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Extension of an ICU-based
noninvasive model to predict
latent shock in the emergency
department: an exploratory study
Mingzheng Wu† , Shaoping Li†, Haibo Yu†, Cheng Jiang*,
Shuai Dai, Shan Jiang and Yan Zhao*

Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan
Hospital of Wuhan University, Wuhan, Hubei, China
Background: Artificial intelligence (AI) has been widely adopted for the
prediction of latent shock occurrence in critically ill patients in intensive care
units (ICUs). However, the usefulness of an ICU-based model to predict latent
shock risk in an emergency department (ED) setting remains unclear. This
study aimed to develop an AI model to predict latent shock risk in patients
admitted to EDs.
Methods: Multiple regression analysis was used to compare the difference
between Medical Information Mart for Intensive Care (MIMIC)-IV-ICU and
MIMIC-IV-ED datasets. An adult noninvasive model was constructed based on
the MIMIC-IV-ICU v3.0 database and was externally validated in populations
admitted to an ED. Its efficiency was compared with efficiency of testing with
noninvasive systolic blood pressure (nSBP) and shock index.
Results: A total of 50,636 patients from the MIMIC-IV-ICU database was used to
develop the model, and a total of 2,142 patients from the Philips IntelliSpace
Critical Care and Anesthesia (ICCA)-ED and 425,087 patients from the MIMIC-
IV-ED were used for external validation. The modeling and validation data
revealed similar non-invasive feature distributions. Multiple regression analysis
of the MIMIC-IV-ICU and MIMIC-IV-ED datasets showed mostly similar
characteristics. The area under the receiver operating characteristic curve
(AUROC) of the noninvasive model 10 min before the intervention was 0.90
(95% CI: 0.84–0.96), and the diagnosis accordance rate (DAR) was above 80%.
More than 80% of latent shock patients were identified more than 70 min
earlier using the noninvasive model; thus, it performed better than evaluating
shock index and nSBP.
Conclusion: The adult noninvasive model can effectively predict latent shock
occurrence in EDs, which is better than using shock index and nSBP.
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1 Introduction

Latent shock is characterized by the presence of circulatory failure and is a

common occurrence in critical illness. Approximately 30% of intensive care unit

(ICU) patients suffer hemodynamic change, and the mortality rate is above 40% (1,

2). Most cases of latent shock can be reversed in the early stage of circulatory

failure, especially prior to ICU transfer. However, timely identification of latent

shock remains a great challenge.
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Unlike the ICU, the emergency department (ED) manages a

wide array of illnesses with unknown origins. Patients deemed to

be in critical condition are promptly cared for by continuous

monitoring of their circulatory function. The low nurse-to-

patients ratios make manual assessments in Eds difficult, thus

there is an excessive reliance on alarms for physiological

measurements to identify individuals at risk of circulatory

deterioration. These signals fail to incorporate comprehensive

patient information, possibly causing non-specific alarms that

contribute to alarm fatigue (3–5). Emergency physicians are

engaged in the subsequent diagnostic and therapeutic processes,

such as documenting medical records, conducting ultrasound

examinations, or carrying out other invasive operations.

Therefore, changes in monitoring data and laboratory results

may not sent, interpreted, or acted upon by physicians in a

timely manner (6, 7). A single measurement cannot fully

describe the entire patient state and may lead to

misunderstanding of the circulatory function. Integrated evidence

analysis potentially decreases the incidence of misdiagnosis and

adverse events, thereby improving patient safety and outcomes.

In a high-paced environment like an ED, quickly filtering the

important information from the vast amounts of data is

necessary but increasingly hard for emergency health workers.

Machine-learning (ML) models utilize algorithms to learn from

larger datasets and make predictions or decisions based on new

data. Multiple parameter systems were developed as a method to

identify patients at risk of delayed septic shock in EDs (8). The

newly proposed hemodynamic stability index (HSI) model has

outperformed against every single parameter for risk prediction

in both adults and pediatrics (9, 10). The model consisted of

more than thirty input features, including vital signs, laboratory

measurements, and ventilation settings. Most of the variables are

not routinely measured in EDs, and variables collected before

ICU admission and in the first 6 h after ICU transfer were also

excluded in these studies. More than 7,000 ICU transfers from

the ED in Zhongnan Hospital of Wuhan University were

retrospectively reviewed. It was found that the median interval

from ED admission to ICU transfer was 5 h, with cases of latent

shock mostly receiving fluid resuscitation within 6 h. How to

quickly predict latent shock in cases within the ED remains a

challenge.

The ICU-based noninvasive model for predicting latent shock

risk has not yet been generalized to the ED. Non-invasive features

that are easy to acquire in a short time should be considered. The

study aimed to develop an adult noninvasive model in order to

provide an earlier warning of latent shock risk, which is good for

pre-hospital triage to the ICU.
2 Materials and methods

2.1 Definition of latent shock

Latent shock was defined as patients who were administrated

with vasoactives and had a mean arterial pressure of below

65 mmHg (11). Fluid resuscitation was not included because
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most of the patients had a shorter ED stay once latent shock was

identified. ED physicians are also more likely to use vasoactives

than fluid resuscitation to improve the mean arterial pressure

(MAP) before the underlying reasons for the condition are

ascertained. Blood transfusion is time-consuming and rarely

applied in the ED. More evidence of latent shock definition

is described in the Supplementary Materials. Detailed

categories or quantification of these definitions are listed in

Supplementary Table S1.
2.2 Dataset selection

Medical Information Mart for Intensive Care (MIMIC) and

eICU are two public datasets that are frequently used for ML

research. Variables in the eICU dataset such as medicines or

fluid administration are not labeled with the specific time. This

makes it inconvenient for researchers to calculate the total

volume of fluid infusion throughout a specific duration.

Therefore, the Mimic-IV-ICU v3.0 dataset was used for model

establishment between 2008 and 2022. In addition, data for

external validation were extracted from two databases: the Philips

IntelliSpace Critical Care and Anesthesia (ICCA) systems from

the ED of Zhongnan Hospital of Wuhan University from

December 2022 to July 2023 and the MIMIC-IV-ED between

2008 and 2022. Patients of an age ≥18 years were retrospectively

included. Based on the unique patient number, in cases where

the same patient is admitted repeatedly, only the first admission

number was selected. Patients younger than 18 years of age,

those with missing age values, those with stays of less than

30 min, or those with latent shock occurring within 30 min were

excluded. All records in this study were strictly privacy-protected,

and the use of the database was approved by the Beth Israel

Deaconess Medical Center (BIDMC) Institutional Review

Committee, Massachusetts Institute of Technology (CITI

certificate number: 55436196) and Ethics Committee of

Zhongnan Hospital of Wuhan University (2024066K).
2.3 Data processing and feature selection

Patients who received clinical intervention were placed in the

unstable group. The start time of treatment was used as the time

of diagnosis. The most recent feature values prior to the

diagnosis of latent shock were extracted. For patients in the ED,

missing values were filled in with the most recent data values. If

clinical interventions were not received, patients were placed in

the stable group, and any value that could be the result of the

first measurement was extracted.

Features were screened based on missing values being less than

20%. The selected features were present in both databases, and the

unit conversion was based on the ICCA system data. All variables

were subjected to a rationality filter (Supplementary Table S2) to

check whether their values were within the physiological validity

range and to exclude outliers. By using random forests, the

importance of model features in predicting latent shock was
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calculated. Features were input into the XGBoost classifier to get

the SHAP value and force plot.
2.4 Algorithm selection

For the training set, 70% of the sample was randomly selected;

the remaining 30% was used as the test set. The parameters were

iteratively adjusted to achieve the best performance of the model.

Several commonly used algorithms include random forest,

logistic regression, adaptive boosting (AdaBoost), extreme

gradient boosting (XGBoost), and neural networks. The

parameters of these algorithms were iteratively tuned on the

training set using five-fold internal cross-validation. The AUROC

performance of these five algorithms was compared on the

training set and the test set respectively.
2.5 Model development and external
validation

A noninvasive model was constructed using features of greater

than 0.01 importance that met the criteria. In EDs, identifying

individuals at a high risk of latent shock without performing

time-consuming laboratory tests is critical. Hence, noninvasive

features were also included to build a noninvasive prediction

model. After training, validating, and testing through common

algorithms, the dataset was further divided through random

sampling without replacement at a ratio of 7:3. The algorithm

that worked best was selected to build the model and complete

the external validation. The predictive accuracy of the model was

interpreted based on the results of the calibration curve. If the

calibration curve was close to the diagonal line, it indicated that

the predicted probability of the model was consistent with the

actual probability, and the model had a good calibration degree.
2.6 Statistical analysis

Continuous variables were presented as mean (standard deviation,

SD) or median (interquartile range, IQR). Categorical variables were

summarized by number (proportion). The unpaired t-test or the

Mann–Whitney U test was used for continuous variables, and the

Chi-square test or the Fisher exact test was used for categorical

variables, as appropriate. In Python, functions were implemented to

compute 95% confidence intervals (CI) for various metrics, including

diagnosis accordance rate(DAR), area under the receiver operating

characteristic curve (AUROC), sensitivity, specificity, F1 score,

positive predictive value (PPV), and negative predictive value (NPV).

For the shock index and the systolic blood pressure, the AUC was

calculated using a binary logistic regression model. One-way analysis

of variance was used to compare the AUC values of three models.

Multiple regression analysis was used to compare the difference

between the MIMIC-IV-ICU and MIMIC-IV-ED data sets. All

statistical analyses were performed using the EmpowerStats statistical

package (http://www.empowerstats.com, X&Y Solutions, Inc., Boston,
Frontiers in Cardiovascular Medicine 03
MA) and R version 3.6.0. A two-sided P < 0.05 was considered

statistically significant.
3 Results

3.1 Study population

A total of 94,458 patients were extracted from MIMIC-IV-ICU.

A total of 43,822 patients were excluded, for reasons including

repeated admission (23,686), ICU stay time <30 min or latent

shock occurring <30 min (10,352), missing values (9,729), or

abnormal values (55). Finally, 50,636 patients with latent shock

(21,175) and non-latent shock (29,461) were included for model

establishment. 425,087 patients were also extracted from the

MIMIC-IV-ED. Ultimately, a total of 48,410 patients including

latent shock (1,074) and non-latent shock group (47,336) were

included for external validation on zero minute. 3,039 patients

were also extracted from the ICCA system. Ultimately, a total of

2,142 patients including latent shock (78) and non-latent shock

group (1,964) were included for external validation every 10 min

(Figure 1). The modeling and validation data showed that the

non-invasive feature distribution of the unstable group and the

stable group were roughly similar (Table 1). The results of the

multiple regression analysis between the MIMIC-IV-ICU and

MIMIC-IV-ED datasets showed that most of the characteristics

were similar (Supplementary Table S3). With an alert every

10 min, the 2,042 patients’ vital signs were constantly changing.

Patient information and characteristics of externally validated

data on minute 0 are presented in Supplementary Table S4.
3.2 Feature selection

Blood gas analysis features missing more than 60% were not

collected. Finally, eight noninvasive features with relatively

complete information were collected (Table 1). Temperature was

not included in the external validation data due to this not being

present in ED data. By using a random forest, Figure 2 shows the

importance of the features (>0.01) of the model for predicting

latent shock, finding that the gender of the patient has very little

effect and blood pressure has the greatest influence on predicting

latent shock. The higher the ranking, the more important the

feature. The dot to the left of the digital baseline represents a

negative contribution to experiencing latent shock, while the dot

to the right represents a positive contribution. The farther away

from the baseline, the greater the effect. Red stripes represent

positive contributions and blue stripes represent negative

contributions. The wider the stripes, the greater the contribution.
3.3 XGBoost algorithm

On the test set, Figure 3 shows that XGBoost is the best algorithm

for constructing the prediction model of latent shock (AUC= 0.94).

On the external validation, XGBoost algorithm was used to validate
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FIGURE 1

Study Flowchart. The stability and generalization ability of the model were verified externally several times. First, the MIMIC-IV-ED dataset is used for
the first external validation, and then the ICCA-ED dataset is used for dynamic external validation every 10 minutes. MIMIC-IV-ICU, Medical
Information Mart for Intensive Care IV in Intensive Care Unit; MIMIC-IV-ED, Medical Information Mart for Intensive Care IV in Emergency
Department; ICCA-ED, IntelliSpace Critical Care and Anesthesia in Emergency Department; ICU, Intensive Care Unit; ED, Emergency Department.

TABLE 1 Feature comparison between MIMIC-IV-ICU and MIMIC-IV-ED.

Latent shock Non-latent shock P-values

MIMIC-IV-ICU
Patients, N (%) 29,461 (41.8%) 21,175 (58.2%)

Age, year, Median (Q1, Q3) 69.9 (57.3, 81.2) 63.3 (50.9, 75.0) <0.001

Gender (Male), N (%) 10,589 (50.0%) 17,165 (58.3%) <0.001

heart rate (HR, beats per minute), Median (Q1, Q3) 82.0 (70.0, 96.0) 85.0 (73.0, 100.0) <0.001

Respiration rate (RR, beats per minute), Median (Q1, Q3) 19.0 (15.0, 22.0) 18.0 (15.0, 22.0) <0.001

Transcutaneous Oxygen Saturation (SpO2,%), Median (Q1, Q3) 97.0 (95.0, 99.0) 98.0 (95.0, 100.0) <0.001

Non, invasive systolic blood pressure (nSBP, mmHg), Median (Q1, Q3) 98.0 89.0, 109.0) 130.0 (116.0, 46.0) <0.001

<90, N (%) 5,431 (25.6%) 485 (1.6%) <0.001

≥90, N (%) 15,744 (74.4%) 28,976 (98.4%)

Non, invasive diastolic blood pressure (nDBP, mmHg), Median (Q1, Q3) 49.0 (44.0, 54.0) 75.0 (65.0, 85.0) <0.001

<60, N (%) 18,369 (86.7%) 3,878 (13.2%) <0.001

≥60, N (%) 2,806 (13.3%) 25,583 (86.8%)

Non, invasive mean blood pressure (nMBP, mmHg), Median (Q1, Q3) 61.0 (57.0, 64.0) 89.0 (79.0, 100.0) <0.001

< 65, N (%) 17,788 (84.0%) 790 (2.7%) <0.001

≥65, N (%) 3,387 (16.0%) 28,671 (97.3%)

Shock index, Median (Q1, Q3) 0.8 (0.7, 1.0) 0.7 (0.5, 0.8) <0.001

MIMIC-IV-ED
Patients, N (%) 1,074 (2.2%) 47,336 (97.8%)

Age, year, Median (Q1, Q3) 69.0 (55.0, 80.0) 63.0 (47.0, 76.0) <0.001

Gender (Male), N (%) 479 (44.6%) 24,660 (52.1%) <0.001

Heart rate (HR, beats per minute), Median (Q1, Q3) 83.0 (68.0, 98.0) 82.0 (70.0, 96.0) 0.475

Respiration rate (RR, beats per minute), Median (Q1, Q3) 18.0 (16.0, 22.0) 18.0 (16.0, 19.0) <0.001

Transcutaneous Oxygen Saturation (SpO2,%), Median (Q1, Q3) 98.0 (96.0, 100.0) 98.0 (97.0, 100.0) <0.001

Non, invasive systolic blood pressure (nSBP, mmHg), Median (Q1, Q3) 91.0 (84.0, 98.0) 132.0 (117.0, 148.0) <0.001

<90, N (%) 457 (42.6%) 463 (1.0%) <0.001

≥90, N (%) 617 (57.4%) 46,873 (99.0%)

Non, invasive diastolic blood pressure (nDBP, mmHg), Median (Q1, Q3) 45.0 (41.0, 49.0) 75.0 (66.0, 85.0) <0.001

<60, N (%) 1,039 (96.7%) 6,350 (13.4%) <0.001

≥60, N (%) 35 (3.3%) 40,986 (86.6%)

Non, invasive mean blood pressure (nMBP, mmHg), Median (Q1, Q3) 61.0 (57.0, 63.0) 94.0 (84.0, 105.0) <0.001

<65, N (%) 955 (88.9%) 637 (1.3%) <0.001

≥65, N (%) 119 (11.1%) 46,699 (98.7%)

Shock index, Median (Q1, Q3) 0.9 (0.7, 1.1) 0.6 (0.5, 0.8) <0.001

MIMIC-IV-ICU v3.0 database is from to 2008 to 2022. MIMIC-IV-ED database is from 2008 to 2019. Q1: the first quartile; Q3: the third quartile; P-values was calculated using non, parametric
tests or Chi, square tests based on variable type.
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FIGURE 2

Feature importance (A), SHAP value (B) and force plot (C) of noninvasive model for predicting latent shock. We found that the gender of the patient has
very little effect and blood pressure has the greatest influence on noninvasive model. nSBP, noninvasive systolic blood pressure; nDBP, noninvasive
diastolic blood pressure; nMBP, noninvasive mean blood pressure; HR, heart rate; RR, respiratory rate; SpO2, saturation of peripheral oxygen; SHAP,
SHapley additive exPlanations.

FIGURE 3

Algorithm selection. (A) Five algorithms for constructing the prediction model of latent shock; (B) The noninvasive model has a good calibration
degree with XGBoost algorithm.

Wu et al. 10.3389/fcvm.2024.1508766
the performance of the noninvasive model. Figure 3 shows that the

noninvasive model has a good calibration degree with XGBoost

algorithm, which allows missing values in external validation.
3.4 Model performance over time

Different thresholds cause model effects to vary. The

results of model performance over time when the threshold
Frontiers in Cardiovascular Medicine 05
is 0.2 or 0.4 are shown in Table 2. External validation

results of the two datasets show that AUROC of the non-

invasive model is as high as 0.99 at 0 min. AUROC of the

noninvasive model 10 min before the intervention was 0.90

(95% CI: 0.84–0.96), and the DAR was more than 80%. The

calibration plot also indicated that when the threshold was

set to 0.2, more than 80% of latent shock patients could be

identified more than 70 min earlier (Figure 4). A logistic

regression model was used to calculate the area under the
frontiersin.org
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TABLE 2 Performance of noninvasive model for predicting latent shock, mean (95% CI).

Minutes before
the intervention

Threshold DAR AUROC Recall Specificity NPV PPV F1-score

MIMIC-IV-EDa

0 0.4 0.97 (0.97–0.98) 0.99 (0.98–0.99) 0.96 (0.95–0.97) 0.97 (0.97–0.98) 1.00 (1.00–1.00) 0.46 (0.44–0.47) 0.62 (0.60–0.64)

ICCA-EDb

0 0.2 0.85 (0.79–0.92) 0.99 (0.97–1.00) 0.98 (0.96–1.00) 0.85 (0.79–0.91) 1.00 (0.99–1.00) 0.16 (0.12–0.20) 0.27 (0.22–0.33)

10 0.2 0.86 (0.78–0.93) 0.90 (0.84–0.96) 0.86 (0.79–0.93) 0.86 (0.78–0.93) 1.00 (0.98–1.00) 0.11 (0.08–0.15) 0.20 (0.15–0.25)

20 0.2 0.84 (0.78–0.91) 0.86 (0.80–0.92) 0.74 (0.66–0.82) 0.85 (0.78–0.91) 0.99 (0.97–1.00) 0.12 (0.09–0.15) 0.20 (0.16–0.25)

30 0.2 0.85 (0.78–0.91) 0.86 (0.79–0.92) 0.69 (0.61–0.76) 0.85 (0.79–0.92) 0.99 (0.97–1.00) 0.12 (0.09–0.15) 0.20 (0.16–0.25)

40 0.2 0.84 (0.77–0.91) 0.86 (0.79–0.93) 0.73 (0.64–0.81) 0.84 (0.77–0.91) 0.99 (0.97–1.00) 0.11 (0.08–0.14) 0.19 (0.14–0.23)

50 0.2 0.84 (0.76–0.92) 0.85 (0.78–0.93) 0.75 (0.66–0.84) 0.84 (0.77–0.92) 0.99 (0.97–1.00) 0.11 (0.08–0.14) 0.19 (0.14–0.24)

60 0.2 0.83 (0.75–0.92) 0.81 (0.72–0.90) 0.63 (0.56–0.76) 0.84 (0.75–0.92) 0.99 (0.97–1.00) 0.09 (0.06–0.12) 0.16 (0.11–0.21)

70 0.2 0.84 (0.74–0.93) 0.80 (0.70–0.90) 0.56 (0.44–0.67) 0.84 (0.75–0.94) 0.99 (0.96–1.00) 0.07 (0.04–0.10) 0.12 (0.08–0.17)

80 0.2 0.83 (0.73–0.93) 0.85 (0.76–0.94) 0.77 (0.66–0.88) 0.83 (0.73–0.93) 0.99 (0.97–1.00) 0.09 (0.06–0.13) 0.17 (0.11–0.22)

90 0.2 0.83 (0.72–0.94) 0.80 (0.68–0.92) 0.70 (0.57–0.83) 0.84 (0.73–0.95) 0.99 (0.97–1.00) 0.08 (0.04–0.11) 0.14 (0.09–0.20)

100 0.2 0.83 (0.71–0.95) 0.80 (0.67–0.93) 0.65 (0.50–0.79) 0.83 (0.71–0.95) 0.99 (0.96–1.00) 0.07 (0.04–0.10) 0.12 (0.07–0.18)

110 0.2 0.82 (0.67–0.97) 0.80 (0.65–0.95) 0.58 (0.41–0.75) 0.82 (0.68–0.97) 0.99 (0.96–1.00) 0.05 (0.02–0.08) 0.09 (0.04–0.14)

120 0.2 0.82 (0.62–1.00) 0.73 (0.52–0.95) 0.57(0.35–0.79) 0.82(0.63–1.00) 0.99(0.96–1.00) 0.03(0.01–0.05) 0.06(0.02–0.10)

aThe noninvasive model of potential shock was externally validated on 0 min with the data set derived from MIMIC-IV-ED.
bThe noninvasive model of potential shock was externally validated every 10 min with the data set derived from ICCA in ED.

FIGURE 4

The non-invasive models had a higher AUROC 120 minutes before intervention than the shock index and noninvasive systolic blood pressure (nSBP).
More than 80% of latent shock patients could be identified more than 70 minutes earlier.

Wu et al. 10.3389/fcvm.2024.1508766
AUROC curve for shock index and noninvasive systolic blood

pressure (nSBP). The non-invasive models had higher AUROC

than the shock index and nSBP models. There were

statistically significant differences in the AUC per 10 min of

external validation among the three models (P < 0.05).
Frontiers in Cardiovascular Medicine 06
4 Discussion

Notably, the modeling and validation data revealed similar

non-invasive feature distributions. Multiple regression analysis

of MIMIC-IV-ICU and MIMIC-IV-ED datasets showed mostly
frontiersin.org
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similar characteristics. Blood pressure was identified as the most

influential feature in predicting latent shock. Furthermore, our

noninvasive model demonstrated AUROC and DAR of above

0.80 for predicting latent shock 70 min before intervention,

outperforming both the single shock index and nSBP models,

with statistically significant differences observed in the AUC

per 10 min of external validation. This study has important

clinical significance for pre-hospital care and for ED to triage

of ICU.

In the ED, not all patients are referred to the ICU. Doctors

classify the severity of patients’ conditions, especially those with

latent shock. The triage and acuity scale is called the Emergency

Severity Index (ESI) Five Level triage system (12). Level 1 and

level 2 patients are likely to be admitted to the ICU (13). This

study found that the noninvasive model was a model that could

be useful. The AUROC of our noninvasive model is similar to

models from Chiang Dung-Hung et al. (9) (AUROC= 0.81) and

Potes Cristhia et al. (10) (AUROC= 0.76). According to Table 1,

Supplementary Tables S3, S4, the differences in most features

between the MIMIC-IV-ICU and ED datasets are not significant.

Thus, it can be seen that it is theoretically feasible for us to use

the data of latent shock patients in the ICU to establish a

noninvasive predictive model and adjust the model parameters

based on the severity of the disease to provide an earlier warning

of latent shock patients in the ED.

Clinically, vital signs are important disease information. Our

study classifies vital signs as noninvasive and found that blood

pressure is the most influential feature in predicting latent

shock. Noninvasive features are also covered, such as age,

gender, saturation of peripheral oxygen (SpO2), and GCS.

Systolic blood pressure features are most important in models

predicting latent shock, which is consistent with the reported

importance of features (9, 10). Chang, H et al. (11) used six

noninvasive indicators (nSBP, nDBP, RR, pulse rate,

temperature, and SpO2) to establish an emergency department

latent shock warning model. At 3 h before latent shock, the

predictive AUROC values of RNN, MLP, RF, and LR methods

were 0.822, 0.841, 0.852, and 0.830, respectively. Our study

shows that more than 80% of latent shock patients could be

identified more than 70 min earlier. And the noninvasive model

is better than the shock index or nSBP. Therefore, an

ICU-based noninvasive model for identifying latent shock risk

in the ED is theoretically feasible.

Laboratory measurements and respiratory setting indicators

are mostly invasive. Combining the model with laboratory

measurements and respiratory setting indicators is conducive

to improving its sensitivity, specificity, and accuracy (2, 14).

But as the waiting time is long and cost high for invasive

features. sequential organ failure assessment(SOFA) score was

also confirmed as a predictor of mortality in ICU patients

(15). The SOFA score exhibited the highest accuracy in

predicting hospital mortality of septic latent shock at 0.880,

followed closely by the SOS score (0.878), modified early

warning score (MEWS) (0.858), quick sequential organ failure

assessment (qSOFA) score (0.847), and NEWS score (0.833)

(16). But the SOFA score contains invasive features. So, our
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but needs further study.

This study demonstrates that the non-invasive model can

provide an early warning of latent shock risk in the emergency

department, 70 min ahead of the current time, which holds

significant value as a reference for early diagnosis and

treatment. When Philips’ ICCA system issues an alert for latent

shock risk during the rescue and observation process, medical

staff can immediately prioritize the patient’s condition and

initiate corresponding diagnostic and treatment protocols. This

facilitates rapid identification and management of latent shock

symptoms, thereby reducing the incidence of misdiagnosis and

missed diagnoses. Patients can receive treatment earlier,

alleviating their pain and discomfort. Consequently, this

approach enhances patient satisfaction and trust, fostering

improved doctor-patient relationships. Future research should

explore the integration of our model with other noninvasive

indicators to further enhance prediction accuracy, while also

considering the balance between invasiveness, cost, and

practicality in clinical settings. Ultimately, our study contributes

to the ongoing effort to optimize triage and management

strategies for latent shock patients in the ED.
5 Limitations

This study has limitations. First, while common clinical

indicators were used as features, other factors such as a

patient’s temperature and Glasgow score (GCS) may also

have provided useful features. Second, other important

features need to be added, and the noninvasive model needs

to be continually optimized. Third, when interpreting blood

pressure data within the model, it is essential to fully

consider the patient’s underlying conditions and reasons for

admission. For instance, blood pressure levels may differ

between elderly and younger patients, potentially impacting

the model’s predictive performance across different age

groups. Fourth, given the limited number of cases in the

current study, a substantial amount of external validation set

data is planned to be collected in the future. This will

enable us to conduct analyses on various patient subgroups,

allowing for separate modeling and external validation

tailored to each subgroup. Fifth, in the process of promoting

the model, the differences in ICU and ED data from

different sources may affect the stability and generalization

ability of the model, which requires multi-center external

validation. Sixth, the significant imbalance in sample size

between the stable and unstable groups within the external

validation set has led to prediction biases, risks of

overfitting, distorted evaluation metrics, and decreased

statistical significance. In our future prospective studies, the

sample size of the unstable group within the external

validation set will be increased to mitigate the issue of

sample imbalance. Therefore, these predictive models require

further optimization and prospective study. Seventh, there

was no analysis of the potential impact on model
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performance evaluation, clinical alert accuracy, and patient

treatment outcomes based on different underlying disease

subgroups of patients. In the later stage, we will establish

subgroup analysis for different underlying diseases, integrate

it into the ICCA system, and intelligently match early

warning models for different types of patients.
6 Conclusion

This study found that ICU-based noninvasive model can

effectively predict latent shock risk in ED, which is

better than using the simple shock index and nSBP.

Further prospective multicenter studies are needed to

generalize these models.
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