amarenco P, Kim JS, Labreuche J, Charles H, Abtan J, Béjot Y, et al. A comparison of two LDL cholesterol targets after ischemic stroke. *N Engl J Med.* (2020) 382:9–19. doi: 10.1056/NEJM0a1910355

 Yang A-L, Lee S-D, Su C-T, Wang J-L, Lin K-L. Effects of exercise intervention on patients with stroke with prior coronary artery disease: aerobic capacity, functional ability, and lipid profile: a pilot study. J Rehabil Med. (2007) 39:88–90. doi: 10.2340/ 16501977-0021

88. Marsden DL, Dunn A, Callister R, Levi CR, Spratt NJ. Characteristics of exercise training interventions to improve cardiorespiratory fitness after stroke: a systematic review with meta-analysis. *Neurorehabil Neural Repair.* (2013) 27:775–88. doi: 10. 1177/1545968313496329

89. Luo L, Meng H, Wang Z, Zhu S, Yuan S, Wang Y, et al. Effect of high-intensity exercise on cardiorespiratory fitness in stroke survivors: a systematic review and meta-analysis. *Ann Phys Rehabil Med.* (2020) 63:59–68. doi: 10.1016/j.rehab.2019. 07.006

90. Keteyian SJ, Brawner CA, Savage PD, Ehrman JK, Schairer J, Divine G, et al. Peak aerobic capacity predicts prognosis in patients with coronary heart disease. *Am Heart J.* (2008) 156:292–300. doi: 10.1016/j.ahj.2008.03.017 91. Sanders K, Schnepel L, Smotherman C, Livingood W, Dodani S, Antonios N, et al. Assessing the impact of health literacy on education retention of stroke patients. *Prev Chronic Dis.* (2014) 11:E55. doi: 10.5888/pcd11.130259

92. Plotkin D, Coleman M, Van Every D, Maldonado J, Oberlin D, Israetel M, et al. Progressive overload without progressing load? The effects of load or repetition progression on muscular adaptations. *PeerJ.* (2022) 10:e14142. doi: 10.7717/peerj. 14142