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Unsupervised machine learning
model for phenogroup-based
stratification in acute type
A aortic dissection to identify
postoperative acute
gastrointestinal injury
Yuhu Ma1†, Xiaofang Yang2†, Chenxiang Weng3, Xiaoqing Wang1,
Baoping Zhang1, Ying Liu3, Rui Wang1, Zhenxing Bao1,
Peining Yang1, Hong Zhang1* and Yatao Liu1*
1Department of Anesthesiology and Operation, The First Hospital of Lanzhou University, Lanzhou,
Gansu, China, 2Department of Cardiac Surgery, The First Hospital of Lanzhou University, Lanzhou,
Gansu, China, 3The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
Objective: We aimed to explore the application value of unsupervised machine
learning in identifying acute gastrointestinal injury (AGI) after extracorporeal
circulation for acute type A aortic dissection (ATAAD).
Methods: Patients who underwent extracorporeal circulation for ATAAD at the
First Hospital of Lanzhou University from January 2016 to January 2021 were
included. Unsupervised machine learning algorithm was used to stratify
patients into different phenogroups according to the similarity of their clinical
features and laboratory test results. The differences in the incidence of
perioperative AGI and other adverse events among different phenogroups
were compared. Logistic regression was used to analyze the high-risk factors
for AGI in each phenogroups and random forest (RF) algorithms were used to
construct diagnostic models for AGI in different phenogroups.
Results: A total of 188 patients were included, with 166 males and 22 females.
Unsupervised Machine Learning stratified patients into three phenogroups
(phenogroup A, B, and C). Compared with other phenogroups, phenogroup
B patients were older (P < 0.01), had higher preoperative lactate and D-dimer
levels, and had the highest incidence of AGI (52.5%, P < 0.001) and in-hospital
mortality (18.6%, P= 0.002). The random forest model showed that the top
four risk factors for AGI in phenogroup B were cardiopulmonary bypass time,
operation time, aortic clamping time, and ventilator time, which were
significantly different from other phenogroups. The areas under the curve
(AUCs) for diagnosing postoperative AGI of phenogroup A, B, and C were
0.943 (0.854–0.992), 0.990 (0.966–1.000), and 0.964 (0.899–0.997) using
the RF model, respectively.
Conclusion: Phenogroup stratification based on unsupervised learning can
accurately identify high-risk populations for postoperative AGI in ATAAD,
providing a new approach for implementing individualized preventive and
therapeutic measures in clinical practice.
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1 Introduction

Acute type A aortic dissection (ATAAD) is a life-threatening

condition characterized by a tear in the inner layer of the aortic

wall, resulting in the separation of the aortic layers and the

formation of a true and false lumen (1, 2). The incidence of

ATAAD has been increasing annually, and it is associated with

high morbidity and mortality rates (3). Surgical intervention is

one of the crucial therapeutic modalities for patients with

ATAAD (4, 5). However, acute gastrointestinal injury (AGI), a

common postoperative complication, severely compromises the

surgical outcome and represents a significant contributor to the

high postoperative mortality rate in ATAAD patients (6, 7). AGI

can manifest as various gastrointestinal complications, such as

gastrointestinal bleeding, intestinal obstruction, and ischemic

bowel disorders, further exacerbating the postoperative course

(8). Low cardiac output, inflammatory responses, surgical

trauma, and prolonged extracorporeal circulation are considered

the primary risk factors for the development of AGI in ATAAD

patients undergoing surgical repair (9). The occurrence of AGI is

often insidious, and clinical manifestations lack specificity,

frequently leading to delayed diagnosis and treatment, thereby

exacerbating the condition (10). Therefore, early identification

and intervention for high-risk populations of AGI are crucial for

improving the surgical prognosis of ATAAD patients.

Personalized medicine aims to optimize treatment strategies for

each individual patient to maximize therapeutic efficacy. Accurate

patient stratification is a prerequisite for achieving personalized

medicine. The postoperative AGI population in ATAAD patients

exhibits high heterogeneity, and some standard treatment

protocols have limited efficacy (11). Unsupervised machine

learning techniques can perform patient clustering analysis based

on multidimensional features (such as demographics, medical

history, and laboratory indices), thereby identifying intrinsically

similar patient Phenogroups. These approaches have been

utilized for Phenogroup clustering in heart failure and sepsis

patients to identify the effectiveness of different interventions

(12, 13). By analyzing the associations between specific

Phenogroups and outcomes or treatment responses, unsupervised

machine learning can provide a basis for developing personalized

treatment strategies.

Therefore, this study proposes to apply unsupervised machine

learning methods to exploit the heterogeneous data of ATAAD

patients and identify intrinsic similarities, thereby enabling the

recognition of high-risk populations for postoperative AGI. This

approach aims to provide guidance for early interventions in this

patient population.
2 Methods

Patient studies were conducted according to the guiding

principles of the Helsinki Declaration. This study was approved

by the Ethics Committee of the First Hospital of Lanzhou

University (LDYYLL-2021-422). Due to the retrospective nature
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of the study, written informed consent was abandoned. The

framework of this study is shown in Figure 1.
2.1 Patients

Patients hospitalized for ATAAD from January 2016 to January

2021 were identified from the institutional database. Exclusion

criteria: (1) Patients with severe hematological, respiratory, or other

severe comorbidities; (2) Patients with preoperative acute or

chronic gastrointestinal disorders (gastrointestinal hemorrhage,

diarrhea, pancreatitis, cholecystitis, cholelithiasis, peptic ulcers,

history of abdominal trauma surgery, and gastrointestinal

malignancies); (3) Perioperative mortalities and mortalities within

3 days postoperatively; (4) Patients with missing data exceeding 15%.
2.2 AGI diagnosis

AGI diagnostic criteria and severity assessment were based on

the 2012 AGI guidelines from the European Society of Intensive

Care Medicine (14). The severity is graded as follows: Grade 0:

Absence of gastrointestinal symptoms. Grade 1: Self-limiting

condition, but with a high risk of progression to gastrointestinal

dysfunction or failure. Grade 2: Interventional management is

necessitated to restore gastrointestinal function (gastrointestinal

dysfunction). Grade 3: Persistent gastrointestinal failure despite

interventional management (gastrointestinal failure). Grade 4:

Acute, life-threatening gastrointestinal insult. Supplementary

Table S1 list the evaluation criteria that AGI patients. The AGI

grading system was utilized for daily assessment in accordance

with standard care during the initial seven days of follow-up.

The patients were divided into two groups by the maximum AGI

grade: Grade 0 and Grade 1 as the non-AGI group, and Grade

≥2 as the AGI group.
2.3 Data collection

Laboratory tests parameters were obtained by reviewing

patients’ medical records. Which included:

(1) Baseline patient characteristics: gender, age, body mass

index (BMI), medical history, and aortic dissection (AD) risk

score. (2) Preoperative and postoperative laboratory

examinations, including white blood cell and neutrophil

percentage (N%), as well as serum levels of amylase, total

cholesterol, triglycerides, total bilirubin, direct and indirect

bilirubin, alkaline phosphatase (ALP), alanine aminotransferase

(ALT), aspartate aminotransferase (AST), and γ-glutamyl

transferase (γ-GT). (3) Imaging parameters, including the results

of computed tomography angiography (CTA) performed upon

admission. (4) Records of the surgical procedure, including

cardiopulmonary bypass (CPB) time, circulatory arrest time, and

intraoperative red blood cell transfusion. Postoperative clinical

outcome data: postoperative complications (renal dysfunction,
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FIGURE 1

The framework of this study.
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liver dysfunction, and nosocomial infections), intensive care unit

(ICU) length of stay, AGI, and in-hospital mortality.
2.4 Model construction and evaluation

The K-means clustering algorithm, an unsupervised machine

learning technique, was applied to cluster ATAAD patients based

on their laboratory test results and clinical baseline information.

The K-means algorithm aims to partition n observations into k

clusters, minimizing the sum of squared distances between data

points and their assigned cluster centroids (15). The algorithm

initializes by randomly selecting k cluster centers, assigns each
Frontiers in Cardiovascular Medicine 03
data point to the nearest centroid, and iteratively recalculates the

new centroids until convergence is achieved. To determine the

optimal number of clusters k, the study evaluated the clustering

quality with different k values ranging from 2 to 8 based on the

silhouette coefficient. The silhouette coefficient measures the

ratio of the similarity of a data point to its own cluster compared

to its dissimilarity to other clusters, ranging from −1 to 1, with

higher values indicating better clustering performance. The k

value corresponding to the maximum silhouette coefficient and

its associated clustering result were selected as the optimal

clustering solution.

Based on the optimal clustering outcome, the study analyzed

and compared the incidence of AGI and other postoperative
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complications among different ATAAD patient subgroups.

Additionally, univariate logistic regression was employed to

identify risk factors associated with postoperative AGI occurrence

in each subgroup. The Random Forest algorithm was then

utilized to rank the importance of these risk factors and elucidate

the relative weights of predictor variables influencing the risk of

AGI across different phenogroups.
2.5 Statistical analysis

Python (Version 3.9.0) was used for statistical analysis.

Continuous variables were reported as the median and

interquartile range (IQR) or mean and standard deviation (SD)

and were compared using the Mann-Whitney test or Student’s

t test. Categorical data, presented as numbers and frequencies (%),

were compared using the chi-square test or Fisher’s exact test.

A two-sided P value < 0.05 indicated that the corresponding

difference was statistically significant.
3 Results

3.1 Patient characteristics

The study included 188 ATAAD patients, with 166 males and

22 females. Postoperatively, 60 patients developed AGI, while 128

patients did not (no-AGI group). Figure 2 illustrates the optimal

clustering solution and the silhouette coefficient values in the

K-means clustering model. Based on the silhouette coefficient,

the optimal number of clusters was determined to be 3, and

these phenotypic subgroups were labeled as Phenogroup-A, B,

and C. Table 1 presents the baseline characteristics of the three

main phenogroups (A, B, and C), comprising 81, 59, and 48

patients, respectively. Compared to the other phenogroups,

patients in Phenogroup-B were older and had a higher

prevalence of pre-existing heart failure. Additionally, the

Phenogroup-B exhibited the highest number of patients with

impaired vascular perfusion on computed tomographic

angiography (CTA). Laboratory tests revealed significantly

elevated lactate and D-dimer levels in Phenogroup-B compared

to Phenogroups-A and C.
3.2 Association between phenogroups and
postoperative complications

The operative time was longest for Phenogroup-B, followed by

Phenogroup-A, and shortest for Phenogroup-C (Table 2).

However, the cardiopulmonary bypass (CPB) times were not

significantly different among the three groups (P = 0.169). The

aortic cross-clamp time was significantly longer in Phenogroup-B

compared to the other two groups (P = 0.02). Patients in

Phenogroup-B required the highest intraoperative red blood cell

transfusion volumes, prolonged mechanical ventilation duration,

and longer hospital stays when compared to Phenogroup-A and
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C. Figure 3 depicts the combined illustration of postoperative

complications across the three phenogroups along with the

mapping relationship between different phenogroups and the

complications. The in-hospital mortality rate was highest in

Phenogroup-B (18.6%), followed by Phenogroup-C (4.17%), and

lowest in Phenogroup-A (2.47%), the difference was statistically

significant (P = 0.02). Phenogroup-B had the highest proportion

of patients requiring postoperative enteral nutrition (P < 0.01)

and the highest incidence of infections (59.3%, P = 0.001).

Additionally, this group was most prone to developing

neurological complications. The occurrence of AGI was

significantly different among the three groups, with 13, 31, and

16 cases in Phenogroup-A, B, and C, respectively (P < 0.001),

indicating that Phenogroup-B represents a high-risk phenogroups

for AGI.
3.3 Associations between phenogroups and
inflammatory biomarkers

Postoperatively, the profiles of inflammatory biomarkers

exhibited distinct patterns across the three phenogroups, as

shown in Figure 4. Platelet counts declined to varying degrees in

Phenogroup-A, B, and C. All three groups demonstrated elevated

C-reactive protein (CRP) levels, with the most pronounced

upward trend observed in Phenogroup-B, indicating a more

robust inflammatory response in this subgroup compared to

Phenogroup-A and C. Lactate dehydrogenase (LDH) levels were

significantly higher in Phenogroup-B compared to Phenogroup-A

and C (P = 0.005), while creatine kinase (CK) levels were highest

in Phenogroup-C. Overall, no significant differences were

observed in neutrophil, lymphocyte, monocyte, neutrophil-to-

lymphocyte ratio, or lymphocyte-to-monocyte ratio among the

three phenogroups, as presented in Table 3.
3.4 Risk factor analysis for AGI across
different phenogroups

To evaluate the risk factors contributing to AGI development

in the three phenogroups, univariate logistic regression were

constructed (Supplementary Table S2). Additionally, the RF

algorithm was employed to rank the importance of risk factors

influencing AGI occurrence, as shown in Figure 5. For the

Phenogroup-B, which exhibited the highest incidence rate of

AGI, the top four risk factors identified by the RF analysis were:

CPB time, aortic clamping time, operation time, and ventilator

time, respectively. This risk factors were distinctly different from

the other phenogroups. The ROC curves for diagnosing

postoperative AGI of three phenogroups using the RF model are

shown in the Supplementary Figure S1. The AUCs for

phenogroup-A, B, and C were 0.943 (0.854–0.992), 0.990 (0.966–

1.000), and 0.964 (0.899–0.997), respectively. Different risk

factors for various phenogroups demonstrate promising

diagnostic value for postoperative AGI.
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FIGURE 2

The optimal silhouette coefficient values (A) and clustering solution (B) in the K-means clustering model. In the panel (B), phenogrophs are visualized
using the T-distributed Random Neighborhood Embedding (t-SNE) technique, visualizing the differences between the three phenogroups.
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TABLE 1 Baseline characteristics of the study patients by phenogroups.

Characteristic Phenogroup A Phenogroup B Phenogroup C P

Sex 0.041
Male 15 (18.5%) 4 (6.78%) 3 (6.25%)

Female 66 (81.5%) 55 (93.2%) 45 (93.8%)

Age (years) 49.8 (9.31) 54.1 (10.1) 43.9 (7.92) <0.001

BMI (kg/m2) 25.3 (4.03) 24.6 (3.86) 25.8 (4.37) 0.275

Surgical history 0.493
No 79 (97.5%) 58 (98.3%) 45 (93.8%)

Yes 2 (2.47%) 1 (1.69%) 3 (6.25%)

AD risk score 1.35 (0.48) 1.53 (0.50) 1.52 (0.50) 0.053

Heart failure 0.004
No 79 (97.5%) 49 (83.1%) 41 (85.4%)

Yes 2 (2.47%) 10 (16.9%) 7 (14.6%)

Malperfusion

Coronary artery 0.021
No 81 (100%) 57 (96.6%) 44 (91.7%)

Yes 0 (0.00%) 2 (3.39%) 4 (8.33%)

Renal artery 0.020
No 44 (54.3%) 18 (30.5%) 28 (58.3%)

Single 31 (38.3%) 34 (57.6%) 15 (31.2%)

Double 6 (7.41%) 7 (11.9%) 5 (10.4%)

Superior mesenteric artery <0.001
No 74 (91.4%) 5 (8.47%) 37 (77.1%)

Yes 7 (8.64%) 54 (91.5%) 11 (22.9%)

Aorta abdominalis <0.001
No 74 (91.4%) 11 (18.6%) 33 (68.8%)

Yes 7 (8.64%) 48 (81.4%) 15 (31.2%)

Lactic acid 1.40 (0.61) 2.05 (0.69) 1.75 (0.73) <0.001

D-dimer assay 8.44 (12.0) 20.9 (27.6) 11.4 (14.8) 0.001

Neutrophils 8.01 (2.59) 9.96 (2.50) 12.0 (3.09) <0.001

Lymphocytes 1.22 (0.59) 1.11 (0.39) 0.60 (0.25) <0.001

Monocytes 0.57 (0.28) 0.78 (0.28) 0.39 (0.22) <0.001

Neutrophils/Lymphocytes 7.64 (3.60) 10.2 (4.56) 23.0 (9.93) <0.001

Lymphocytes/Monocytes 3.10 (3.14) 1.72 (1.42) 2.34 (2.25) 0.006

PLT 176 (73.5) 142 (41.3) 160 (47.3) 0.004

CRP 35.0 (39.5) 30.7 (30.9) 27.4 (24.1) 0.442

AD, aortic dissection.
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4 Discussion

In this study, we applied an unsupervised machine learning

algorithm for phenogroups stratification of ATAAD patients

undergoing cardiopulmonary bypass, rather than relying solely

on individual data points. Three phenogroups were identified,

providing motivation for further evaluation of postoperative AGI

in ATAAD patients. Patients of different phenogroups exhibited

significant differences in the risk and influencing factors of AGI.

Notably, phenogroup-B patients had the highest incidence of

AGI at 52.5%, significantly higher than the other two

phenogroups. This result attests to the accuracy and clinical value

of phenogroups stratification in identifying high-risk populations

and underscores the potential of machine learning techniques in

improving patient stratification and outcomes. This novel

approach offers significant advantages for clinical practice,

enabling more accurate prediction and management of high-

risk patients.
Frontiers in Cardiovascular Medicine 06
AGI is a severe complication after cardiac surgery, with an

extremely high mortality rate (16, 17). The occurrence of AGI is

influenced by various perioperative factors, primarily including

cardiopulmonary bypass time and the extent of surgical trauma

(6). If ischemic hypoperfusion in patients is not diagnosed and

addressed promptly in the early stage, it can lead to reduced

tissue and organ oxygenation and metabolism, subsequently

triggering multiple organ dysfunction and increased mortality

(18). Moreover, systemic inflammatory responses constitute a

crucial pathophysiological component of postoperative AGI (19).

In this study, involving 188 patients with ATAAD undergoing

cardiopulmonary bypass, we applied an unsupervised machine

learning algorithm to perform phenogroups stratification and

evaluated the risk of AGI across different Phenogroups. Utilizing

K-means clustering based on clinical and laboratory data, we

categorized patients into three distinct phenotypic phenogroups.

The results demonstrated significant differences in baseline

characteristics among the three phenogroups. The phenogroup-A
frontiersin.org
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TABLE 2 Subsequent intraoperative and postoperative outcome characteristics of the three phenogroups.

Outcome Phenogroup A Phenogroup B Phenogroup C P
Operation time (h) 9.73 (2.35) 10.2 (2.82) 9.94 (2.13) 0.586

CPB time(min) 191 (49.4) 218 (97.7) 187 (38.0) 0.020

Aortic clamping time(min) 108 (26.4) 116 (49.0) 104 (24.7) 0.169

Plasma (ml) 1,087 (650) 1,116 (640) 1,039 (668) 0.832

RBC (u) 3.33 (4.55) 5.29 (5.15) 3.35 (3.19) 0.023

Ventilator time (d) 1.84 (1.42) 4.42 (4.83) 2.75 (2.18) <0.001

ICU time (d) 5.74 (2.73) 9.66 (7.76) 7.81 (3.91) <0.001

Parenteral nutrition <0.001
No 74 (91.4%) 38 (64.4%) 40 (83.3%)

Yes 7 (8.64%) 21 (35.6%) 8 (16.7%)

Nosocomial infection 0.001
No 57 (70.4%) 24 (40.7%) 21 (43.8%)

Yes 24 (29.6%) 35 (59.3%) 27 (56.2%)

Hepatic insufficiency 0.070
No 50 (61.7%) 25 (42.4%) 24 (50.0%)

Yes 31 (38.3%) 34 (57.6%) 24 (50.0%)

Renal insufficiency 0.056
No 54 (66.7%) 28 (47.5%) 25 (52.1%)

Yes 27 (33.3%) 31 (52.5%) 23 (47.9%)

Neurological complications 0.001
No 66 (81.5%) 31 (52.5%) 29 (60.4%)

Yes 15 (18.5%) 28 (47.5%) 19 (39.6%)

AGI <0.001
No 68 (84.0%) 28 (47.5%) 32 (66.7%)

Yes 13 (16.0%) 31 (52.5%) 16 (33.3%)

In-hospital mortality 0.002
No 79 (97.5%) 48 (81.4%) 46 (95.8%)

Yes 2 (2.47%) 11 (18.6%) 2 (4.17%)

RBC, red blood cell; CPB, cardiopulmonary bypass.

FIGURE 3

The postoperative complications in the three phenogroups (A) and mapping relationship between phenogroups and the complications (B).

Ma et al. 10.3389/fcvm.2024.1514751
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FIGURE 4

The heat map shows the logarithm of the median of various blood markers with their hierarchical clustering relationship. Neu, neutrophils; Lym,
lymphocytes; mono, monocytes; N/L, neutrophils/lymphocytes; L/M, lymphocytes/monocytes; Lc, lactic dehydrogenase; CK, creatine kinase.

TABLE 3 Subsequent intraoperative and postoperative outcome characteristics of the three phenogroups.

Characteristic Phenogroup A Phenogroup B Phenogroup C P
Neutrophils 9.53 (7.56, 11.71) 8.83 (7.28, 11.55) 9.37 (7.705, 11.65) 0.83

Lymphocytes 0.3 (0.18, 0.46) 0.28 (0.19, 0.53) 0.25 (0.2, 0.33) 0.49

Monocytes 0.46 (0.33, 0.64) 0.56 (0.34, 0.73) 0.46 (0.36, 0.59) 0.47

Neu/Lym 30.39 (21.11,49.14) 35.14 (17.72,46.35) 36.09 (24.28, 46.6) 0.51

Lym/Mono 0.54 (.36, 0.98) 0.61 (0.35, 0.98) 0.53 (0.40, 0.75) 0.85

PLT 98 (71, 140) 70 (55, 104) 90 (66.5, 106) 0.002

CRP 98.24 (73, 155.51) 137.05 (101, 204.95) 111.79 (85.79, 136.14) 0.003

Lactic dehydrogenase 475.19 (371.64, 617.24) 613 (422, 1,309) 566.34 (393.88, 895) 0.005

Creatine kinase 1,672 (945, 3,534) 2,674 (1,546, 6,133) 2,921 (1,467.55, 9,087) 0.004

Neu/Lym, Neutrophils/Lymphocytes; Lym/Mono, Lymphocytes/Monocytes.

Ma et al. 10.3389/fcvm.2024.1514751
comprised patients of intermediate age and relatively stable

preoperative conditions. Phenogroups-B exhibited the highest

risk of AGI, including elderly patients with elevated preoperative

lactate and D-dimer levels, 91.5% of patients in this group

showed poor mesenteric perfusion. This group also displayed

prolonged operative times, increased intraoperative red blood cell

transfusion requirements, prolonged mechanical ventilation

duration, and extended hospital stays. Computed tomography

angiography (CTA) revealed a higher prevalence of preexisting

heart failure and impaired vascular perfusion in this phenogroup.

Phenogroups-C included younger patients with fewer
Frontiers in Cardiovascular Medicine 08
comorbidities and better preoperative clinical profiles. These

differences highlighted the importance of phenotypic

heterogeneity in understanding patients’ risk profiles. Notably,

not only did phenogroups-B patients have the highest incidence

of AGI (52.5%), significantly higher than the other two

phenogroups, but they also exhibited the highest in-hospital

mortality rate. This finding underscored the close association

between AGI and poor postoperative outcomes, emphasizing the

critical importance of preventing and treating AGI to improve

prognosis (20). Such phenogroups stratification is crucial as it

allows for personalized, tailored patient care approaches,
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FIGURE 5

The random forest algorithm was employed to rank the importance of risk factors influencing AGI occurrence. (A) phenogroup-A, (B) phenogroup-B,
(C) phenogroup-C.

Ma et al. 10.3389/fcvm.2024.1514751
reflecting the principles of precision medicine. Furthermore, we

employed a random RF to analyze the high-risk factors and their

weights for AGI in phenogroups-B patients. The top four

influencing factors were identified as CPB time, aortic clamping

time, operation time, and ventilator time. These factors, to some

extent, reflected the magnitude of surgical trauma and the degree

of ischemia-reperfusion injury, suggesting a close association

between AGI occurrence and surgical trauma as well as

ischemia-reperfusion injury (21).

The analysis of postoperative inflammatory biomarkers

revealed distinct patterns among the phenogroups. Phenogroup-

B showed the most robust inflammatory response, with

significantly elevated CRP and LDH levels, indicating a higher

degree of systemic inflammation. Previous studies have

established that elevated CRP and LDH levels are associated

with poor outcomes in gastrointestinal injuries, further

corroborating our findings (22, 23). These biomarkers can thus

serve as valuable indicators for early intervention and

monitoring in high-risk patients. Additionally, the distinct

inflammatory profiles suggest that different inflammatory

pathways might be involved in AGI pathogenesis among the

phenogroups, which could inform the development of

targeted therapies.

Traditional risk assessment methods suffer from inherent

subjectivity and limitations of single-dimensional analysis. This

study pioneered the application of unsupervised machine

learning for risk stratification of postoperative AGI in patients
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with ATAAD. By automatically discovering heterogeneous

subgroups based on patients’ multidimensional clinical features,

this innovative approach circumvents the need for manual

threshold setting and avoids subjectivity. The results revealed

significant differences in the incidence of AGI and other

postoperative complications across different phenogroups,

highlighting the advantages of machine learning in

individualized risk assessment. This approach lays the

foundation for tailored preventive and therapeutic measures,

underscoring its significant clinical translational value. For

future research, integrating intraoperative and postoperative

dynamic data could further enhance the performance of

phenogroup classification and risk prediction models

through the development of multi-label classification models

for comprehensive evaluation of various postoperative

complications. Additionally, extending the application of these

models to preoperative assessments could support decision-

making for individualized surgical plans and perioperative

management strategies, broadening the potential applications of

machine learning in perioperative risk assessment (24).

Our study has some limitations. First, the retrospective single-

center study design lacks prospective multi-center data, which may

limit the extrapolation and generalizability of the results. Second,

the sample size is relatively small (188 cases), and after

stratification by phenogroups, the sample size of each

phenogroups may be further reduced, affecting the statistical

power of the analysis. Third, although the high-risk factors for
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different AGI phenogroups were analyzed, the potential

interactions among these factors were not explored, which could

aid in the refinement of risk stratification. Fourth, the absence of

an external validation cohort may lead to overly optimistic

results from the internal validation, and external data is needed

to validate the model’s generalizability. Finally, although our

study provides valuable insights into patient stratification using

unsupervised machine learning, the absence of more specific

preoperative and intraoperative management strategies (e.g.,

preoperative restoration of mesenteric perfusion and

cardiorespiratory variables) limits the potential for tailoring

individualized treatments for high-risk patients identified in this

study. Future prospective studies with more comprehensive data

collection, including hemodynamic, renal, and perfusion

parameters, are necessary to validate our findings and provide

more targeted recommendations for clinical practice.
5 Conclusions

In conclusion, Phenogroups stratification based on

unsupervised learning can accurately identify high-risk

populations for postoperative AGI in ATAAD, providing a new

approach and basis for implementing individualized preventive

and therapeutic measures in clinical practice. This approach has

certain innovative value and potential for clinical translation.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by the Ethics

Committee of the First Hospital of Lanzhou University

(LDYYLL-2021-422). The studies were conducted in accordance

with the local legislation and institutional requirements. The

ethics committee/institutional review board waived the

requirement of written informed consent for participation from

the participants or the participants’ legal guardians/next of kin

due to the retrospective nature of the study. Written informed

consent was not obtained from the individual(s) for

the publication of any potentially identifiable images or

data included in this article due to the retrospective nature of

the study.
Author contributions

YM: Conceptualization, Data curation, Funding acquisition,

Methodology, Project administration, Resources, Writing –

original draft, Writing – review & editing. XY: Conceptualization,

Formal Analysis, Investigation, Methodology, Validation,
Frontiers in Cardiovascular Medicine 10
Writing – original draft. CW: Conceptualization, Investigation,

Methodology, Supervision, Validation, Writing – original draft.

XW: Data curation, Investigation, Methodology, Project

administration, Software, Writing – original draft. BZ:

Conceptualization, Formal Analysis, Funding acquisition,

Methodology, Writing – original draft. YiL: Conceptualization,

Formal Analysis, Investigation, Project administration,

Supervision, Writing – original draft. RW: Conceptualization,

Formal Analysis, Investigation, Methodology, Validation,

Writing – original draft. ZB: Conceptualization, Methodology,

Project administration, Writing – original draft. PY:

Conceptualization, Formal Analysis, Investigation, Methodology,

Resources, Writing – original draft. HZ: Methodology, Project

administration, Resources, Validation, Writing – original draft,

Writing – review & editing, Conceptualization, Investigation.

YaL: Conceptualization, Formal Analysis, Funding acquisition,

Investigation, Methodology, Resources, Validation, Writing –

original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by Foundation of The First Hospital of Lanzhou

University (ldyyyn2023-95); High-end foreign project Plan of the

Ministry of Science and Technology (G2023175006l); Gansu

Province Joint Research Fund project (23JRRA1496).
Acknowledgments

We thank Professor Yaolong Chen, Dan Xu, Junxian Zhao,
Tianhu Liang from the Research Center for Clinical Medical of
the First Hospital of Lanzhou University for their valuable
comments and suggestions, which provided important support
for the design and implementation of this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those of
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1514751
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Ma et al. 10.3389/fcvm.2024.1514751
their affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by

the publisher.
Frontiers in Cardiovascular Medicine 11
Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcvm.2024.

1514751/full#supplementary-material
References
1. Rylski B, Schilling O, Czerny M. Acute aortic dissection: evidence, uncertainties,
and future therapies. Eur Heart J. (2023) 44(10):813–21. doi: 10.1093/eurheartj/ehac757

2. Rady MY, Ryan T, Starr NJ. Perioperative determinants of morbidity and
mortality in elderly patients undergoing cardiac surgery. Crit Care Med. (1998)
26(2):225–35. doi: 10.1097/00003246-199802000-00016

3. Pape LA, Awais M, Woznicki EM, Suzuki T, Trimarchi S, Evangelista A, et al.
Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends
from the international registry of acute aortic dissection. J Am Coll Cardiol. (2015)
66(4):350–8. doi: 10.1016/j.jacc.2015.05.029

4. Elsayed RS, Cohen RG, Fleischman F, Bowdish ME. Acute type A aortic
dissection. Cardiol Clin. (2017) 35(3):331–45. doi: 10.1016/j.ccl.2017.03.004

5. Malaisrie SC, Szeto WY, Halas M, Girardi LN, Coselli JS, Sundt TM 3rd, et al.
2021 the American Association for thoracic surgery expert consensus document:
surgical treatment of acute type A aortic dissection. J Thorac Cardiovasc Surg.
(2021) 162(3):735–58.e732. doi: 10.1016/j.jtcvs.2021.04.053

6. Ohri SK, Velissaris T. Gastrointestinal dysfunction following cardiac surgery.
Perfusion. (2006) 21(4):215–23. doi: 10.1191/0267659106pf871oa

7. Hashemzadeh K, Hashemzadeh S. Predictors and outcome of gastrointestinal
complications after cardiac surgery. Minerva Chir. (2012) 67(4):327–35.

8. Dong G, Liu C, Xu B, Jing H, Li D, Wu H. Postoperative abdominal complications
after cardiopulmonary bypass. J Cardiothorac Surg. (2012) 7:108. doi: 10.1186/
1749-8090-7-108

9. Lu R, Yang B. Incidence and influencing factors of acute gastrointestinal injury
after cardiac surgery. BMC Cardiovasc Disord. (2023) 23(1):437. doi: 10.1186/
s12872-023-03475-6

10. Allen SJ. Gastrointestinal complications and cardiac surgery. J Extra Corpor
Technol. (2014) 46(2):142–9. doi: 10.1051/ject/201446142

11. Naar L, Dorken Gallastegi A, Kongkaewpaisan N, Kokoroskos N, Tolis G,
Melnitchouk S, et al. Risk factors for ischemic gastrointestinal complications in
patients undergoing open cardiac surgical procedures: a single-center retrospective
experience. J Card Surg. (2022) 37(4):808–17. doi: 10.1111/jocs.16294

12. Qin Y, Kernan KF, Fan Z, Park HJ, Kim S, Canna SW, et al. Machine learning
derivation of four computable 24-h pediatric sepsis phenotypes to facilitate enrollment
in early personalized anti-inflammatory clinical trials. Critical Care (London,
England). (2022) 26(1):128. doi: 10.1186/s13054-022-03977-3

13. Cikes M, Sanchez-Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C,
et al. Machine learning-based phenogrouping in heart failure to identify responders
to cardiac resynchronization therapy. Eur J Heart Fail. (2019) 21(1):74–85. doi: 10.
1002/ejhf.1333
14. Reintam Blaser A, Malbrain ML, Starkopf J, Fruhwald S, Jakob SM, De Waele J,
et al. Gastrointestinal function in intensive care patients: terminology, definitions
and management. Recommendations of the ESICM working group on
abdominal problems. Intensive Care Med. (2012) 38(3):384–94. doi: 10.1007/
s00134-011-2459-y

15. Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. Artificial
intelligence in anesthesiology: current techniques, clinical applications, and
limitations. Anesthesiology. (2020) 132(2):379–94. doi: 10.1097/ALN.
0000000000002960

16. Chaudhry R, Zaki J, Wegner R, Pednekar G, Tse A, Sheinbaum R, et al.
Gastrointestinal complications after cardiac surgery: a nationwide population-based
analysis of morbidity and mortality predictors. J Cardiothorac Vasc Anesth. (2017)
31(4):1268–74. doi: 10.1053/j.jvca.2017.04.013

17. Viana FF, Chen Y, Almeida AA, Baxter HD, Cochrane AD, Smith JA.
Gastrointestinal complications after cardiac surgery: 10-year experience of a single
Australian centre. ANZ J Surg. (2013) 83(9):651–6. doi: 10.1111/ans.12134

18. Elgharably H, Gamaleldin M, Ayyat KS, Zaki A, Hodges K, Kindzelski B,
et al. Serious gastrointestinal complications after cardiac surgery and associated
mortality. Ann Thorac Surg. (2021) 112(4):1266–74. doi: 10.1016/j.athoracsur.2020.
09.034

19. Chor CYT, Mahmood S, Khan IH, Shirke M, Harky A. Gastrointestinal
complications following cardiac surgery. Asian Cardiovasc Thorac Ann. (2020)
28(9):621–32. doi: 10.1177/0218492320949084

20. Vohra HA, Farid S, Bahrami T, Gaer JA. Predictors of survival after
gastrointestinal complications in bypass grafting. Asian Cardiovasc Thorac Ann.
(2011) 19(1):27–32. doi: 10.1177/0218492310394803

21. Shimizu K, Ogura H, Hamasaki T, Goto M, Tasaki O, Asahara T, et al. Altered
gut flora are associated with septic complications and death in critically ill patients
with systemic inflammatory response syndrome. Dig Dis Sci. (2011) 56(4):1171–7.
doi: 10.1007/s10620-010-1418-8

22. Wang X, Deng C, Guo F, Cao X, Yan Y. Relationship between the postoperative
lactate dynamic levels, the acute gastrointestinal injury and the prognosis among
patients who undergo surgical treatment for acute type A aortic dissection. Heliyon.
(2023) 9(6):e17128. doi: 10.1016/j.heliyon.2023.e17128

23. Zhang QC, Hastings C, Johnson K, Slaven E. Metformin-Associated lactic
acidosis presenting like acute mesenteric ischemia. J Emerg Med. (2019)
57(5):720–2. doi: 10.1016/j.jemermed.2019.04.024

24. Roohi A, Faust K, Djuric U, Diamandis P. Unsupervised machine learning in
pathology: the next frontier. Surg Pathol Clin. (2020) 13(2):349–58. doi: 10.1016/j.
path.2020.01.002
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcvm.2024.1514751/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcvm.2024.1514751/full#supplementary-material
https://doi.org/10.1093/eurheartj/ehac757
https://doi.org/10.1097/00003246-�199802000-�00016
https://doi.org/10.1016/j.jacc.2015.05.029
https://doi.org/10.1016/j.ccl.2017.03.004
https://doi.org/10.1016/j.jtcvs.2021.04.053
https://doi.org/10.1191/0267659106pf871oa
https://doi.org/10.1186/1749-�8090-�7-�108
https://doi.org/10.1186/1749-�8090-�7-�108
https://doi.org/10.1186/s12872-�023-�03475-�6
https://doi.org/10.1186/s12872-�023-�03475-�6
https://doi.org/10.1051/ject/201446142
https://doi.org/10.1111/jocs.16294
https://doi.org/10.1186/s13054-�022-�03977-�3
https://doi.org/10.1002/ejhf.1333
https://doi.org/10.1002/ejhf.1333
https://doi.org/10.1007/s00134-�011-�2459-�y
https://doi.org/10.1007/s00134-�011-�2459-�y
https://doi.org/10.1097/ALN.0000000000002960
https://doi.org/10.1097/ALN.0000000000002960
https://doi.org/10.1053/j.jvca.2017.04.013
https://doi.org/10.1111/ans.12134
https://doi.org/10.1016/j.athoracsur.2020.09.034
https://doi.org/10.1016/j.athoracsur.2020.09.034
https://doi.org/10.1177/0218492320949084
https://doi.org/10.1177/0218492310394803
https://doi.org/10.1007/s10620-�010-�1418-�8
https://doi.org/10.1016/j.heliyon.2023.e17128
https://doi.org/10.1016/j.jemermed.2019.04.024
https://doi.org/10.1016/j.path.2020.01.002
https://doi.org/10.1016/j.path.2020.01.002
https://doi.org/10.3389/fcvm.2024.1514751
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/

	Unsupervised machine learning model for phenogroup-based stratification in acute type A aortic dissection to identify postoperative acute gastrointestinal injury
	Introduction
	Methods
	Patients
	AGI diagnosis
	Data collection
	Model construction and evaluation
	Statistical analysis

	Results
	Patient characteristics
	Association between phenogroups and postoperative complications
	Associations between phenogroups and inflammatory biomarkers
	Risk factor analysis for AGI across different phenogroups

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References


