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Analysis and validation of
biomarkers and immune cell
infiltration profiles in unstable
coronary atherosclerotic plaques
using bioinformatics and
machine learning
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Yongguo Li1,2,3 and Renkuan Tang1,2,3*
1Department of Forensic Medicine, Faculty of Basic Medical Science, Chongqing Medical University,
Chongqing, China, 2Chongqing Engineering Research Center for Criminal Investigation Technology,
Chongqing, China, 3Chongqing Key Laboratory of Forensic Medicine, Chongqing, China, 4Department
of Anatomy, Faculty of Basic Medical Sciences, Sichuan College of Traditional Chinese Medicine,
Mianyang, China
Introduction: Decreased stability of coronary atherosclerotic plaques correlates
with a heightened risk of acute coronary syndrome (ACS). Thus, early diagnosis
and treatment of unstable plaques are imperative in averting adverse
cardiovascular events. This study aims to identify diagnostic biomarkers for
unstable coronary atherosclerotic plaques and investigate the role of immune
cell infiltration in their formation.
Methods: The datasets GSE163154 and GSE111782, obtained from the gene
expression omnibus (GEO) database, were amalgamated for bioinformatics
analysis, using the dataset GSE43292 as a test set. Sequentially, we performed
principal component analysis (PCA), differential gene expression analysis,
enrichment analysis, weighted gene co-expression network analysis (WGCNA),
utilized a machine learning algorithm to screen key genes, conducted receiver
operating characteristic (ROC) curve analysis and nomogram model to assess
biomarker diagnostic efficacy, validated the biomarkers, and analyzed immune
cell infiltration.
Results: In conclusion, enrichment analyses demonstrate that genes are
significantly enriched in inflammatory and immune-related pathways. We
identified HSPA2 and GEM as key genes and validated them experimentally.
Significant differences existed in immune cell infiltration between subgroups.
Additionally, HSPA2 and GEM showed significant associations with a wide
range of immune cells.
Discussion: HSPA2 and GEM can function as diagnostic biomarkers for unstable
coronary atherosclerotic plaques. In combination with immune cell infiltration
analyses, our study provides new insights into the future study of unstable
plaque occurrence and molecular mechanisms.

KEYWORDS

coronary atherosclerosis, unstable plaque, weighted gene co-expression network
analysis, machine learning, biomarkers, immune cell infiltration
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fcvm.2025.1451255&domain=pdf&date_stamp=2020-03-12
mailto:100456@cqmu.edu.cn
https://doi.org/10.3389/fcvm.2025.1451255
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1451255/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1451255/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1451255/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1451255/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1451255/full
https://www.frontiersin.org/articles/10.3389/fcvm.2025.1451255/full
https://www.frontiersin.org/journals/cardiovascular-medicine
https://doi.org/10.3389/fcvm.2025.1451255
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Jin et al. 10.3389/fcvm.2025.1451255
1 Introduction

According to the Global Disease and Burden Study,

cardiovascular disease remains the leading cause of death

worldwide, with approximately 50% of fatalities attributed to

ischemic heart disease (1, 2). Each year, approximately 7 million

individuals worldwide are diagnosed with acute coronary

syndrome (ACS), and over one-third of fatalities in developed

nations are linked to this condition (3). Luminal thrombosis

resulting from coronary atherosclerotic plaque rupture or plaque

surface erosion constitutes the primary cause of ACS episodes.

Furthermore, nearly 70% of fatal acute myocardial infarctions

and sudden coronary deaths stem from coronary plaque rupture

(4). Coronary atherosclerosis, a chronic inflammatory disease,

often remains asymptomatic for decades. However, due to plaque

lipid deposition, inflammatory cell infiltration, expression of

inflammatory cytokines, and impaired clearance of apoptotic

cells, it ultimately leads to decreased plaque stability and

precipitates adverse cardiovascular events (5). Typical

pathological features of unstable plaques include a thin fibrous

cap (less than 60 µm), a large necrotic lipid core, inflammatory

cell infiltration (particularly at the shoulder of the plaque fibrous

cap and at the junction with the surrounding endothelium), and

spotty calcification (6–8). Early identification of unstable plaques

and prevention of coronary plaque rupture or adverse

cardiovascular events are clinically significant because unstable

plaques are more prone to causing luminal thrombosis and

elevating the risk of ACS.

Previous clinical and experimental evidence suggests that innate

and adaptive immune responses play an important role in

atherosclerotic plaque progression and plaque instability.

Atherosclerosis arises from endothelial cell dysfunction in the

lumen at sites of laminar flow shear stress disturbance. As low-

density lipoprotein (LDL) enters the subendothelium, where it

undergoes oxidation or other chemical modifications, it activates

vascular endothelial cells and smooth muscle cells. The release of

large amounts of chemokines and adhesion molecules triggers a

cascading response of immune cell aggregation (9). Monocyte-

derived macrophages initiate subendothelial lipoprotein uptake and

transformation into foam cells (10). Uptake of oxidized LDL

activates the expression of cytokines such as the NACHT, LRR, and

PYD domains-containing protein 3 (NLRP3) inflammasome and

Interleukin (IL)-1β in macrophages, further promoting the

recruitment of inflammatory cells and inflammatory response in

plaques (11). Excessive lipid uptake leads to massive foam cell

apoptosis accompanied by impaired macrophage clearance of dead

cells resulting in the formation of lipid necrotic cores and the

release of large amounts of pro-inflammatory cytokines and matrix

metalloproteinases (MMPs), further increasing plaque instability

(10, 12, 13). Adaptive immunity plays a pivotal role in either

promoting or mitigating atherosclerosis progression. Previous

studies have demonstrated that antigen-presenting cells (APCs),

predominantly macrophages and dendritic cells, present antigens

such as LDL containing apolipoprotein B (ApoB) to adaptive

immune cells. This process stimulates their differentiation into

various subtypes and elicits pro- or anti-inflammatory effects (14).
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T helper 1 (Th1) cells secrete pro-inflammatory cytokines, such as

interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α), which

exacerbate the inflammatory response within plaques and promote

the expression of MMPs, thereby reducing plaque stability.

Conversely, T Regulatory (Treg) cells inhibit plaque inflammation

and immune cell activation by expressing anti-inflammatory

cytokines such as IL-10 and transforming growth factor-β (TGF-β).

Additionally, they promote mesenchymal collagen synthesis to

maintain plaque stability (15). Different subtypes of B cells express

various antibodies against atherogenic antigens, thereby influencing

either anti-atherogenic or pro-atherogenic mechanisms (14).

Weighted gene co-expression network analysis (WGCNA) is a

systems bioinformatics algorithm utilized for analyzing large, high-

dimensional datasets. It enables the integration of genes with highly

correlated expression patterns into gene modules, wherein genes

sharing the same module exhibit similar biological functions and

regulatory roles. Correlations between modules and disease

phenotypes are computed to identify potential biomarkers or

therapeutic targets (16). WGCNA has proven successful in

identifying key genes associated with atherosclerotic plaque rupture

(17). Machine learning is frequently employed in biological research

to handle large, complex datasets, constructing predictive models

based on underlying algorithms and provided datasets (18). In

contrast to prior research (19), our study integrated multiple high-

throughput sequencing datasets pertaining to plaque stability for

comprehensive analysis. We employed WGCNA in conjunction

with various machine learning algorithms to enhance the efficiency

and accuracy of biomarker identification, relying on the analysis of

differentially expressed genes (DEGs). Additionally, we validated

these findings in a test cohort and human tissue samples.

Additionally, we delineate the immune cell infiltration associated

with plaque stability and investigate the correlation between

biomarkers and immune cell infiltration. These findings may

contribute to elucidating the pathogenesis of unstable plaques and

identifying potential diagnostic biomarkers and therapeutic targets.
2 Materials and methods

2.1 Data download and pre-processing

Data sets were obtained from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) by applying

filters for “plaque stability,” “atherosclerosis,” “Homo sapiens,”

and “microarray-based expression profiling.” Three datasets,

namely GSE111782, GSE163154, and GSE43292, were acquired:

GSE111782 comprised 9 unstable plaque samples and 9 stable

plaque samples, GSE163154 comprised 27 unstable plaque

samples and 16 stable plaque samples, and GSE43292 comprised

32 unstable plaque samples and 32 stable plaque samples. The

datasets GSE111782, GSE163154, and GSE43292 were retrieved

using the R package GEOquery. Gene name conversions were

performed based on the platform annotation information

corresponding to each dataset. We merged datasets GSE111782

and GSE163154 to form the training set. Batch effects between

different datasets were mitigated using the “combat” function in
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the R package sva to minimize their impact on the analysis results.

Subsequently, GSE43292 was designated as the test set.
2.2 Pathological sample collection and
plaque stability assessment

Coronary artery tissue samples collected from autopsy cases at

the Department of Forensic Medicine, College of Basic Medical

Sciences, Chongqing Medical University (Chongqing Forensic

Injury Institute) between 2012 and 2022 were chosen following

the guidelines outlined in the Declaration of Helsinki and the

regulations on autopsy provided by the Ministry of Health of the

People’s Republic of China. Informed consent was acquired from

either the donor or the next of kin of the deceased and was

sanctioned by the Ethics Review Committee of Chongqing

Medical University (approval number: 2024024). Sampling was

conducted within 48 h of death in all autopsy cases. Coronary

artery tissue samples were preserved in 4% paraformaldehyde

solution for 72 h. Vessel cross-sections were embedded in

paraffin, and 5-µm sections were subsequently prepared and

stained with hematoxylin-eosin. Both naked eye examination and

histological analysis revealed the presence of atherosclerosis in

the coronary arteries. The histological stability of coronary

atherosclerotic plaques was evaluated using the American Heart

Association (AHA) atherosclerotic plaque stability scoring system

(20–22). This scoring system furnishes a comprehensive score

derived from parameters including plaque hemorrhage,

thrombosis, lipid core size, fibrous tissue percentage,

inflammatory cell infiltration, foam cell count, and plaque

rupture to evaluate plaque stability.
2.3 Identification and enrichment of DEGs

DEGs in the unstable plaque group compared to the stable

plaque group were analyzed in the merged dataset using the

R package limma. The thresholds for DEGs were set at |log2 fold

change (FC) >1 and p-value < 0.05. Volcano maps and heat maps

were plotted using the R package ggplot2 and R package

heatmap. Kyoto Encyclopedia of Genes and Genomes (KEGG)

and Gene Ontology (GO) enrichment analyses of DEGs were

performed using the R package clusterProfiler. The GO

enrichment analyses consisted of three parts: Biological process

(BP), cellular component (CC), and molecular function (MF).

Multiple test correction for p-values was performed using

Benjamini-Hochberg. p-value < 0.05 and q-value < 0.05 were

considered as significant enrichment.
2.4 Construction of weighted gene co-
expression network

The median absolute deviation (MAD) of genes was initially

computed from gene expression profiles, and a weighted gene co-

expression network was subsequently established for genes within
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the top 50% of MAD employing the R package WGCNA.

Expression profiles were examined for missing values, and

sample clustering trees were constructed to identify significant

outlier samples. Subsequently, the “pickSoftThreshold” function

was utilized to determine the optimal soft threshold value,

ensuring coherence between gene connections in the co-

expression network and the scale-free network distribution.

A neighbor-joining matrix was created using the optimal soft

threshold β, followed by transformation into a topological

overlap matrix (TOM). Hierarchical clustering was conducted to

group genes with analogous expression patterns into cohesive

modules, with a minimum module size established at 30. Module

eigengene was computed for each module, and modules

exhibiting similarity in the clustering tree were merged according

to inter-module correlation. Modules were correlated with

phenotypic data, and gene-to-module module membership (MM)

and gene significance (GS) between genes and phenotypes within

the modules were determined. Module key genes were identified

using thresholds of GS >0.2 and MM >0.8, which were

subsequently employed for further analyses.
2.5 Screening and validation of potential
diagnostic biomarkers

By intersecting DEGs with the key module genes derived from

WGCNA, 310 genes were identified. Subsequently, two machine

learning algorithms were employed to identify characteristic

genes. The least absolute shrinkage and selection operator

(LASSO) regression model was constructed utilizing the

R package glmnet, with the parameter “alpha = 1” configured to

introduce a penalty term. As the regularization parameter

lambda increases, the regression coefficients of the model

variables gradually approach 0. Ten-fold cross-validation was

employed to select lambda.min as the optimal value of lambda,

yielding ten feature genes corresponding to lambda.min. Random

forest (RF) analysis was conducted utilizing the R package

randomForest, with the parameter “ntree = 1,000” determined

based on the number of decision trees corresponding to the

minimum model error. The top 20 feature genes were selected

based on the Mean Decrease Accuracy (MDA) of the model, a

method used for gene importance ranking. Heat shock-related

70 kDa protein 2 (HSPA2) and GTP binding protein

overexpressed in skeletal muscle (GEM) were identified by

intersecting the results of the two machine learning algorithms

described above. The Wilcoxon rank sum test was employed to

evaluate the statistical significance of differences in biomarker

expression between unstable and stable plaques in both training

and test sets. The R package pROC was utilized to generate a

receiver operating characteristic (ROC) curve, and the area under

the curve (AUC) was computed to evaluate the diagnostic

efficacy of the biomarkers for unstable plaques in both the

training and test cohorts. Using the “rms” and “rmda” package,

we constructed a nomogram of the marker genes GEM and

HSPA2 based on multifactorial regression analysis, and plotted

clinical decision curve analysis (DCA) and calibration curve.
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2.6 Immune cell infiltration analysis and its
correlation with diagnostic biomarkers

Utilizing the R package IOBR (23) for gene expression

profiling, we employed the cell-type identification by estimating

relative subsets of RNA transcripts (CIBERSORT) algorithm to

evaluate the 22 levels of immune cell infiltration within

atherosclerotic plaques. We computed Spearman correlations

between immune cells and diagnostic biomarkers. Visualization

of the correlation results was conducted employing the

R package ggplot2.
2.7 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) was conducted utilizing

both the R package clusterProfiler and R package enrichplot to

investigate signaling pathways associated with unstable plaques.

The gene set “c2.cp.kegg.v7.4.symbols.gmt” from the Molecular

Signatures Database (MsigDB) served as the background gene

set. Enrichment results with a p-value < 0.05 and q-value < 0.05

were deemed statistically significant.
2.8 Immunohistochemical staining

The expression of target proteins in coronary atherosclerotic

plaque tissues was assessed via immunohistochemical staining.

Sections measuring 5 μm were sliced from paraffin-embedded

coronary artery tissues. Deparaffinization of xylene was followed by

hydration with an ethanol concentration gradient. Microwave

heating was employed to facilitate antigen retrieval. Endogenous

peroxidase activity was inhibited using a 3% hydrogen peroxide

solution. Samples were blocked with a 5% goat serum solution.

Sections were then incubated overnight at 4°C with anti-HSPA2

anti-body (1:200, Proteintech, USA) and anti-GEM antibody (1:200,

GeneTex, USA), applied dropwise. The next day, sections were

washed with phosphate-buffered saline (PBS) and subsequently

incubated with horseradish peroxidase (HRP)-labeled goat anti-rabbit

secondary antibody, applied dropwise, for 30 min at 37°C. Color

development was achieved using diaminobenzidine (DAB), followed

by counterstaining with hematoxylin. Following dehydration with

xylene and ethanol gradient, the slides were sealed with neutral gum.

Positive expression of the target protein was visualized as brown

staining under the microscope. Three fields of view were chosen,

and photographs were captured at a magnification of 200×. ImageJ

software was utilized to quantify the average optical density (AOD)

of the positive signals (positive expression optical density value

divided by the total measured area). The results were averaged from

three measurements conducted in triplicate.
2.9 Statistical analysis

Data processing and statistical analyses were primarily

conducted using R (version 4.3.1) and GraphPad Prism (version
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9.0.0). Expression differences among subgroups were evaluated

using the Wilcoxon test. Correlation analyses were conducted

using the Spearman correlation test. Immunohistochemical

measurements were presented as mean ± standard deviation

(mean ± SD) and assessed for normal distribution and variance

homogeneity. Unpaired t-tests were conducted for data with

normal distribution and homogenous variance.
3 Results

3.1 Screening of DEGs between unstable
and stable plaques

The analysis workflow in this study is depicted in Figure 1. We

examined the disparities in gene expression between the unstable

plaque group and the stable plaque group. Principal component

analysis (PCA) of the normalized gene expression matrix

(Figure 2A) revealed significant disparities between the unstable

and stable plaque groups. This led to the identification of 384

significantly DEGs associated with unstable plaques under the

screening criteria of p-value < 0.05. Among these were 273 genes

exhibiting down-regulated expression and 111 genes

demonstrating up-regulated expression (Figures 2B,C).
3.2 Functional enrichment analysis of DEGs

In order to comprehensively understand the biological

functions and distribution of DEGs among different subgroups,

we conducted GO and KEGG enrichment analyses of the DEGs.

The GO enrichment analyses revealed that the DEGs were

predominantly enriched in processes such as positive regulation

of cell adhesion, leukocyte migration, regulation of angiogenesis,

positive regulation of cytokine production, leukocyte-mediated

immunity, activation of the immune response, collagen-

containing extracellular matrix, and extracellular matrix

structural constituent (Figure 3A). Furthermore, the KEGG

enrichment analysis indicated that the DEGs were enriched in

pathways related to leukocyte transendothelial migration and

hematopoietic cell lineage (Figure 3B). These enrichment results

suggest that the diminished stability of atherosclerotic plaques

may be closely associated with immune cell migration and

activation, extracellular matrix production, lipid metabolism, and

neovascularization within plaques.
3.3 The results of GSEA

In order to explore potential pathways associated with unstable

plaques during the progression of coronary atherosclerotic plaques,

we utilized the background gene set provided by the MsigDB

database for GSEA. Pathways with |normalized enrichment score

(NES)∣>1, a p-value < 0.05, and a q-value < 0.05 were generally

considered as significantly enriched. The findings indicated that

KEGG signaling pathways significantly enriched in unstable
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FIGURE 1

Flow chart.
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plaques compared to stable plaques primarily consisted of

inflammatory and immune-related pathways, including the toll-

like receptor signaling pathway, B cell receptor signaling

pathway, antigen processing and presentation, cytokine-cytokine

receptor interaction, chemokine signaling pathway, and T cell

receptor signaling pathway (Figure 3C). These results suggest that

immune and inflammatory signaling pathways are associated

with unstable atherosclerotic plaques.
3.4 Construction of weighted gene
co-expression network and identification of
key modules

Genes in the top 50% of MAD from the merged dataset were

selected to construct a weighted gene co-expression network. All

samples were clustered and observed without significant outlier
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samples. The optimal soft threshold β = 20 (scale-free R2 = 0.85,

mean connectivity = 2.41) was chosen to construct the scale-free

topological network (Figure 4A). After clustering genes with

similar expression patterns, modules were identified using the

dynamic tree-cutting algorithm, and related modules were

merged to obtain a total of 10 modules (Figure 4B). A heat map

illustrating module-trait correlations revealed significant

associations between the black module (cor =−0.69, p = 9e-10)

and the pink module (cor = 0.51, p = 2e-05) with unstable

plaques (Figure 4C). Furthermore, scatter plots depicted a strong

correlation between genes MM and GS in the black module

(cor = 0.78, p < 1e-200) (Figure 4D) and an equally strong

correlation between genes MM and GS in the pink module

(cor = 0.47, p = 1.3e-76) (Figure 4E). Based on the screening

criteria of MM >0.8 and GS >0.2, a total of 739 key module

genes were identified in the black module, and 563 in the

pink module.
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FIGURE 2

PCA and DEGs identification between unstable and stable plaque subgroups: (A) PCA plot of the merged dataset; (B) volcano plot of DEGs between
unstable and stable plaque subgroups. Blue dots represent DEGs with down-regulated expression and red dots represent DEGs with up-regulated
expression; (C) heatmap of relative expression levels of some DEGs.
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3.5 Screening for diagnostic markers using
machine learning algorithms

A total of 310 overlapping genes were identified through the

use of a Venn diagram to determine the intersection between

DEGs and key module genes (Figure 4F). Subsequently, two

machine learning algorithms, LASSO regression analysis and

RF, were employed to identify diagnostic biomarkers associated

with unstable plaques. In LASSO regression analysis, an L1

penalty term λ was introduced, resulting in model regression

coefficients gradually converging to 0 as the value of λ

increased (Figure 5A). Ten feature genes were selected based on

ten-fold cross-validation, determined by selecting the lambda

value corresponding to the minimum average cross-validation

error (Figure 5B). The RF algorithm first determines the

number of decision trees for constructing the model based on

the error rate (Figure 5C). Then, the top 20 genes are selected

in order of importance assessed by the MDA index as the

feature genes (Figure 5D). The intersection of the feature genes

identified by the two aforementioned machine learning

algorithms led to the identification of HSPA2 and GEM as key

genes (Figure 5E).
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3.6 Assessment of diagnostic efficacy of
diagnostic biomarkers

An independent dataset, GSE43292, comprising 32 stable plaque

samples and 32 unstable plaque samples, was utilized as the test set.

The Wilcoxon rank-sum test results indicated significantly higher

expression levels of HSPA2 and GEM in the stable plaque group

compared to the unstable plaque group in the training cohort

(p < 0.001). We constructed nomogram for the diagnosis of unstable

plaques, which demonstrates the effect of each predictor variable on

the probability of unstable plaque formation. Based on the results of

the DCA, the nomogram model demonstrated a substantial net

benefit across most threshold probabilities, indicating the model’s

substantial value in clinical decision-making (Figures 6A,B).

Additionally, the calibration curve shows that the model has good

predictive accuracy (Figure 6C). The differences in expression levels

between the HSPA2 and GEM groups were corroborated in the

test cohort, aligning with the findings of the training cohort

(Figures 7A,B). Subsequently, we evaluated the diagnostic efficacy of

HSPA2 and GEM for unstable plaques by constructing ROC curves

and measuring the AUC. Within the training cohort, HSPA2

(AUC= 0.934) and GEM (AUC= 0.913) exhibited promising
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FIGURE 3

Functional enrichment analysis: (A) some representative enrichment results in GO enrichment analysis of DEGs; (B) KEGG enrichment analysis results
of DEGs; (C) some representative significant enrichment pathways of GSEA-KEGG.
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diagnostic efficacy for unstable plaques. Similarly, in the test cohort,

HSPA2 (AUC= 0.828) and GEM (AUC= 0.788) demonstrated

favorable diagnostic efficacy for unstable plaques (Figure 7C).

To bolster the validation of the diagnostic efficacy of the

identified biomarkers for unstable plaques, we assessed the

stability of acquired human coronary atherosclerotic plaques

utilizing the AHA Atherosclerotic Plaque Stability Scoring

System (Supplementary Table 1). Immunohistochemical staining

was conducted, followed by the measurement of mean optical

density values of positive protein expression using ImageJ

software. The results revealed a concordance with the

bioinformatics analysis, indicating elevated expression levels of

HSPA2 and GEM in stable plaques and their downregulation in

unstable plaques (Figures 8A,B). Additionally, the disparity

between the two groups was statistically significant (Figure 8C).
3.7 Analysis of immune cell infiltration and
its correlation with diagnostic biomarkers

To investigate disparities in immune cell infiltration between

stable and unstable plaque groups, we conducted immune cell

infiltration analysis utilizing the CIBERSORT algorithm. The

results of the CIBERSORT analysis revealed 22 immune cell

sub-populations in 61 samples. Among these, Naïve B cells,

gamma delta T cells (γδ T cells), Tregs, M0 macrophages,

M2 macrophages, and resting mast cells predominated in

atherosclerotic plaques (Figure 9A). The proportion of M0

macrophage infiltration was significantly higher in unstable
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plaques compared to stable plaques (p < 0.05). Conversely, the

proportions of resting CD4 +memory T cells, activated dendritic

cells, and neutrophils were relatively elevated in stable plaques

(p < 0.05) (Figure 9C). Additionally, correlation analysis between

diagnostic biomarkers and immune cells revealed significant

positive correlations of CD8+ T cells, naïve CD4+ T cells, plasma

cells, activated natural killer cells, and naïve B cells with both

GEM and HSPA2, whereas M0 macrophages exhibited significant

negative correlations with both GEM and HSPA2 (Figure 9B).

These findings suggest a potential role of immune cell infiltration

in the formation of unstable plaques.
4 Discussion

Presently, due to the widespread adoption of the concept of

healthy living and the availability of numerous clinical treatments,

the risk of cardiac mortality and myocardial infarction among

patients with coronary artery disease has decreased. However, a

subset of patients with coronary atherosclerosis experiences a

decline in plaque stability, leading to the progression of ACS. For

instance, among patients with diabetes and those presenting initially

with ACS, the incidence of cardiac death and myocardial infarction

remains elevated despite optimal pharmacological treatment and

successful revascularization of the stenotic vessel (24). Coronary

atherosclerosis constitutes a group of chronic inflammatory diseases,

where alterations in plaque necrotic core size and fibrous cap

thickness, influenced by immune cell infiltration and cytokine

expression within plaques, impact plaque stability (9, 25–27).
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FIGURE 4

Weighted gene co-expression network construction and identification of key modules: (A) analysis of changes in scale-free topological fit index (left)
and average connectivity (right) for different soft thresholds (β); (B) gene hierarchy clustering dendrogram. Different colours represent different co-
expression modules; (C) heatmap of module eigengene correlation with traits. The black module and the pink module were significantly correlated
with traits; (D) scatterplot of correlation between MM and GS of genes in the black module; (E) scatterplot of correlation between MM and GS for
genes in the pink module; (F) Venn plots showing the intersection of key module genes with DEGs obtained from WGCNA analysis.
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Hence, to enhance the prognosis of cardiovascular disease, it is

imperative to identify specific diagnostic biomarkers of unstable

coronary atherosclerotic plaques and explore the pattern of immune

cell infiltration associated with unstable plaques.

Utilizing data from public databases, the study identified 384

significant DEGs between unstable and stable plaque subgroups,
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comprising 273 down-regulated genes and 111 up-regulated genes.

Subsequent GO enrichment analysis unveiled that the DEGs were

primarily associated with processes such as leukocyte migration,

regulation of angiogenesis, leukocyte-mediated immunity, and

activation of the immune response. These processes suggest the

dynamic involvement of immune and inflammatory responses in
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FIGURE 5

Screening of diagnostic markers using machine learning algorithms: (A) regression coefficient curves of genes in LASSO regression analysis;
(B) selection of optimal tuning parameter (λ) based on ten-fold cross-validation of binomial deviance; (C) analysis of model error rate of RF
algorithm in relation to the number of decision trees; (D) RF model average accuracy reduction ranking top 20 feature genes; (E) Venn diagram
showing the intersection of the screening results of two machine learning algorithms.
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FIGURE 6

Development of a nomogram model for predicting the probability of unstable plaque formation: (A) prediction of unstable plaque occurrence using
the nomogram; (B) clinical decision curve analysis for evaluating the potential benefits of predictive modeling in clinical practice; (C) calibration curve
is utilized to evaluate the alignment between the predicted probabilities of a model and the actual observations.
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the development and destabilization of atherosclerotic plaques. The

migration of leukocytes, for instance, is a hallmark of inflammatory

responses, which contribute to plaque instability by enhancing the

recruitment of immune cells to the plaque site. KEGG enrichment

analysis unveiled that the DEGs were enriched in inflammatory

and immune-related pathways, including pathways related to

Staphylococcus aureus infection, leukocyte transendothelial

migration, and hematopoietic cell lineage. These pathways

highlight the central role of immune dysregulation in plaque

instability. In particular, leukocyte transendothelial migration is a

critical step in the accumulation of immune cells within the

plaque, where they can exacerbate local inflammation and

contribute to the formation of a necrotic core—a feature

associated with vulnerable plaques. Furthermore, the involvement

of hematopoietic cell lineage pathways suggests that bone marrow-

derived cells may contribute to plaque destabilization through

their differentiation into pro-inflammatory subsets that further

promote plaque progression. Building upon these findings, GSEA

was conducted, revealing significant enrichment of pathways such

as the B cell receptor signaling pathway, antigen processing and
Frontiers in Cardiovascular Medicine 10
presentation, cytokine-cytokine receptor interaction, chemokine

signaling pathway, and T cell receptor signaling pathway in the

unstable plaque subgroup. These pathways are particularly

relevant for understanding the immune interactions that drive

plaque instability. For instance, the B cell receptor signaling

pathway and antigen processing and presentation pathways

highlight the role of adaptive immunity, including the activation

of B cells and T cells, in the response to the atherosclerotic

plaque. These immune cells, particularly T lymphocytes, are

known to infiltrate plaques and can promote either pro-

inflammatory or anti-inflammatory responses, depending on the

plaque’s stage and the local environment. The chemokine

signaling pathway and T cell receptor signaling pathway, on the

other hand, emphasize the importance of chemokines in directing

immune cell migration and the role of T cells in sustaining

chronic inflammation within the plaque. Inflammatory cytokines

released by T cells and other immune cells can further disrupt

plaque integrity, leading to a thin fibrous cap, a hallmark of

unstable plaques. Consistent with prior research (14, 25–27), these

pathways play pivotal roles in the progression of coronary
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FIGURE 7

Expression levels of diagnostic biomarkers and assessment of diagnostic efficacy in the training and test cohorts: (A) box line plots of GEM expression
in unstable plaque subgroups and stable plaque subgroups in the training cohort and test cohort; (B) box plots of HSPA2 expression in unstable and
stable plaque subgroups in the training and test cohorts; (C) ROC curves for diagnostic efficacy assessment of HSPA2 and GEM in the training cohort
and test cohort.
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atherosclerotic plaques. Intimal retention of LDL at sites of coronary

endothelial dysfunction facilitates the adherent infiltration of

inflammatory cells into the plaque, while atherosclerosis,

characterized by a chronic inflammatory response, attracts

chemotactic infiltration of innate and adaptive immune cells,
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primarily comprised of T lymphocytes (28). Certain cells

recognize ApoB, the core protein of LDL particles, and

differentiate to generate distinct cell subtypes that elicit either pro-

or anti-atherosclerotic effects (29–32). These biological processes

elucidate the potential mechanisms influencing plaque stability.
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FIGURE 8

Validation of diagnostic biomarkers by human tissue samples: (A,B) representative images of hematoxylin-eosin staining of unstable coronary
atherosclerotic plaques and stable coronary atherosclerotic plaques and IHC staining of GEM and HSPA2 proteins; (C) results of quantitative
analysis of GEM and HSPA2 in different subgroups. Data were expressed using mean ± SD. * represents <0.05, ** represents <0.01.
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FIGURE 9

Analysis of immune cell infiltration between unstable and stable plaques: (A) bar graph of the proportion of 22 immune cell infiltrates in unstable vs.
stable plaques; (B) heatmap of correlation analysis between diagnostic biomarkers and immune cell infiltration; (C) violin plot of difference analysis of
immune cell infiltration between unstable and stable plaques.
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Leveraging the aforementioned DEGs, WGCNA, and two

machine learning algorithms were integrated to screen and identify

potential diagnostic biomarkers for unstable coronary

atherosclerotic plaques. Being a method in systems biology analysis,

WGCNA was employed to detect gene modules exhibiting highly

correlated expression patterns. Gene networks were constructed

using the optimal soft threshold β to conform to the scale-free

network distribution. The hierarchical clustering method and

dynamic tree cutting algorithm were utilized to derive gene

modules, wherein genes exhibit strong functional correlations.

Through correlating modules with disease phenotypes, two

modules, namely the black and pink modules, were identified as

significantly associated with unstable plaques. The black and pink
Frontiers in Cardiovascular Medicine 13
modules exhibited negative and positive correlations with unstable

plaques, respectively. Gene expression within the black module

potentially inhibits the progression of unstable plaques, while gene

expression within the pink module may facilitate unstable plaque

formation. The RF algorithm, an integrative learning technique in

machine learning, employs bagging with random sampling to

construct decision trees, which are then integrated into random

forest for final decision-making through voting. This algorithm

offers a feature selection mechanism by assessing the impact of

feature genes on the accuracy of the RF model (33, 34). LASSO

regression, a linear regression technique, operates on the principle

of introducing an L1 penalty term derived from the ordinary least

squares method. This method accomplishes feature selection by
frontiersin.org

https://doi.org/10.3389/fcvm.2025.1451255
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Jin et al. 10.3389/fcvm.2025.1451255
nullifying coefficients of redundant features to zero (35). Leveraging

the aforementioned machine learning algorithms, we conducted

further screening to identify diagnostic biomarkers for unstable

plaques, resulting in the selection of HSPA2 and GEM.

The validation of these genes was further conducted using the test

dataset. Significant differences in the expression levels of HSPA2 and

GEM were observed between the unstable and stable plaque groups.

ROC curves demonstrated the favorable diagnostic efficacy of both

HSPA2 and GEM. HSPA2 belongs to the Heat Shock Protein

70 kDa (HSP70) family (36). Experimental evidence suggests that

HSP70 plays a role in the pathogenesis of atherosclerosis and

possesses a protective effect in cardiovascular disease. Elevated

serum levels of HSP70 are associated with a reduced risk of

coronary artery disease (37–42). González-Ramos et al. reported

that HSP70 is associated with a reduced risk of coronary artery

disease through the upregulation of TGF-β1, which promotes

extracellular matrix expression by smooth muscle cells in blood

vessels (43). This finding aligns with our conclusion that HSPA2

potentially contributes to the stabilization of coronary

atherosclerotic plaques. Despite limited exploration in

cardiovascular disease thus far, GEM exhibits potential as a

promising novel therapeutic target pending further validation.

In this study, we employed the CIBERSORT algorithm to

analyze the gene expression matrix (44), aiming to estimate the

abundance of various immune cell infiltrates in coronary

atherosclerotic plaques and to deepen our understanding of their

impact on plaque progression. Variations in immune cell

infiltration levels may correlate with plaque instability. Our

findings revealed that γδ T cells, Tregs, M0 macrophages, and M2

macrophages constituted the predominant immune cell

populations within atherosclerotic plaques, aligning with prior

research highlighting T cells and macrophages as the predominant

leukocyte types in such plaques (28, 45, 46). Elevated levels of M0

macrophage infiltration were observed in unstable plaques

compared to stable plaques. Additionally, dysfunctional coronary

artery endothelial cells expressed vascular cell adhesion molecules

and cytokines to facilitate monocyte recruitment to the intima

(47–49). Monocytes undergo differentiation into macrophages

under the stimulation of macrophage colony-stimulating factor

(M-CSF) synthesized within the local intima (50, 51). Activated

macrophages secrete pro-inflammatory cytokines, including IL-1β

and TNF-α, which enhance inflammatory cell adhesion and

aggregation, amplifying the local inflammatory response at the

lesion site and inducing the expression of MMPs (15, 52). This

process diminishes the strength of the plaque fibrous cap, thereby

impacting plaque stability. Correlation analysis revealed

associations between GEM and HSPA2 expression and the

infiltration of various immune cell types, such as CD8+ T cells,

naïve CD4+ T cells, plasma cells, activated natural killer cells,

naïve B cells, and M0 macrophages. Thus, GEM and HSPA2 may

synergistically influence plaque stability in concert with immune

cells. It is important to note that transcriptome sequencing may

not fully capture the immune cell phenotype. Subsequent

investigations could integrate cell surface markers and single-cell

transcriptome analysis to achieve a more comprehensive

understanding of immune cell infiltration in atherosclerotic plaques.
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This study exhibits several limitations. Initially, microarray

datasets from multiple independent studies were amalgamated in

this investigation. Despite normalization efforts to mitigate batch

effects, heterogeneity persists as an inevitable challenge that could

potentially influence the analysis outcomes. Secondly, limitations

in drawing conclusions may arise from the small number of

coronary artery tissue samples utilized for experimental validation.

Furthermore, in contrast to quantitative gene expression assays,

such as protein imprinting, immunohistochemistry, while

providing valuable insights into protein localization and semi-

quantitative expression, has its own inherent limitations. This

technique is prone to observer variability, and its semi-quantitative

nature may introduce discrepancies in measurement results.

Additionally, in clinical practice, obtaining coronary atherosclerotic

plaque tissue samples is challenging, often requiring invasive

procedures such as coronary endarterectomy or intravascular

ultrasound-guided plaque sampling. These procedures are not only

risky but also traumatic for patients, limiting their widespread use

as routine tests in clinical practice. This restricts the direct

application and translation of relevant research findings into

clinical diagnosis and treatment. Future research could explore the

potential of circulating biomarkers in peripheral blood as

indicators of the biological status of plaques, addressing the

limitations of the current study and facilitating the practical

application of the findings in clinical settings.
5 Conclusions

Through the integration of WGCNA with machine learning

algorithms, we identified HSPA2 and GEM as potential

diagnostic biomarkers for the early detection of unstable

coronary atherosclerotic plaques. Moreover, the findings suggest

that immune cell infiltration might influence coronary

atherosclerotic plaque stability. Furthermore, HSPA2 and GEM

showed significant associations with a variety of immune cells.

These findings offer new insights into both the pattern of

immune infiltration in unstable coronary atherosclerotic plaques

and their underlying immunoregulatory mechanisms.
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