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Obesity is one of the major global health concerns of the 21st century,
associated with many comorbidities such as type 2 diabetes mellitus (T2DM),
metabolic dysfunction-associated steatotic liver disease, and early and
aggressive atherosclerotic cardiovascular disease, which is the leading cause
of death worldwide. Bile acids (BAs) and incretins are gut hormones involved
in digestion and absorption of fatty acids, and insulin secretion, respectively. In
recent years BAs and incretins are increasingly recognized as key signaling
molecules, which target multiple tissues and organs, beyond the gastro-
intestinal system. Moreover, incretin-based therapy has revolutionized the
treatment of T2DM and obesity. This mini review highlights the current
knowledge about dysregulations in BA homeostasis in obesity with a special
focus on atherosclerosis as well as athero-modulating roles of incretins and
currently available incretin-based therapies.
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1 Introduction

Obesity is a globally increasing epidemic (1, 2) associated with comorbid conditions

such as type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated steatotic

liver disease, and atherosclerotic cardiovascular disease (CVD) (3–6). Atherosclerosis

is a systemic chronic inflammatory disease characterized by endothelial dysfunction,

accumulation of lipids, immune-inflammatory cells, and fibrous neointimal tissue in

the arterial wall, leading to the formation of plaques (7–9). Endothelial dysfunction,

which is characterized by lower bioavailability of the vasorelaxing nitric oxide (NO)

and increased production of the vasoconstricting endothelin-1 (ET-1), is, together

with a dysregulated metabolism of low density lipoprotein (LDL) and high density

lipoprotein (HDL), a key player in atherosclerosis onset and progression (8, 10–13).

LDL cholesterol has a well-established causal role in the development of

atherosclerosis (14, 15). Elevated circulating levels of LDL cholesterol after deposition

in the arterial intima, undergo oxidation, becoming pro-inflammatory and attracting

monocytes-macrophages (16). Macrophages engulf oxidized LDLs becoming foam

cells, a hallmark of early atherosclerotic lesions (17). Over time, the accumulation of

foam cells, along with other cellular debris, leads to the formation of fatty streaks

and progression to advanced and rupture-prone plaques (18–20). In contrast to LDL,

HDL cholesterol is often termed the “good” cholesterol. This is, however, an

oversimplification of the complex physiological actions of this class of lipoprotein.
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The best known function of HDL is to mediate reverse

cholesterol transport (RCT), by which excessive cholesterol is

removed from arterial walls and peripheral tissues and

transported back to the liver for excretion or reuse to

synthetize hormones (21, 22). While low levels of HDL-

cholesterol increase the risk for CVD, elevating HDL levels by

pharmacological inhibition of cholesteryl ester transfer protein

(CETP), an enzyme catalyzing the transfer of cholesterol from

HDL to LDL, and triglycerides from LDL to HDL, did not

result in improved cardiovascular outcome (23–25). This

disappointing result highlighted that the function of the diverse

molecular components of HDL rather than solely its

cholesterol content is crucial in reducing cardiovascular risk

(26, 27). Once dysfunctional, HDL loses its protective RCT

capacity and fails to prevent LDL oxidation (oxLDL), becoming

pro-inflammatory and pro-atherosclerotic (28).

BAs are amphipathic molecules synthesized from cholesterol in

the liver. BAs play a crucial role in the intestinal digestion

and absorption of dietary fats (29). Beyond their digestive

functions, BAs are important signaling molecules. Among several

receptors activated by BAs, the most studied are Farnesoid

X Receptor (FXR) and G protein-coupled bile acid receptor 1

(GPBAR1), also known as TGR5, which are present in most cell

types and pathophysiological processes associated with

atherosclerosis development (30–32). In obesity, increased BA

production in the liver and slightly elevated BA levels in the

systemic circulation are reported (33, 34) as well as reduced

circulating concentrations (35). Furthermore, obesity-induced

changes in the gut microbiome composition are associated with

altered conversion rates of primary to secondary BAs, which may

alter BA-mediated FXR and TGR5 signaling (36). Physiologically,

TGR5 receptor activation in the intestine by BAs promotes the

release of incretins, which exert vaso-protective actions (37, 38).

Incretins, glucose-dependent insulinotropic polypeptide (GIP)

and glucagon like peptide 1 (GLP-1), are gut hormones that

induce insulin release from the pancreas in a glucose-dependent

manner (39, 40). GIP and GLP-1 act on multiple target cells via

G-protein coupled receptors GIPR and GLP1R, respectively.

These receptors are expressed in numerous organs including

bone, heart and blood vessels (41). The incretin signaling is

impaired in obesity and T2DM (42).

Current research on the pathophysiology of atherosclerosis

associated with obesity is exploring the role of BAs and incretins

(43, 44). This mini review summarizes current evidence on the

role of BAs, incretins, and incretin-based therapies in

modulating atherosclerosis.
2 BA, incretins and atherosclerosis

2.1 Bile acids

BAs are classified into two main types: primary BA, such as

cholic acid and chenodeoxycholic acid and secondary BAs, (i.e.,

deoxycholic acid and lithocholic acid) (45), the latter originating
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by bacterial modification in the intestine (46) via deconjugation

and dehydroxylation processes (47). In the post-prandial phase

90%–95% of BAs are reabsorbed in the ileum and transported

back to the liver. After their almost complete reabsorption, BAs

are stored in the gallbladder and await to be secreted into the

duodenum upon food intake. Around 5% of total BAs escape

liver reabsorption and are found in the systemic circulation

reaching serum concentrations of around 1–3 µM in healthy lean

individuals (48). A graphical summary of BA metabolism is

provided in Figure 1.

BAs-dependent activation of FXR in human liver cell lines,

upregulates LDL receptor expression and activity and inhibits its

degradation leading to a reduction of LDL cholesterol levels

(49–51). However, FXR also reduced the main HDL

apolipoprotein ApoA-I transcription, decreasing HDL levels in

murine animal models (52). FXR and LDL receptor double

knockout male mice were protected from atherosclerosis contrary

to female double knockouts (53). FXR and apolipoprotein (Apo)

E double knockouts showed severe plaque formation compared

to wild-type, and single FXR-/-, and ApoE-/- mice (54). In vivo

studies in rats have shown that FXR activation is beneficial in

different vascular cell types [e.g., endothelial cells (ECs) and

vascular smooth muscle cells] to revert their pro-constrictory and

pro-inflammatory phenotype (Figure 2A), as well as neo-intima

formation, all changes, which are promoting atherosclerosis

development (55–58). FXR activation enhances NO production

and reduces ET-1 expression contributing to vasodilation in

isolated rat pulmonary ECs (59, 60). On the other hand, hepatic

TGR5 stimulation prevents hepatic BA and ectopic lipid

accumulation in different murine models (61–63). Activation of

TGR5 in macrophages is beneficial because it attenuates foam

cell formation and inhibits the activation of inflammation, as

evidenced by genetically modifying TGR5 in murine peritoneal

macrophages (64). An increase in specific BA subspecies has

been associated with atherosclerosis in human and animal

studies. For instance, in T2DM patients carotid intima media

thickness (cITM), a surrogate marker of subclinical

atherosclerosis, was associated with higher deoxycholic acid and

taurodeoxycholic acid levels, and lower levels of taurocholic acid

than patients with normal cITM (65, 66). Conversely, the glycine

conjugates of cholic acid and deoxycholic as well as lithocholic

acid were found to be protective when atherosclerosis patients

were compared to a control cohort (67). Of note, a disrupted BA

signaling impairs glucose and lipid metabolism, exacerbating

conditions like insulin resistance and fatty liver disease, which

are major pro-atherosclerotic metabolic derangements (68, 69).
2.2 Incretins

GIP is secreted by the duodenal and jejunal K cells upon

ingestion of carbohydrates and lipids, while GLP-1 is secreted by

the ileal L cells (70, 71). Along with the induction of insulin

secretion, GIP and GLP-1 reduce gastric emptying, and GLP-1

lowers glucagon secretion (71, 72). Physiologically, these
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FIGURE 1

Graphical summary of bile acid (BA) metabolism in humans. BAs are synthesized in the liver (1), conjugated with amino acids, mainly glycine (G) and
taurine (T) (2) and stored in the gall bladder (3). Following food intake, BAs are released into the small intestine to aid lipid absorption (4). Around
90% of the BA are reabsorbed in the terminal part of the ileum (5) reaching the liver via the portal circulation. Only around 5% of BAs escape liver
reabsorption and are found in the systemic circulation (6). In the terminal ileum as well as in the colon BAs stimulate incretin secretion of intestinal
endocrine cells via activating the TGR5 receptor (7). In the intestine BAs can be processed by the gut microbiota (8). Following an initial
deconjugation the primary cholic acid (CA) is converted into deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA) is converted into lithocholic
acid (LCA). Only a small percentage of the BA is excreted with the feces (9). Created in BioRender. Gindlhuber, J. (2024) https://biorender.com/w38u902.
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hormones have a half-life of just a few minutes upon secretion,

as GIP and GLP-1 are rapidly cleaved and inactivated by

diaminopeptidyl peptidase-4 (DPP4) (73).
2.3 GIP

In vitro studies in ECs have shown that GIP have both anti-

and pro-atherogenic effects. In human umbilical vein ECs

(HUVEC) and canine portal vein EC, GIP induced NO

production (74, 75) and reduced advanced glycation end

products-induced oxidative stress and inflammation (76) but was

also reported to increase ET-1 (74, 77, 78), (Figure 2B).
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Monocyte-macrophages transformation into foam cells

contributes to the pathogenesis of atherosclerosis (79–81). GIPR

is expressed in human monocytes, mouse peritoneal

macrophages and human monocyte-derived macrophages, with

the GIPR expression in human monocytes being higher than

in the differentiated macrophages, at least in vitro (82).

Moreover, GIP exerts anti-inflammatory effects by suppressing

lipopolysaccharide-induced tumor necrosis factor-α (TNFα) or

inducible NO synthase (iNOS) in human monocyte THP-1 cells

(83), as well as suppressing the chemokine ligand 2 (CCL2)-

induced migration also in mouse monocytes (84).

Animal studies using ApoE-/- deficient mice show anti-atherogenic

effects of GIP. The infusion of active GIP (25 nmol/kg/day) for
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FIGURE 2

(A) Schematic overview of reported effects of BA receptor activation in vascular cells. In endothelial cells (ECs), Farnesoid X Receptor (FXR) activation
increases nitric oxide (NO) production and reduces endothelin-1 (ET-1) expression contributing to vasorelaxation. Vascular smooth muscle cells
reduce their proliferative activity upon FXR activation resulting in reduced neo intima formation. G protein-coupled bile acid receptor 1 (TGR-5)
activation in endocrine cells increases the amount of glucagon-like peptide 1 (GLP-1) in the systemic circulation. Macrophages react to TGR5
activation with reduced lipid uptake and a reduction in inflammatory signaling. (B) Schematic overview of the effects of incretins and incretin-
based therapy on ECs and plaque formation. GLP-1 induces NO production, while glucose-dependent insulinotropic polypeptide (GIP) induces
the production of both NO and ET-1. Both GIP and GLP1 reduce the formation of reactive oxygen species (ROS). Native GIP and GLP-1, as well as
GLP1Ras, semaglutide and liraglutide, reduce plaque formation, macrophage infiltration and foam cell formation. (C) Native GLP-1 decreases
chylomicron formation and VLDL cholesterol levels, while GLP1RA and GLP1R/GIPR co-agonist therapy ameliorates the lipoprotein profile of
patients by lowering VLDL and LDL cholesterol, and increasing HDL cholesterol. Created in BioRender. Kirsch, A. (2024) https://BioRender.com/
u26n602.
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4 weeks blunted the aortic plaque formation and macrophage

accumulation within the plaque (82). Moreover, decreased foam

cell formation and downregulation of the scavenger receptor

CD36 and cholesteryl ester-forming acyl-coenzyme A: cholesterol

acyltransferase-1 in macrophages was reported (82). Anti-

atherogenic effects were also observed in streptozotocin-induced

diabetic ApoE-/- mice, where GIP infusion led to a reduction of

aortic plaque formation, intra-plaque macrophage accumulation

and macrophage foam cell formation (85). Moreover,

overexpression of GIP has been reported to stabilize the

atherosclerotic plaque in non-diabetic ApoE-/- mice by blocking

monocyte/macrophage activation (84). The anti-atherogenic effect

of GIPR- agonism has been described also in LDLr -/- mice fed

with a high fat, high cholesterol diet. Treatment of these mice
Frontiers in Cardiovascular Medicine 04
with a long-acting acylated GIP analog reduced dyslipidemia and

atherosclerotic plaque formation (86). Loss of GIPR induced

aortic atherosclerosis and inflammation in ApoE−/−:Gipr−/−
high fat diet-fed mice despite a reduced weight gain and

preserved glucose homeostasis compared to ApoE−/−:Gipr+/+
mice (87), further confirming the anti- inflammatory role of GIP

in atherosclerosis (Figure 2B).
2.4 GLP-1

Native GLP-1 has been shown to be atheroprotective in vitro as

it stimulates the production of vasodilatory NO in ECs (35, 75).

Similar to GIPR, GLP1R is also expressed in macrophages, and
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treatment with native GLP-1 decreased the uptake of oxLDL and

expression of CD36 in human monocyte-derived macrophages

(88). Administration of active GLP-1 to ApoE -/- mice

significantly suppressed atherosclerotic lesions and macrophage

infiltration in the aortic wall compared to vehicle controls (82).

Infusions of recombinant GLP-1 in rats dramatically decreases

intestinal lymph flow and reduces triglyceride absorption and

ApoB and ApoA-IV production (89). Moreover, portal vein

injections of GLP-1 in hamsters and mice decreases postprandial

chylomicron (CM) and VLDL secretion via vagal afferent nerves

originating in the portal vein (90). These GLP-1 effects could

contribute to its atheroprotection, as remnant CM and VLDL

have atherogenic properties (91) (Figure 2C).
3 Incretin-based therapy and
modulation of atherosclerosis

Several classes of incretin-based drugs have been developed to

treat T2DM, including DPP4-inhibitors and GLP1R agonists

(GLP1RAs). DPP4-inhibitors will not be discussed in detail in

this mini review; for an overview on the atheroprotective role of

DPP-4 inhibitors in both human and animal models see (92, 93).

Incretin-based drugs, especially GLP1R agonists, beyond

improving glucose levels, have shown beneficial effects on the

lipid profile (Figure 2C), weight reduction, and cardiovascular

protective effects (94). The most commonly reported side effects

are delayed gastric emptying, bloating, diarrhea and vomiting,

although drug titration mitigates the incidence of these side

effects (94). GLP1RA and the dual GIPR and GLP1R agonist,

tirzepatide, are currently also used for weight management of

overweight/obese patients with and without CVD (95).
3.1 GLP1R agonists

GLP1RAs activate the GLP1R and are resistant to inactivation

by DPP-4 (96). The first GLP1R agonist in clinical use was

exenatide (exendin-4) (97), subsequently, various GLP1RAs were

developed based on the human GLP-1 peptide, including

liraglutide, dulaglutide and semaglutide, which have different

characteristics pertaining to route and frequency of

administration, and pharmacokinetics (98).

3.1.1 Preclinical studies
Mechanistic studies have addressed the effect of GLP1RAs on

atherosclerosis in rodent models. GLP-1 peptide analogues

CNTO3649 and exendin-4 reduced VLDL production and

hepatic steatosis after 4 weeks of treatment in high fat diet-fed

APOE*3-Leiden transgenic mice, a mouse model with human-

like lipoprotein metabolism (i.e., high triglycerides, LDL and

VLDL, low HDL) and accelerated atherosclerosis development

(99). Semaglutide and liraglutide reduced atherosclerotic plaque

formation in aortas of ApoE -/- and LDLr -/- mice, and

semaglutide blunted gene expression of pro-inflammatory and

osteogenic proteins, such as TNFα and osteopontin (100).
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Liraglutide alone inhibited the progression of early onset, low-

burden atherosclerotic disease (101) as well as attenuated pre-

established atherosclerosis in ApoE -/- mice by reducing

proinflammatory immune cells and mediators (102), suppressing

foam cell formation (103) and lowering the endothelial

expression of the proinflammatory vascular cell adhesion

molecule 1 (104).

3.1.2 Clinical trials
Several randomized cardiovascular outcome trials have been

conducted, showing positive effects of GLP1RA on cardiovascular

risk reduction (105–111). In addition to enhancing insulin

secretion, GLP1RAs may reduce postprandial chylomicron

overproduction in T2DM patients by reducing intestinal

absorption of dietary lipids and enhancing hepatic fatty acid

oxidation (112). Exenatide and liraglutide have been reported to

be equally effective in lowering postprandial dyslipidaemia, an

effect observed immediately after initial administration, as well as

after a two-week treatment period (113). In a double-blind,

randomized, placebo-controlled, crossover study with subjects

who exhibited impaired glucose tolerance or had recent-onset

T2DM, a single subcutaneous injection of exenatide strongly and

consistently inhibited the postprandial increase of proatherogenic

lipids and lipoproteins (114). A clinical study in patients with

T2DM treatment with a long-lasting release exenatide on top of

metformin, a first-line therapy for T2DM, led to improved

cardiometabolic parameters, including cITM and flow-mediated

dilation (115). In two prospective studies, liraglutide treatment

decreased cITM, total- and LDL-cholesterol as well as

triglycerides after 8 months of treatment in T2DM patients, as

well as during an 18-month follow-up in subjects with T2DM

and metabolic syndrome (116), thereby improving

cardiometabolic risk factors. Moreover, liraglutide reduced the

level of atherogenic small dense LDL-3 subfraction in association

with a lower cITM (117). Semaglutide also reduced cITM (118),

and improved the cholesterol profile, triglyceride levels (119, 120)

and reduced oxLDL (121) in T2DM patients. Further studies are

needed to assess the effect of GLP1RA on other atherogenic

lipoproteins such as lipoprotein(a) or electronegative LDL.
3.2 Dual GIPR/GLP1R agonism

Tirzepatide is the first unimolecular dual GIPR/GLP1R agonist

for the treatment of T2DM and overweight/obesity (122). The co-

agonism of GLP-1 and GIP results in significantly greater blood

glucose and weight reduction than for GLP1R agonism alone

(123, 124). Moreover, tirzepatide treatment in patients with

obesity and prediabetes resulted in a lower risk of progression to

T2DM compared to placebo (125). The mechanism behind the

greater body weight reduction in humans is still being

investigated (126).

3.2.1 Preclinical studies
Animal studies suggest that GIP suppresses food intake via

neural GIPR activation, although it is still not clear especially for
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the peripheral actions whether or not continuous GIPR agonism

causes functional antagonism of the GIPR (126).

To the best of our knowledge, there are no published studies

regarding the mechanism of lipid lowering effect by tirzepatide

in humans. However, a recent study in APOE*3-Leiden. CETP

mice, a transgenic mouse model with accelerated atherosclerosis,

showed that combined GIPR/GLP1R agonism attenuated the

development of severe atherosclerotic lesions (127, 128). GIPR/

GLP1R agonism decreased markers of low-grade inflammation

and lowered plasma triglyceride levels by increasing VLDL-

derived fatty acid uptake by adipose tissue, as wells as increasing

the liver uptake of VLDL remnants. In comparison, treatments

with single agonists showed non-significant improvements.

3.2.2 Clinical trials
SURPASS trials in T2DM patients showed that tirzepatide

was superior compared to placebo and insulin glargine in

lowering triglycerides, LDL-, and VLDL- cholesterol levels

(129) as well as increasing HDL-cholesterol (130, 131). When

compared to semaglutide or insulin degludec, tirzepatide

significantly reduced VLDL cholesterol and increased HDL

cholesterol, while total cholesterol and LDL cholesterol did not

differ among treatments (124, 132). Similarly, in clinical trials

with the focus on obesity treatment (SURMOUNT trials),

tirzepatide was superior compared to placebo in lowering

triglycerides, total-, LDL-, and VLDL- cholesterol levels as well

as increasing HDL cholesterol (95, 133–135).

The lipid lowering effect of tirzepatide would be expected to

have benefits in reducing clinical outcomes from atherosclerotic

and non-atherosclerotic CVD. The recently concluded SUMMIT

trial showed that tirzepatide lowered the risk of a composite

death from cardiovascular causes or worsening heart failure than

placebo in patients with heart failure with preserved ejection

fraction and obesity (136). Other ongoing clinical trials are

exploring potential cardiovascular benefits of tirzepatide in

diabetic and overweight/obese participants with established CVD

or high cardiovascular risk (137–139), as well as the effect of

tirzepatide on the progression of coronary atherosclerosis (140).
3.3 Future incretin-based therapies

Tirzepatide’s superiority over its mono-agonist equivalents has

triggered the development of additional multi-agonistic medications

as the next generation of therapeutics for metabolic disease (94).

One promising medication is retatrutide, a triple GIP/GLP-1/

glucagon receptor agonist. The treatment of obese adults with

retatrutide resulted in a mean weight reduction of 24.2% after 48

weeks, and was associated with improvements in cardiometabolic

measures (exploratory endpoints) including systolic and diastolic

blood pressure, levels of glycated hemoglobin, fasting glucose,

insulin, and lipids (141). Triglycerides, total cholesterol, LDL-

and VLDL-cholesterol were lower in retatrutide groups, but no

improvements in HDL cholesterol levels were observed compared

to placebo. In a study in T2DM patients with a BMI 25-50 kg/m2

retatrutide treatment significantly decreased body weight from
Frontiers in Cardiovascular Medicine 06
baseline compared to placebo and dulaglutide and lowered the

fasting lipid profile in a dose-dependent manner at 36 weeks

(142). Higher concentrations of retatrutide (8 mg and 12 mg)

significantly decreased total cholesterol, triglycerides and non-

HDL cholesterol compared to placebo or dulaglutide. The non-

HDL cholesterol effect was driven by reductions in VLDL

cholesterol concentrations, while changes in LDL- and HDL

cholesterol were generally not significantly different vs. placebo

or dulaglutide.
4 Outlook and conclusion

BAs act as vital metabolic regulators, rather than mere

digestive aids. BAs are used in traditional Chinese medicine as

anti-oxidant to treat multiple digestive and metabolic disorders

and in western medicine semi-synthetic BAs like obeticholic

acid are treatments for cholestatic liver diseases (143–146). BAs

are commercially available as dietary aids and their assumption

may lead to shift in the circulating BA pool, however, since

absolute serum levels are tightly regulated long-lasting BA

modulation and their effect need to be further investigated

(147). By activating FXR and TGR5 as well as influencing GLP-

1 secretion, BAs contribute to both energy balance and

cardiovascular health and future research is examining their

role in obesity-associated cardiometabolic derangements.

Incretins and incretin-based therapies have a multifaceted,

beneficial influence on the cardiovascular function by

improving EC function, reducing inflammation, pro-atherogenic

lipid and progression of atherosclerotic plaques. GIP actions

have recently sparked interest based on the cardiometabolic

benefits of the dual GIPR/GLP1R co-agonist tirzepatide and

intense ongoing research is examining how GIP co-agonism

further improves the effects of single GLP1RAs in humans.

Despite the clinical efficacy of incretin-based therapies,

suboptimal access, high cost, limited insurance coverage and

therapeutic inertia are significant barriers to their widespread

adoption. Real world data regarding the long-term effect of

these drugs need to be collected to fully evaluate their multi-

organ mechanism(s) of action and safety.
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