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Lipid metabolism-associated
metabolites on cardiovascular
diseases: a two-sample
Mendelian randomized study
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Chinese Medicine, Changzhou, Jiangsu, China, 2Wuxi Maternal and Child Health Hospital, Wuxi School
of Medicine, Jiangnan University, Wuxi, Jiangsu, China, 3Wuxi Medical Center, Nanjing Medical
University, Wuxi, Jiangsu, China
Background: There is a growing body of evidence indicating that metabolites are
associated with an increased risk of cardiovascular diseases (CVDs), the
underlying causality of these associations remains largely unchallenged. Given
the inherent difficulty in establishing causality using epidemiological data, we
employed the technique of Mendelian randomization to investigate the
potential role of plasma metabolite factors in influencing the risk of CVDs.
Methods: The exposure was based on 1,400 plasma metabolites, and outcomes
involved four CVD datasets from public databases. Initial causality was assessed
by inverse variance weighting (IVW), followed by sensitivity analyses using MR-
Egger regression, weighted median, and Multiple Effectiveness Residual Sums
and Outliers (MR-PRESSO) method. Potential heterogeneity and multivalence
were assessed using the MR-Egger intercept and Cochran’s Q statistic. After
Bonferroni correction, causal associations were found to be significant with
p-values less than 0.05. All statistical analyses were rigorously executed in
R software.
Results: Our findings identified causal relationships between 15 metabolites and
cardiovascular disease. Of these, 4 were associated with AA (aortic aneurysm), 7
with atrial fibrillation and flutter, 2 with HF (heart failure), and 3 with stroke.
Conclusion: This is the first systematic mendelian randomization analysis using
genome-wide data to assess the causal relationship between serum metabolites
and different cardiovascular diseases, providing preliminary evidence for the
impact of lipid metabolism disorders on cardiovascular disease risk.
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1 Introduction

Cardiovascular diseases (CVDs) represent a heterogeneous and complex group of

disorders arising from various molecular events (1). Despite significant advances in

understanding the pathophysiology of cardiovascular diseases, these diseases remain the

leading cause of death worldwide (2, 3). Effective management of CVDs is thus crucial

for reducing the global health burden.

In recent years, glycolipid metabolism disorders have garnered significant attention for

their profound impact on vascular health, contributing to the development of

cardiovascular and cerebrovascular diseases. These disorders alter lipid and
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carbohydrate metabolism, leading to endothelial dysfunction,

inflammation, and atherosclerosis (4, 5). The associated

pathophysiological mechanisms are crucial in disease progression,

initiating detrimental effects such as increased oxidative stress,

inflammation, and plaque accumulation in blood vessels.

Metabolic products like lipids, sugars, and related compounds

exacerbate disease progression by promoting lipid accumulation,

insulin resistance, and vascular calcification. Therapeutics

targeting glycolipid metabolism disorders offer promising

treatments for these diseases by modulating metabolic pathways

to restore balance, reduce inflammation, and prevent plaque

formation. Developing and refining such therapies could

significantly improve patient outcomes and reduce the global

burden of cardiovascular diseases.

Circulating metabolites are intermediates or end products of

metabolic activities in organisms, belonging to small molecular

compounds (molecular weight usually less than 1 kDa), mainly

including amino acids and their derivatives, carbohydrates, lipids,

and xenobiotics-related metabolites (6). A total of 48 metabolites

are frequently utilized in the investigation of physiological and

pathophysiological processes (7, 8). Deidda et al. (9)

demonstrated the correlation between metabolic compounds,

including 2-hydroxybutyrate, glycine, methylmalonate, and myo-

inositol, and the terminal complications associated with CVDs.

However, the specific pathophysiological mechanisms through

which metabolites influence CVDs remain unclear. Therefore, the

study of metabolites associated with CVDs not only contributes

to the understanding of the biological mechanisms of

cardiovascular disease, but also aids in the early screening and

prevention of the disease.

Current metabolite studies are limited to a few metabolites and are

often constrained by the inherent shortcomings of traditional

epidemiological studies, such as insufficient sample sizes, the

influence of confounding variables, and the risk of causal inversion.

The MR method provides a more reliable analytical framework for

causal inferences between exposures and outcomes by exploiting the

natural random assignment mechanism of genetic variation (10).

Compared to randomized controlled trials (RCTs), MR method can

mitigate chance bias and avoid confounding and misleading

associations between modifiable exposures and diseases in

observational studies. Moreover, MR method typically demands

fewer human resources and less follow-up (11). Given stringent

experimental conditions and resource constraints in large-scale

RCTs, MR method has become a valuable way to study biological

mechanisms. Our study fills this gap by systematically investigating

the causal relationship between a comprehensive set of plasma

metabolites and multiple cardiovascular diseases using a two-sample

MR method and genome-wide data.
2 Materials and methods

2.1 Study design

The study workflow is illustrated in Figure 1. In this study,

the plasma concentration of each metabolite was designated
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as the exposure variable, and the risk of each CVD was defined

as the outcome variable. Single nucleotide polymorphisms

(SNPs) that demonstrated significant associations with the

exposure variables were employed as instrumental variables

(IVs). To ensure the robustness of Mendelian randomization

studies the following principles should be followed: strong

correlation between instrumental and exposure variables;

independence of instrumental variables; exclusivity assumptions;

and independence of outcome variables (12, 13). Linkage

disequilibrium (LD) clustering minimizes multicollinearity by

reducing the number of highly correlated SNPs, enhances the

validity of statistical tests, and eliminates potential bias. The

F-statistic was evaluated to confirm the existence of differences

and their statistical significance, and Steiger’s test was conducted

to verify the validity of instrumental variables. Egger regression

and MR-PRESSO methods jointly tackle the problems of

multiplicity and heteroscedasticity in MR studies through

different statistical strategies (intercept term correction vs. outlier

rejection). Joint application of these two methods can identify

data bias more comprehensively and improve the accuracy and

reliability of causal inference. Leave-one-out (LOO) analyses were

performed to assess the effects of individual instrumental

variables. In addition, reverse MR analyses were conducted to

explore the possibility of reverse causality (14–16).
2.2 GWAS data of serum metabolites

The most comprehensive analysis of human metabolites to date

involves a genome-wide dataset containing 1,400 metabolites (17),

and its complete summary statistics are publicly available through

the GWAS Catalog (https://www.ebi.ac.uk/gwas/). A total of 8,299

unrelated European subjects from the Canadian Longitudinal

Study of Aging (CLSA) cohort with approximately 150,000 SNPs

were included in this genome-wide association analysis (GWAS).

Out of the 1,091 plasma metabolites assayed, 850 were identified

and classified into eight super pathways (namely, lipid, amino

acid, xenobiotics, nucleotide, cofactor and vitamins, carbohydrate,

peptide, and energy), while the remaining 241 were labeled as

unknown or “partially” characterized compounds.
2.3 GWAS data for cardiovascular disease

GWAS summary data on aortic aneurysm (8,125 cases and

381,977 controls), atrial fibrillation and flutter (50,743 cases and

210,652 controls), heart failure (29,672 cases and 382,509

controls), stroke (4,313 cases and 297,867 controls) were

obtained from results of the GWAS on the FinnGen consortium

R10 shown in Table 1.
2.4 Selection of instrumental variables

For each metabolite, minor allele frequencies (MAF) greater

than 0.05 in the 1,000 Genomes Project and GWAS with CVDs
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FIGURE 1

The following terms are used throughout this study.

TABLE 1 Characteristics of the summary datasets for adverse
pregnancy outcomes.

Adverse pregnancy
outcomes

Sample size Case Control

All
Aortic aneurysm 3,90,102 8,125 3,81,977

Atrial fibrillation and flutter 2,61,395 50,743 2,10,652

Heart failure 4,12,181 29,672 3,82,509

Stroke 3,02,180 4,313 2,97,867

Chen et al. 10.3389/fcvm.2025.1445732
showing non-allelic SNPs were used for IV selection. SNPs

independently associated with plasma metabolites at a

significance level of P < 5 × 10−8 were identified using LD

clumping with a window size of 1,000 kb, ensuring pairwise LD

r² values were less than 0.001 (18). For each metabolite, we

calculated the proportion of variance in its plasma level explained

by each IV using the R² formula: R² = [2β² × EAF × (1–EAF)]/

[2β² × EAF × (1–EAF) + 2N× EAF × (1–EAF) × SE²]. Additionally,

the strength of each IV was assessed using the F-statistic, calculated

as F = [R² × (N–2)]/(1–R²), where EAF is the effect allele frequency,

β is the effect size, SE is the standard error, and N is the sample

size. In these equations, EAF stands for the frequency of the effect

allele, while β symbolizes the magnitude of the association between
Frontiers in Cardiovascular Medicine 03
the SNP and the metabolite (i.e., the effect size), and SE indicates

the standard error of this association. N represents the total number

of samples in the metabolite GWAS (19). Metabolites retaining at

least three valid instrumental variables will be considered as

fulfilling the conditions for MR analysis after excluding weak IV (F-

statistic <10) and outliers identified by MR-PRESSO test (P < 0.05).
2.5 MR analysis

The primary approach utilized for MR analyses was the inverse

variance-weighted (IVW) method. IVW estimates, which are

derived from a comprehensive analysis of Wald ratios for all

genetic variants, are known to account for the assumption of no

horizontal pleiotropy across all SNPs (18). To control for the

incidence of type I errors, we applied a Bonferroni correction to

the analyzed results for each CVD outcome. To ensure the

robustness of the findings, we also performed additional analyses

using three other MR methods. Specifically, we used the

weighted median method to counter the possible bias of the

strong assumption that all IVs are valid in the IVW method

(20). Also, to identify and correct for pleiotropic effects caused

by genetic variation that affects both exposure factors and
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outcome variables, we used the MR-Egger method of adjustment

(16). Furthermore, we employed the MR-PRESSO method (15)

to identify and correct for the effects of outliers on MR estimates.
2.6 Complementary, sensitivity, and reverse
MR analyses

To further scrutinize the robustness of the significant

associations identified through IVW method, we undertook a

comprehensive set of complementary and sensitivity analyses.

Specifically, we conducted heterogeneity tests to verify the

appropriateness of IVs, applied the Egger intercept test and the

MRPRESSO global test to evaluate potential horizontal

pleiotropy, and performed leave-one-out (LOO) analyses to

detect any overly influential IVs (21). To explore possible reverse

causality in the significant associations found, we performed

reverse MR analyses with CVD as the exposure variable and

metabolites as the outcome variable. The main objective of the

reverse Mendelian randomization analysis is to investigate

whether the association between “cause” and “effect” still holds

when they are interchanged in the traditional sense, which helps

to understand whether CVD may be caused by changes in

certain metabolites. Owing to the considerably larger sample size

of the CVD GWAS, we employed stricter criteria for selecting

SNPs. Specifically, we chose SNPs that were independently

associated with CVDs (pairwise linkage disequilibrium r2 < 0.001

within a 10,000 kb window) at a genome-wide significance

threshold of P < 0.05 to serve as IVs. In subsequent analyses, we

considered correlations with P < 0.05 estimated by IVW method

as statistically significant.
2.7 Power calculation

The statistical strength of the MR estimates was assessed by

means of the R software. Power calculations were performed at a

type I error rate of 0.05, taking into account parameters such as

the R2 of IVs, the proportion of GWAS cases with cardiovascular

disease, and OR for MR analysis using the IVW method.
2.8 Statistical analysis

The statistical analyses were conducted using R software

version 4.3.3. For the MR analyses, we utilized the R packages

TwoSampleMR (version 0.6.1) and MR-PRESSO (version 1.0).
3 Results

3.1 Genetic IVs

Of the 1,400 metabolites, 1,299 independent SNP component

instrumental variables were collected using LD clumping criteria

of pairwise r2 < 0.001 within a 10,000 kb window and a
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significance threshold of P < 5 × 10−8. Following a rigorous

screening process to exclude weak IVs and outliers, the

subsequent MR analyses were conducted with a refined set of

metabolites. This screening process utilized various criteria,

including F-statistics <10 and Steiger’s test, in addition to

applying the MR-PRESSO outlier test P < 0.05. The specific

details regarding IVs selected for the subsequent MR analyses are

provided in Supplementary Table S2.
3.2 Effects of genetically determined
metabolites on CVDs

To enhance the interpretability of metabolic changes, we

excluded 309 metabolite ratios and retained 1,091 individual

metabolites for analysis. The Bonferroni-corrected P-values

represent the raw P-values adjusted for multiple comparisons,

thereby minimizing the likelihood of false-positive findings.

Utilizing IVW method, we identified 15 causal associations with

a Bonferroni-corrected P < 0.05. These associations involved eight

metabolites, eight of which belonged to the lipid metabolism

pathway, one to the peptide pathway, and one to the xenobiotic

pathway (Table 2).

Specifically, for aortic aneurysm (AA), the associations included:

octadecanedioate [odds ratio (OR) = 1.25, 95% confidence intervals CI

1.10–1.41]; palmitoyl sphingomyelin (OR = 0.72, 95% CI 0.61–0.86);

sphingomyelin (OR= 1.19, 95% CI 1.08–1.32); N-acetylglutamine

(OR = 0.92, 95% CI 0.87–0.97). For atrial fibrillation and flutter, the

associations were: 1-oleoylglycerol (OR = 1.27, 95% CI 1.13–1.43);

nervonoylcarnitine (OR = 0.90, 95% CI 0.85–0.95); 2-ketocaprylate

(OR = 0.88, 95% CI 0.83–0.93); X-21467 (OR = 1.07, 95% CI 1.03–

1.11); X-23659 (OR = 1.18, 95% CI 1.07–1.30); N-acetyltyrosine

(OR = 0.95, 95% CI 0.93–0.98). For heart failure, the associations

were: pregnenetriol sulfate (OR = 1.11, 95% CI 1.03–1.20); X-25422

(OR = 1.08, 95% CI 1.02–1.14). For stroke, the associations

were: tetradecanedioate (OR = 1.06, 95% CI 1.02–1.10);

hexadecanedioate (OR = 1.07, 95% CI 1.03–1.10); X-21467

(OR = 1.06, 95% CI 1.02–1.10).
3.3 Sensitivity analysis

Supplementary Table S3 lists the 18 significant associations

identified using the inverse IVW method. Among these 18

associations, three metabolites exhibited different patterns of

association when compared with the results of the other three

MR methods (i.e., weighted median test, MR-Egger test, and

MR-PRESSO test). To assess and mitigate potential horizontal

multidirectionality in MR estimates, we performed sensitivity

analyses and presented the results in Figure 2, which relates to

15 metabolite-cardiovascular disease pairs with significant causal

associations. Overall, a causal relationship was considered robust

if at least three additional MR methods were statistically

significant (P < 0.05). Notably, 15 of these 15 associations had a

P < 0.05 in at least two of the three supplemental MR analyses.

The MR-Egger intercept term and the MRPRESSO global test
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TABLE 2 Significant associations identified in primary MR analyses using the inverse-variance weighted (IVW) method.

Metabolites Categories Number
of IVs

IVW MR Egger Weighted median MR PRESSO

OR(95%
CI)

P Pbonfer OR(95%
CI)

P OR(95%
CI)

P OR(95%
CI)

P

Aortic aneurysm
Octadecanedioate Lipid 4 1.25 (1.10–1.41) 0.0006 0.0120 1.02 (0.66–1.58) 0.93 1.25 (1.07–1.46) 0.005 1.25 (1.01–1.53) 0.036

Palmitoyl
sphingomyelin

Lipid 4 0.72 (0.61–0.86) 0.0003 0.0049 0.58 (0.40–0.86) 0.11 0.69 (0.55–0.86) 0.001 0.72 (0.55–0.96) 0.023

Sphingomyelin Lipid 4 1.19 (1.08–1.32) 0.0008 0.0144 2.15 (0.87–5.32) 0.24 1.22 (1.07–1.39) 0.003 1.19 (1.02–1.40) 0.031

N-acetylglutamine Amino Acid 4 0.92 (0.87–0.97) 0.0015 0.0281 0.96 (0.87–1.05) 0.45 0.92 (0.87–0.97) 0.004 0.92 (0.84–1.00) 0.050

Atrial fibrillation and flutter
1-oleoylglycerol Lipid 4 1.27 (1.13–1.43) 0.0001 0.0031 1.05 (0.59–1.85) 0.89 1.29 (1.14–1.47) 6.28 × 10−5 1.27 (1.02–1.58) 0.030

Nervonoylcarnitine Lipid 5 0.90 (0.85–0.95) 0.0001 0.0031 0.94 (0.76–1.17) 0.62 0.91 (0.85–0.96) 0.0013 0.90 (0.84–0.96) 0.002

2-ketocaprylate Amino Acid 4 0.88 (0.83–0.93) 0.0000 0.0002 0.89 (0.75–1.07) 0.34 0.87 (0.81–0.93) 2.54 × 10−5 0.88 (0.81–0.95) 0.002

X-21467 Unknown 6 1.07 (1.03–1.11) 0.0007 0.0228 1.07 (0.99–1.16) 0.18 1.07 (1.02–1.12) 0.0041 1.07 (1.01–1.13) 0.018

X-23659 Unknown 4 1.18 (1.07–1.30) 0.0008 0.0246 1.02 (0.85–1.23) 0.83 1.16 (1.05–1.28) 0.0031 1.18 (1.00–1.38) 0.044

N-acetyltyrosine Amino Acid 5 0.95 (0.93–0.98) 0.0016 0.0495 0.99 (0.92–1.06) 0.74 0.96 (0.93–0.99) 0.0038 0.95 (0.92–0.99) 0.016

Heart failure
Pregnenetriol sulfate Lipid 6 1.11 (1.03–1.20) 0.0044 0.0437 1.08 (0.92–1.27) 0.42 1.10 (1.02–1.19) 0.0182 1.11 (1.03–1.20) 0.007

X-25422 Unknown 6 1.08 (1.02–1.14) 0.0048 0.0481 1.02 (0.89–1.18) 0.78 1.06 (0.99–1.12) 0.0871 1.08 (1.02–1.14) 0.009

Stroke
Tetradecanedioate Lipid 4 1.06 (1.02–1.10) 0.0010 0.0254 1.08 (1.02–1.15) 0.12 1.07 (1.03–1.11) 0.0007 1.06 (1.01–1.12) 0.031

Hexadecanedioate Lipid 5 1.07 (1.03–1.10) 0.0002 0.0054 1.08 (1.03–1.14) 0.07 1.07 (1.03–1.11) 0.0002 1.07 (1.01–1.12) 0.011

X-21467 Unknown 6 1.06 (1.02–1.10) 0.0014 0.0366 1.04 (0.97–1.11) 0.37 1.05 (1.01–1.09) 0.0087 1.06 (1.01–1.11) 0.024

FIGURE 2

The funnel plot illustrates the influence of omitting a single SNP on the overall effect estimate and displays the instrumental variables (IVs) for each
significant causal association between metabolites and CVDs. (A) Octadecanedioate on aortic aneurysm; (B) Palmitoyl sphingomyelin on aortic
aneurysm; (C) Sphingomyelin on aortic aneurysm; (D) N-acetylglutamine on aortic aneurysm; (E) 1-oleoylglycerol on atrial fibrillation and flutter;
(F) Nervonoylcarnitine on atrial fibrillation and flutter; (G) 2-ketocaprylate on atrial fibrillation and flutter; (H) X-21467 on atrial fibrillation and
flutter; (I) X-23659 on atrial fibrillation and flutter; (J) N-acetyltyrosine on atrial fibrillation and flutter; (K) Pregnenetriol sulfate on heart failure; (L)
X-25422 on heart failure; (M) Tetradecanedioate on stroke; (N) Hexadecanedioate on stroke; (O) X-21467 on stroke.

Chen et al. 10.3389/fcvm.2025.1445732
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FIGURE 3

The scatter plots depict the genetic associations of 15 metabolites with the risk of 4 CVDs. (A) Octadecanedioate on aortic aneurysm; (B) Palmitoyl
sphingomyelin on aortic aneurysm; (C) Sphingomyelin on aortic aneurysm; (D) N-acetylglutamine on aortic aneurysm; (E) 1-oleoylglycerol on atrial
fibrillation and flutter; (F) Nervonoylcarnitine on atrial fibrillation and flutter; (G) 2-ketocaprylate on atrial fibrillation and flutter; (H) X-21467 on atrial
fibrillation and flutter; (I) X-23659 on atrial fibrillation and flutter; (J) N-acetyltyrosine on atrial fibrillation and flutter; (K) Pregnenetriol sulfate on heart
failure; (L) X-25422 on heart failure; (M) Tetradecanedioate on stroke; (N) Hexadecanedioate on stroke; (O) X-21467 on stroke.

Chen et al. 10.3389/fcvm.2025.1445732
indicated that only one association was affected by horizontal

multidimensionality, namely, the effect of carnitine arachidonic

acid on AF and flutter (for details, see Supplementary Table S3).

In addition, to identify and exclude potential outliers and to

assess the presence of horizontal multidirectionality among the

identified metabolites, we also used scatter plots (Figure 3) and

funnel plots (Figure 2). LOO analyses confirmed that none of the

15 associations were found to be dominated by any of the IVs

(instrumental variables). Also, no significant heterogeneity among

IVs was found in these 15 associations (P > 0.05 for

heterogeneity). In the reverse MR analysis, 72 SNPs were selected

as IVs for AA, AF and flutter, heart failure, and stroke,

respectively. For detailed results of the sensitivity and

multinomial analyses shown in Supplementary File S1:

Supplementary Table S1.
4 Discussion

Studies have shown that disorders of lipid metabolism are an

important threat to cardiovascular health, leading to endothelial

dysfunction, inflammation, and atherosclerosis, which in turn

have serious implications for vascular health. These metabolic

disorders are closely associated with the onset and progression of

CVD. Therefore, an in-depth understanding of the causal role of

specific lipid metabolites in CVD will not only help to unravel

the underlying biological mechanisms, but also provide critical
Frontiers in Cardiovascular Medicine 06
information for identifying potential therapeutic targets

for intervention.

The present study sought to explore the potential for causality

between metabolites and CVDs by leveraging existing GWAS data

and two-sample MR. To enhance the reliability of the findings,

extensive sensitivity analyses were conducted, which involved the

exclusion of potential confounders. This study represents a novel

approach that combines metabolomics and genomics to

systematically investigate the causal relationship between serum

metabolites and multiple CVDs. Our findings identified causal

relationships between 15 metabolites and cardiovascular disease.

Of these, 4 were associated with AA, 6 with atrial fibrillation and

flutter, 2 with heart failure, and 3 with stroke. These metabolites

are hypothesized to function as biomarkers, capable of facilitating

early screening and risk prediction for cardiovascular disease. In

addition, interventions targeting these metabolites or their

metabolic pathways may provide novel strategies for the

prevention or treatment of cardiovascular disease. For example,

modulating the levels of specific metabolites through diet,

lifestyle changes, or pharmacological interventions could

potentially reduce the risk of CVDs.

Numerous prior studies have demonstrated substantial interest

in exploring the potential molecular mechanisms of metabolites in

the pathogenesis of AA. Metabolic disorders may lead to metabolic

diseases such as hypertension, hyperglycemia, and hyperlipidemia,

which are risk factors for atherosclerosis (22). Atherosclerosis

increases the risk of AA by weakening the aortic wall (23). In
frontiersin.org
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addition, metabolic disorders may affect the normal structure and

function of the blood vessel wall, further promoting the formation

of AA (24). We successfully identified that octadecanedioate and

sphingomyelin are positively associated with the risk of AA,

palmitoyl sphingomyelin (PSM) and N-acetylglutamine are

negatively associated with the risk of AA. Sphingolipids and

ceramides are associated with each other through the so-called

“sphingomyelinase-ceramide pathway”, which is the product of

sphingomyelin hydrolysis by sphingomyelinase (25). The active

sphingomyelinase-ceramide pathway is pro-inflammatory, pro-

oxidative and induces apoptosis, which may contribute to

atherosclerosis, accelerate the aging process and increase the risk

of cardiovascular events (26, 27).It was shown that sphingomyelin

(SM) levels were significantly increased in bicuspid aortic valve-

associated aneurysms (BAV-A) and tricuspid aortic valve-

associated aortic dissections (TAV-Diss) samples, which may

indicate that sphingomyelin inhibition of sphingomyelinase activity

and the sphingomyelinase-ceramide pathway, leading to inhibition

of tissue regeneration; a potential basis for the onset and

progression of AA (28). Untargeted metabolomics analysis found

16 lipids and fatty acids metabolites associated with CVD risk in

patients with diabetes, with PSM having the strongest association

(29). Circulating palmitoyl sphingomyelin levels predict the

10-year increased risk of CVD death in Chinese adults (30). These

findings are inconsistent with our conclusion that there is a

negative association between PSM and AA. Studies have shown

that Sphingosine-1-phosphate (S1P) activates STAT3 through the

S1PR2/S1PR3 signaling pathway and promotes survivin expression,

which inhibits macrophage apoptosis and plays a protective role

against atherosclerosis (31). Moreover, S1P binding to S1PR1

protects the permeability integrity and barrier function of vascular

endothelial cells and inhibits inflammation and cardiovascular

disease (32). S1P is an important molecule in the sphingolipid

metabolic pathway and may be associated with PSM. This

literature provides evidence for a protective role of S1P and its

receptor in cardiovascular disease, which may be related to the

protective effects of PSM. The mechanism of action of these

compounds involves complex biological processes, including lipid

metabolism, inflammatory response, cell proliferation and migration.

Atrial flutter is less common and is often associated with or

preceded by atrial fibrillation (AF) and flutter or occurs in an

isolated pattern (33). The present study found that 1-oleoylglycerol

was positively associated with the risk of AF and flutter, and that

neuraminic acid (Neu5Ac) and 2-keto-3-hexanoylglycerol (2-KG)

were negatively associated with the risk of AF and flutter.

Unfortunately, there have been no studies of metabolites in AF

and flutter. There are no direct studies linking 1-oleoylglycerol and

cerylcarnitine to inflammation or oxidative stress, but given the

important role of these metabolites in energy metabolism and fat

metabolism, as well as the key roles of inflammation and oxidative

stress in AF, it can be hypothesized that these metabolites may

indirectly influence the levels of inflammation and oxidative stress

by affecting energy metabolism and fat metabolism. For example,

disturbances in fat metabolism may lead to an increase in

inflammatory factors and oxidative stress in the body, thereby

increasing the risk of AF and flutter (34). Our results suggest that
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N-acetylglutamine was negatively correlated in AA, AF and flutter,

which was the sole metabolite found to be associated with

multiple CVDs. N-acetylglutamine may be employed in the

treatment of other diseases, including liver disease, kidney disease,

and metabolic disorders. These diseases may be associated with or

interact with CVDs. Furthermore, N-acetylglutamine is a precursor

of glutathione, which is involved in the antioxidant process in vivo

(35). Oxidative stress is a significant factor in the development

and progression of CVDs. Consequently, any substance that

enhances antioxidant capacity in the body may have a beneficial

effect on CVDs (36).

Heart failure, stemming from underlying myocardial pathology, is

a heterogeneous disease process with various etiologies and can be

broadly classified into ischemic and nonischemic categories (37).

The severity of heart failure is closely tied to alterations in cardiac

energy metabolism. However, these metabolic changes are highly

complex, influenced not only by the severity and type of heart

failure but also by common comorbidities such as obesity and type

2 diabetes. In the failing heart, an energy deficit occurs primarily

due to reduced mitochondrial oxidative capacity. To compensate,

there is an increase in ATP production via glycolysis. Meanwhile,

the relative contributions of different substrates to mitochondrial

ATP production shift, characterized by decreased glucose and

amino acid oxidation and increased ketone body oxidation. Cardiac

fatty acid oxidation also varies depending on the type of heart

failure, with either an increase or decrease observed (38). Our study

suggests that pregnanetriol sulfate may be a risk factor for heart

failure, but this finding warrants further validation.

We successfully identified tetradecanedioate and

hexadecanedioate as positively associated with stroke risk. This

finding is in complete agreement with the results of an

untargeted serum metabolomics study published in 2019. That

study identified two long-chain dicarboxylic acids,

tetradecanedioate and hexadecanedioate, whose serum levels were

highly correlated and were independently associated with

incident ischemic stroke (IS), even after accounting for known

risk factors (39). Studies conducted in experimental models have

revealed possible physiological functions of hexadecanedioate,

including hypolipidemic, anti-obesity and antidiabetogenic

properties (40). Diabetes mellitus, dyslipidemia and obesity are

known risk factors for stroke (41). Recently, blood pressure levels

and all-cause mortality have been associated with BP levels in

Europe (42). Experiments conducted in a hypertensive rat model

demonstrated that oral administration of BP levels led to

increased circulating metabolite levels and elevated blood

pressure in Wistar Kyoto rats. Additionally, mesenteric resistance

arteries from rats treated with BP levels exhibited a heightened

contractile response to norepinephrine. This enhanced response

may provide a potential explanation for why hexadecanedioate is

considered a risk factor for stroke.
5 Conclusion

In summary, this study is the first systematic MR analysis using

genome-wide data to assess causal associations between serum
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metabolites and different cardiovascular diseases, providing

preliminary evidence for the impact of circulating metabolic

disorders on cardiovascular disease risk. Through IVW methods

and multiple sensitivity analyses, we finalized the identification of

15 relevant metabolites, including 8 lipid metabolites and 2

amino acid metabolites. Our preliminary results indicate a

potential for these metabolites to serve as circulating metabolic

biomarkers for cardiovascular disease screening and prevention.

However, further validation and research are required to

conclusively establish their clinical utility. Furthermore, although

these metabolites may provide candidate molecules for future

mechanistic exploration and drug target selection, this view

remains speculative until more in-depth studies are conducted.

However, it is worth noting that despite the results of this

study, some limitations still exist. For example, the results of this

study are mainly based on a specific cohort and population, and

thus caution may be needed when generalizing to other

populations. In addition, although this study assessed causal

associations through MR analysis, there are certain assumptions

and limitations associated with this approach, such as the

selection of instrumental variables and multiplicity of validity.

Therefore, in future studies, it is necessary to further expand the

sample size to verify the applicability and stability of these

metabolites in different populations, as well as to deeply explore

their potential biological mechanisms and drug targets.

Overall, this study provides new perspectives and ideas for risk

assessment and prevention of cardiovascular diseases, as well as

important references and insights for future studies. We expect

that more studies will focus on these metabolites in the future

and explore their roles and mechanisms in cardiovascular

diseases in depth, contributing more to the prevention and

treatment of CVDs.
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