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modulates senescent endothelial
cell-monocyte communication in
age-related vascular
inflammation
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Aging significantly affects intercellular communication between vascular
endothelial cells (ECs) and hematopoietic cells, leading to vascular
inflammation and age-associated diseases. This study determined how
senescent ECs communicate with monocytes, whether extracellular vesicles
(EVs) released from senescent ECs affect monocyte functions, and
investigated the potential for epigallocatechin-3-gallate (EGCG), a flavonoid in
green tea, to reverse these effects. Human umbilical vein endothelial cells
(HUVECs) were treated with Etoposide (10 µM, 24 h) to induce senescence,
followed by EGCG (100 µM, 24 h) treatment to evaluate its potential as a
senotherapeutic agent. The interaction between ECs and monocytes was
analyzed using a co-culture system and direct treatment of monocytes with
EC-derived EVs. EGCG reduced senescence-associated phenotypes in ECs, as
evidenced by decreased senescence-associated (SA)-β-Gal activity and
reversal of Etoposide-induced senescence markers. Monocytes co-cultured
with EGCG-treated senescent ECs showed decreased pro-inflammatory
responses compared to those co-cultured with untreated senescent ECs.
Additionally, senescent ECs produced more EVs than non-senescent ECs. EVs
from senescent ECs enhanced lipopolysaccharide (LPS)-induced pro-
inflammatory activation of monocytes, whereas EVs from EGCG-treated
senescent ECs mitigated this activation, maintaining monocyte activation at
normal levels. Our findings reveal that EGCG confers anti-senescent effects
via modulation of the senescent EC secretome (including EVs) with the
capacity to modify monocyte activation. These findings suggest that EGCG
could act as a senotherapeutic agent to reduce vascular inflammation related
to aging.
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GRAPHICAL ABSTRACT
1 Introduction

Aging is primarily attributed to the progressive accumulation

of damage in cells, organelles, and macromolecules. The

hemothelium is comprised of the hematopoietic system (blood

cells) and the vascular endothelium (a monolayer of cells lining

all blood vessels), which maintain continuous interactions

throughout an individual’s lifespan (1). In numerous conditions,

including cardiovascular diseases (CVDs), the hemothelium is

dysregulated (1–3). Several age-related CVDs have been

associated with endothelial dysfunction resulting from endothelial

senescence (4). Endothelial senescence is marked by an age-

related decline in endothelial function, which encompasses

impaired regulation of vasodilation, blood coagulation, oxidative

stress, inflammation, immune cell infiltration, as well as glucose

and lipid metabolism (4). Age-related inflammation, often

termed “inflammaging”, involves the contribution of monocytes

and macrophages to inflammatory processes, significantly

contributing to the compromised immune function observed

with advancing age (5). Given an aging population and the rising

incidence of CVD, it is imperative to elucidate how aging

contributes to alterations within the hemothelium.

The interactions between monocytes and endothelial cells (ECs)

regulate vascular and tissue remodelling, contributing to CVDs (6).

Monocytes interact with ECs to regulate processes such as
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inflammation, angiogenesis, and tissue remodelling (7). Monocytes

undergo classical activation in response to pro-inflammatory

stimuli such as interferon-γ or bacterial lipopolysaccharide (LPS),

leading to the release of pro-inflammatory cytokines and reactive

oxygen/nitrogen species, promoting an M1-like pro-inflammatory

response (8–11). Age-related changes in monocytes include distinct

inflammatory gene expression profiles and increased production of

pro-inflammatory cytokines [e.g., interleukin (IL)-8, IL-12p70] in

response to Toll-like receptors (TLR) 4 and TLR2/1 stimulation

(12). So far, the communication of senescent ECs with circulating

monocytes during aging is largely unknown.

Cellular senescence is associated with the development of a

multicomponent senescence-associated secretory phenotype

(SASP) (13–16). Canonical SASP factors comprise a collection of

cytokines, chemokines, growth factors, and proteases released by

senescent cells, which initiate inflammation, wound healing, and

growth responses in nearby cells (17–19). Evidence from ECs

and other cell types suggests that secreted SASP factors can

induce senescence in neighbouring cells (20, 21). As ECs lose

their proliferative potential and become senescent, they activate

the SASP, which includes inflammatory pathways such as nuclear

factor kappa B (NF-κB) and the secretion of inflammatory

cytokines and reactive oxygen species (22–24). Senescent ECs

and their secreted factors significantly contribute to arterial

dysfunction and the pathophysiology of various cardiometabolic
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diseases (25). This indicates that the secretome from senescent ECs has

the potential for altered communication with blood monocytes, and

may contribute to age-related diseases. ECs can communicate by

releasing extracellular vesicles (EVs), which are nanoparticles

representing a novel paradigm in cell-cell communication. These

lipid bilayer-encapsulated vesicles carry diverse cargo, including

lipids, proteins, and transcripts, which can influence cellular

functions and signal disease states (26). EVs are released into body

fluids by most cell types, including senescent ECs and they

contribute to processes such as vascular calcification, inflammation,

cellular senescence, endothelial dysfunction, and fibrosis (27). EV

cargo can contain SASP proteins, which can be transported to target

cells, altering their phenotypes. Previous studies, including our own,

have demonstrated that cross-talk between ECs and monocytes/

macrophages occurs partly through the secretion of EVs (8, 28–31).

It is known that EVs released from IL-1β stimulated ECs can

communicate with monocytes and encourage inflammatory

phenotypes (8, 32). While EVs released from IL-1β stimulated ECs

(28) or during sepsis (33) can reprogram monocytes, it is unknown

whether EVs released from senescent ECs similarly communicate

with monocytes and importantly, whether this can be reversed. We

hypothesize that the secretome, specifically EVs, released from

senescent ECs may enhance monocyte-driven inflammation and that

this can be reversed with senotherapeutics.

Epigallocatechin gallate (EGCG), the primary catechin in green

tea, is associated with numerous health benefits, including impacts

on cell senescence, aging, and age-related diseases (34–37).

Preclinical studies show that EGCG exerts senolytic and

senomorphic effects (38, 39). Research on murine models of aging

has identified plasma EV-miRNAs associated with aging, which

appear to be reversed by senolytics (40). However, whether these

effects are derived explicitly from ECs remains unclear. Additional

studies have demonstrated that EGCG consumption can produce

anti-cellular senescence and anti-skin aging effects in mouse

tissues (35, 41). This study employed an in vitro model of

senescent ECs to assess the therapeutic potential of EGCG in

reversing endothelial senescence and its impact on EC-monocyte

communication. We utilized a co-culture system to assess the role

of the secretome from senescent ECs, including the specific

contribution of purified senescent EC-derived EV treatments, to

comprehensively evaluate how senescence-driven endothelial

changes influence monocyte dynamics. The reversibility of these

effects was subsequently assessed by EGCG treatment, providing

novel insights into EV mediated cellular interactions in the context

of aging and inflammation.
2 Methods

2.1 Primary cell culture

Human umbilical vein endothelial cells (HUVECs; ECs,

LONZA) were cultured in Endothelial Cell Medium (ECM,

ScienCell) supplemented with 5% Fetal Bovine Serum (FBS) and

Endothelial Cell Growth Supplement (ScienCell). ECs were

detached using Trypsin-EDTA (0.25%) and used at passages 5–7.
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THP1 monocytes were cultured in RPMI 1640 medium

(WISENT) with 10% FBS (WISENT). For the EC senescence

model, ECs (seeded in 6-well plates at a density of 80,000 cells/

well) were treated with Dimethylsulfoxide (DMSO) as a control

or Etoposide (10 µM, Sigma-Aldrich) for 24 h to induce

senescence, as this is a dose and time that has been used in other

cell models (42, 43). Subsequently, the senescent ECs were

treated with EGCG [100 µM, Sigma-Aldrich (38)], for 24 h,

based upon a treatment time used in other EC models (44).

RNA and culture supernatant media were collected from the ECs

for qRT-PCR and multiplex cytokine analysis, respectively.
2.2 β-Galactosidase assay

As described above, ECs were plated onto 6-well plates (80,000

cells/well). Cellular senescence was identified using β-galactosidase

activity detected by histochemical staining, performed as per the

instructions of the Senescence-Associated β-Galactosidase Staining

Kit (Cell Signaling). Images of stained cells were captured using a

Nikon ECLIPSE Ti microscope. For each experimental group,

three biological replicates (each with two technical replicates) were

analyzed. Four images were captured per replicate. The percentage

of SA-β-galactosidase positive cells was quantified using Image

J software. Data from eight images per biological replicate were

combined to calculate the average percentage of SA-β-

galactosidase-positive cells. The results represent the average

stained area per cell across three biological replicates.
2.3 Co-culture experiments

For co-culture experiments, ECs were seeded in 10 cm

plates ± DMSO, Etoposide, or Etoposide + EGCG. Cells were

collected, washed and counted before co-culture experiments.

ECs were then plated onto 6-well plates (500,000 cells/well) and

cultured in complete ECM for 2 h to allow for adherence. After

2 h, THP1 cells (400,000 cells/well) were seeded in the upper

chamber of transwell membrane inserts (1 µm pore size selected

to ensure passage of whole secretome, STERLITECH), and

co-cultured with control ECs as previously published (8), or

senescent ECs (senECs) or EGCG-treated senECs in complete

ECM. THP1 cells were grown in complete ECM without ECs

(mono-culture) as a control. Following 24 h of mono-culture or

co-culture, THP1 cells were removed and stimulated with

100 ng/ml LPS (Sigma-Aldrich) for 2 h, as before (8).
2.4 Multiplex analysis of cytokines

Culture media (2 ml) was collected following treatments, and

150 µl was used to measure concentrations of cytokines,

chemokines, and growth factors using the Human Cytokine

Panel A 48-Plex Discovery Assay® from Eve Technologies

(Calgary, AB, Canada). Multiplex quantification was performed

with the LuminexTM 200 system (Luminex, Austin, TX, USA).
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2.5 RNA isolation, quality control, and
sequencing

RNA was isolated using TRIzolTM Reagent from THP1 cells

(mono-culture and co-culture) after LPS stimulation according to

the manufacturer’s instructions. RNA concentration and quality

was measured using the Agilent 2100 Bioanalyzer (Total RNA

Pico Chip). Preparation of RNA library and mRNA sequencing

was completed by Novogene Co. LTD (Sacramento, CA, USA)

using the Illumina NovaSeq X Plus Series (PE150) Sequencing

System of samples meeting minimum input requirements

[amount≥ 200 ng, RIN > 8, purity (A260/280≥ 1.8, A260/

230≥ 1.8)]. Paired-end sequencing (150 bp) with a minimum read

depth of 30 million read pairs per sample was targeted.

Differentially expressed mRNA transcripts analysis were completed

by Novogene Co. LTD. Briefly, clean reads were obtained by

removing reads containing adapters, greater than 10%

unidentifiable bases, and low-quality reads (Qscore of over 50%

bases≤ 5). Clean reads were mapped to a reference genome using

HISAT2. Starting from Novogene’s count matrix, detectable genes

were filtered based on expression values (sum of counts≥ 10), and

RNA differential expression was performed using the DEseq2

package (version 1.44) for R (version 4.4.1). Significance was called

as padj < 0.05, with no fold change cutoff. FPKM (Fragments Per

Kilobase of transcript per Million mapped reads) read count

normalization was performed using DESeq2. Z-score heatmaps

were generated using the FPKM values of the selected genes. Gene

set enrichment analysis (GSEA) was performed against the

msigDB human hallmark genesets using the fgsea package (v1.3.0)

for R, with ranking based on the wald statistic.
2.6 Real-time quantitative reverse-
transcriptase polymerase chain reaction
(qRT-PCR)

RNA was isolated using TRIzolTM Reagent (Invitrogen) and

reverse transcribed using the High-Capacity cDNA Reverse

Transcription kit (Applied Biosystems). qRT-PCR was performed

with SYBR green technology on a QuantStudio 5 Real-Time PCR

system (Applied Biosystems) using LC 480 SYBRTM Green

Master Mix (Applied Biosystems) as described previously (8, 28).

Data were normalized to Glyceraldehyde 3-phosphate

dehydrogenase (GAPDH) using the Delta-Delta Ct method. All

qRT-PCR primers are listed in Supplementary Table 1.
2.7 Isolation and characterization of EVs

2.7.1 EV collection
ECs (control, senECs, EGCG-treated senECs) were cultured on

15 cm plates and supplemented with ECM containing EV-depleted

FBS [Ultrafiltration using spin columns (cytiva 100 kDa) at 3,000 g

for 30 min, 0.22 µm filtered (45)] for 24 h. The culture medium

was collected and pre-cleared by centrifugation at 500 g for
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15 min and then at 3,000 g for 15 min. The supernatant was

filtered with 0.22 µm filter (Millipore Sigma) and ultracentrifuged

at 120,000 g for 180 min at 4°C, followed by washing of the EV

pellet with PBS (0.22 µm filtered) at 120,000 g for 120 min at 4°C

(Optima XP-90 Ultracentrifuge with Type 70.1 Ti Fixed-Angle

Rotor, Beckman Coulter). The EV pellet was resuspended in PBS

(0.22 µm filtered) and stored at −80°C.

2.7.2 EV characterization
Nanoparticle Tracking Analysis (NTA) and Cryogenic Electron

Microscopy (Cryo-EM) analyses were conducted following

previously established protocols (28). Western blots were

performed as described previously (28) using primary antibody

against CD63 (1:750, sc-365604 Santa Cruz), CD81 (1:1000, 56039

Cell signaling), CD9 (1:200, sc-13118 Santa Cruz), Calnexin

(1:200, sc-23954 Santa Cruz), or Alix (1:200, sc-53540 Santa Cruz).
2.8 EV treatment of THP1 cells

EVs from control ECs (EC-EVs), senECs (senEC-EVs), and

EGCG-treated senECs (tsenEC-EVs) were isolated via

ultracentrifugation from conditioned media. THP1 cells plated onto

96-well plates (300,000 cells in 250 µl media/well) were treated with

PBS or EVs (EC-EVs, senEC-EVs, tsenEC-EVs) at 1010 EV

particles/ml concentrations for 24 h, as before (28). After treatment,

THP1 cells were stimulated with 100 ng/ml LPS for 2 h. RNA and

culture supernatant media were collected from the THP1 cells for

RT-PCR and multiplex cytokine analysis, respectively.
2.9 Statistical analyses

All statistical analyses were performed using GraphPad Prism 9

software. Data were analyzed using one- or two-way ANOVA,

followed by the Tukey (or Bonferroni where indicated) multiple

comparison test. Error bars represent the standard error of the mean

(SEM).A p-value lower than 0.05was considered statistically significant.
3 Results

3.1 EGCG alleviates senescence-associated
phenotype in ECs

One of the most well-characterized contributors to aging is

senescent cells. A hallmark of senescent cells is the activity of

senescence-associated β-galactosidase (SA-β-gal), as the presence

of this active enzyme indicates the senescent state of cells (46,

47). Other well-established markers of cellular senescence are the

elevated expression of cell cycle inhibitors p21 (CDKN1A), p16

(CDKN2A), and p15 (CDKN2B), along with SASP factors IL-6

and IL-8 (47). To test the anti-senescence properties of EGCG, an

in vitro senescent cell model was established by treating ECs with

Etoposide (10 µM) for 24 h. Treatment with Etoposide induced

characteristic features of senescence, including increased SA-β-Gal
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FIGURE 1

Antisenescence effects of EGCG on senescent ECs. (A) Representative cellular morphology and SA-β-gal staining of ECs under various conditions—(i)
DMSO (control ECs), (ii) Treated with Etoposide (10 µM) for 24 h (senECs), and (iii) Treated with Etoposide (10 µM) for 24 h followed by EGCG (100 µM)
treatment for 24 h (EGCG treated senECs). (B) Quantification of the percentage of SA-β-gal positive ECs. qRT-PCR analysis of (C) senescence-related
genes CDKN1A, CDKN2A, CDKN2B and (D) senescence-associated secretory phenotype (SASP)-related genes IL-6, CXCL8. (E) Concentration of
cytokines/chemokines (IL-1α, IL-6, GM-CSF, IL-4, IL-13, IL-22, and CX3CL1) in culture media from ECs across all experimental conditions was
quantified using human cytokine and chemokine array. Data are given as ± SEM. n= 3–4 independent experiments. One-way ANOVA with a
Tukey’s multiple comparison test. ns, not significance; *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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activity (Figure 1A,B, Supplementary Figure 1A) and elevated levels of

senescence- and SASP-related markers such as CDKN1A, CDKN2A,

CDKN2B, CXCL8, and IL6 (Figure 1C,D, Supplementary

Figure 1B,C). This confirmed that Etoposide (10 µM, 24 h)

treatment is a suitable senescence model. Subsequent treatment of

senECs with EGCG (100 μM) for 24 h significantly reduced

senescence-associated characteristics, including decreased SA-β-Gal

activity (Figure 1A,B), compared to vehicle control. EGCG

treatment also reversed the elevated expression of senescence-

associated genes, including CDKN1A, CDKN2A, CDKN2B, CXCL8,

and IL6 (by 1.2-fold, 2.5-fold, 1.3-fold, 5.5-fold, 5-fold respectively),

in senECs (Figure 1C,D). Additionally, EGCG supplementation was

able to blunt the senescence induced upregulation of cell adhesion

molecules VCAM1 and SELE, but not ICAM1, which could suggest
Frontiers in Cardiovascular Medicine 05
a reduction in monocyte adhesion (Supplementary Figure 2).

Comparison of EGCG treatment to control ECs showed no

difference in senescence-associated markers (Supplementary Figure 2).

SASP factors (pro-inflammatory cytokines, chemokines, and

growth factors) undergo dynamic changes during cellular

senescence (48). We investigated whether EGCG plays a role in

the secretion of these conventional markers of senescent

programming (Figure 1E). The abundance of key components of

the secretome (cytokines and chemokines), including IL-1α, IL-6,

granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-

4, IL-13, IL-22, and C-C motif chemokine ligand (CX3CL1) were

measured in cell media by multiplex assay. SenECs showed

increased IL-1α, IL-6 and GM-CSF abundance and decreased IL-

4, IL-13, IL-22, and CX3CL1 compared to control ECs
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FIGURE 2

Co-culture with EGCG-treated senescent ECs suppresses monocyte activation. (A) Schematic of co-culture of monocytes (THP1) with control ECs,
senECs, and EGCG-treated senECs using a transwell system (1 μm pore size). (B) The impact of co-culturing THP1 cells with ECs for 24 h was assessed
by measuring the transcriptional expression of proinflammatory genes by THP1 cells after 2 h of LPS stimulation using RT-PCR. Pro-inflammatory
markers: IL-1β, IL6, CXCL8, IL-12p40, and IL-23p19. Data are normalized to the GAPDH reference gene. Results are reported as the fold change
relative to THP1 mono-culture (without LPS treatment). Data are presented as mean ± SEM. n= 4 independent experiments. Statistical analysis was
performed using two-way ANOVA with Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, and ***p < 0.001.
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(Figure 1E). In contrast, treatment of senECs with EGCG led to a

reduction in IL-6 (∼3-fold) and GM-CSF levels while increasing

the expression of IL-4, IL-13, IL-22, and CX3CL1 in comparison

to untreated senECs. These results suggest that EGCG treatment

impairs the pro-inflammatory secretory phenotype and enhances

the anti-inflammatory response in senECs. Overall, these data

indicate that EGCG treatment mitigates the SASP and highlights

its potential immunomodulatory effects on senescent ECs.
3.2 EGCG decreases monocytic
proinflammatory responses induced by
senescent ECs

To assess intercellular signalling between ECs and monocytes,

we established a co-culture model wherein control ECs, senECs or

EGCG-treated senECs were co-cultured with the human

monocytic cell line THP1, with a 1-μm transwell filter serving as a

physical barrier (Figure 2A). Following mono-culture or co-culture

(24 h), THP1 cells were removed from the transwell inserts and

stimulated with LPS. As expected (8), co-culture with control ECs

suppressed monocyte activation, as evidenced by reduced

induction of IL-1β, IL6, CXCL8, IL-12p40, and IL-23p19 compared

to THP1 mono-culture (Figure 2B). Conversely, co-culture with

senECs elevated the expression of IL-1β and IL6 compared to co-

culture with control ECs (Figure 2B). Notably, co-culture with
Frontiers in Cardiovascular Medicine 06
EGCG-treated senECs decreased expression of IL-1β, IL6, and

CXCL8 compared to co-culture with untreated senECs and THP1

mono-culture (by 1.4-fold, 2-fold, 1.7-fold respectively)

(Figure 2B). Collectively, these findings suggest that THP1 co-

culture with control ECs suppresses monocyte activation, which is

negated by senECs and restored by EGCG treatment.
3.3 EGCG treatment negates the pro-
inflammatory effect of senescent ECs on
monocyte gene regulatory pathways

To understand further how senescent ECs communicate with

monocytes and affect cellular function, THP1 monocytes were co-

cultured with control ECs, senECs, or EGCG-treated senECs for

24 h (Figure 2A). The cellular response of monocytes to co-culture

with different ECs was delineated by RNA isolation from THP1

cells and RNA-sequencing. As seen in the Venn diagram, 11,899

genes were commonly expressed in all the groups (Figure 3A).

There were 369 genes differentially expressed in the THP1 co-

cultured with control ECs, 177 in the THP1 co-cultured with

senECs, and 245 in the THP1 co-cultured with EGCG-treated

senECs. To investigate changes at the single gene level involved in

the inflammation pathways, we first analyzed all genes associated

with various inflammatory processes (Supplementary Figure 3).

A curated list of key genes (such as CXCL8, IL-1β, C-C motif
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FIGURE 3

Effect of EGCG treatment on communication between senescent ECs and monocyte function. RNA sequencing was performed on samples collected
after 24 h of co-culturing THP1 cells with control ECs, senECs, and EGCG-treated senECs. (A) Venn diagram depicting number of commonly and
differentially expressed genes in comparisons of THP1 co-culture with control ECs, senECs, and EGCG-treated senECs. (B) Heatmap showing the
expression profiles of a curated list of pro-inflammatory genes. Gene expression was assessed across different experimental conditions to evaluate
changes in inflammatory responses. Expression values are represented as colours and range from yellow (high expression), green (moderate), to
dark blue (lowest expression). Gene set enrichment analysis (GSEA) enrichment plots of inflammation-related gene sets comparing (C) THP1 cells
co-cultured with senECs vs. control ECs, and (D) THP1 cells co-cultured with EGCG-treated senECs vs. untreated senECs. Metabolism-related
gene sets are shown in (E) and (F) for the same comparisons indicated above.
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FIGURE 4

Proinflammatory response of recipient monocytes is differentially modulated by senescent EC-EVs depending on EGCG treatment. (A) Nanoparticle
tracking analysis (NTA) of EVs isolated from media of control ECs (EC-EVs), senECs (senEC-EVs), and EGCG-treated senECs (tsenEC-EVs) by
ultracentrifugation. Quantification of (B) EV particles per cell and (C) the mode particle size. (D) Cryo-EM of EVs isolated from control ECs, senECs,
and EGCG-treated senECs supernatant. Arrows indicate EV structures. Scale bar = 50 nm. (E) Western blot depicting EV markers [positive (CD63, CD9,
CD81 and Alix) and negative (Calnexin)] in EV lysates (EC-EVs, senEC-EVs and tsenEC-EVs) and HUVEC cell lysate (CL) control. (F) Schematic of direct
EV (PBS, EC-EVs, senEC-EVs, tsenEC-EVs) exposure (24 h) to monocytes (THP1). (G) The effect of EVs (EC-EVs, senEC-EVs, tsenEC-EVs) on THP1 cells
was assessed by measuring the transcriptional expression of proinflammatory genes in THP1 cells after 2 h of LPS stimulation, using qRT-PCR. Pro-
inflammatory markers include IL-1β, IL6, and CXCL8. Data are normalized to the GAPDH reference gene. Results are reported as the fold change
relative to THP1 (PBS-treated and without LPS treatment). (H) Concentration of cytokines/chemokines (IL-1α, IL-1β, IL-6, IL-8, IL-12p40, IL-27, IFNγ,
CXCL9, CXCL10, MCP-1/CCL2, CCL5, CCL22, MIP-1A and FLT-3l) in culture media from THP1 cells across all treatment conditions was quantified
using human cytokine and chemokine array. Data are presented as mean± SEM. n=4–5 independent experiments. Statistical analysis was performed
using one-way ANOVA with Tukey’s multiple comparison test. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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chemokine ligand [CCL5], TLR4, NF-κB1, IL-6) was then compiled to

generate a comprehensive heatmap, highlighting expression patterns

under different experimental conditions (Figure 3B). In THP1 cells

co-cultured with senECs, the expression of most inflammation-

associated genes was elevated compared to THP1 mono-culture,

THP1 co-culture with control ECs or co-culture with EGCG treated

senECs. Notably, THP1 cells co-cultured with EGCG-treated senECs

showed a reversal of inflammation-associated gene expression,

displaying a profile similar to that of THP1 cells co-cultured with

control ECs (Figure 3B).

Gene set enrichment analysis (GSEA) comparing transcript

abundance in THP1 cells co-cultured with senECs compared to those

expressed in THP1 cells co-cultured with control ECs using the

Hallmark database showed that 32 Hallmark gene sets were

significantly enriched (padj < 0.05) and 5 gene sets were significantly

depleted in THP1 cells co-cultured with senECs (Supplementary

Figure 4A). Furthermore, a comparison between THP1 cells co-

cultured with EGCG-treated senECs and THP1 cells co-cultured with

untreated senECs showed that no gene sets were significantly enriched

and 5 gene sets were significantly depleted in THP1 cells co-cultured

with EGCG-treated senECs (Supplementary Figure 4B). Highly

enriched pathways in THP1 cells co-cultured with senECs were tumor

necrosis factor (TNF)-α signalling via NF-κB, inflammatory response,

oxidative phosphorylation, and reactive oxygen species pathway

(Figure 3C,E, left panels). In contrast, THP1 cells co-cultured with

EGCG-treated senECs showed depletion in these signaling pathways

(Figure 3D,F, right panels). Overall, these results indicate that senECs

enhance inflammatory response and oxidative phosphorylation

pathways of THP1 monocytes, while EGCG treatment partially

counteracts this effect.
3.4 Characterization of EVs

We isolated EVs from control ECs (EC-EVs), senECs

(senEC-EVs), or EGCG-treated senECs (tsenEC-EVs) via

ultracentrifugation from conditioned media. To confirm that these

nanoparticles were EVs, we performed nanoparticle tracking

analysis (NTA), cryo-EM and western blot (MISEV2023) (49).

Quantitative and morphological characterization of EVs was

conducted using NTA and cryo-EM (Figure 4A–D). SenECs

yielded more EVs (senEC-EVs) than control ECs (EC-EVs)

(Figure 4B), with no discernible difference in particle size

(Figure 4C). Notably, EGCG treatment did not alter the production

or size of particles compared to untreated senECs (Figure 4B,C).

As per MISEV guidelines, western blot confirmed the presence of

standard EV markers including Alix, CD9, CD63, and CD81, and

the absence of calnexin EVs (Figure 4E, Supplementary Figure 5).
3.5 Senescent EC-EVs induce a pro-
inflammatory phenotype in monocytes that
can be mitigated by EGCG

To elucidate the role of EVs in the interaction between ECs and

THP1 monocytes, THP1 cells were exposed to different EVs (EC-
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EVs, senEC-EVs, or tsenEC-EVs) or PBS control for 24 h

(Figure 4F). THP1 cells were stimulated with LPS for 2 h after EV

treatment. Monocytes exposed to EC-EVs showed no changes in

IL-1β, IL6, or CXCL8 mRNA expression levels compared to the

PBS-treated control cells while exposure to senEC-EVs resulted in

significantly increased IL-1β, IL6, and CXCL8 mRNA expression

(Figure 4G). Interestingly, exposure to tsenEC-EVs significantly

reversed the increased IL-1β, IL6, and CXCL8 mRNA expression

(by 1.7-fold, 2-fold, and 1.7-fold respectively), reverting back to

the levels observed in non-senescent EC-EVs-exposed monocytes

and PBS-treated controls (Figure 4G).

To further determine the role of EVs on the pro-inflammatory

response of THP1 cells, we measured pro-inflammatory cytokine

and chemokine production (Figure 4H). Exposure to senEC-EVs

increased pro-inflammatory cytokine and chemokine (e.g., IL-1α,

IL-1β, IL-6, IL-8, IL-12p40, IL-27, IFNγ, CXCL9, CXCL10, MCP-

1/CCL2, CCL5, CCL22, MIP-1A and FLT-3l) protein secretion

from monocytes compared to PBS-treated control cells. In

contrast, exposure to tsenEC-EVs mitigated these effects, with

secretion of several cytokines and (e.g., IL-1α, IL-1β, IL-6, IL-8,

IL-12p40, IL-27, CXCL9, CXCL10, MCP-1/CCL2, CCL5, and

CCL22) reversed back to levels secreted by PBS-treated monocytes

or monocytes exposed to non-senescent EC-EVs. Notably, EGCG

reversed IL-1β, IL-6, and IL-8 by 2-, 2-, and 1.5-fold respectively.

These findings suggest that EVs derived from senECs enhance

LPS-induced activation in THP1 cells, indicating an increased pro-

inflammatory effect. In contrast, EVs from EGCG-treated senECs

mitigate this activation, maintaining monocyte activation at

normal levels. Together, these data suggest that EVs from

senescent ECs can transfer cargo to recipient monocytes capable

of altering cellular profiles and promoting a pro-inflammatory

response. Treatment of senescent ECs with EGCG appears to

counteract this pro-inflammatory effect, limiting monocyte

activation and response to LPS stimulation.
4 Discussion

This study demonstrates that senescent ECs communicate

with monocytes to increase pro-inflammatory activity, and

that EGCG supplementation of ECs can reverse this

proinflammatory communication. An increase in monocyte

inflammation has implications for age-related diseases, which

underlie atherosclerosis and other cardiovascular pathologies.

Our results indicate that EGCG mitigates senescence-

associated phenotypes in ECs and increases the production of

anti-inflammatory cytokine/chemokines from senescent ECs.

Furthermore, monocytes co-cultured with EGCG-treated senescent

ECs exhibited reduced pro-inflammatory responses compared to

those with untreated senescent ECs, indicating that EGCG

treatment restricts monocyte activation induced by the secretome

of senescent ECs that enhance inflammation. Notably, senescent

ECs elevate monocyte gene expression in various pathways related

to inflammation and oxidative phosphorylation, but EGCG

treatment can halt this gene expression; thus, these data

demonstrate that EGCG treatment can reverse EC senescent
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programming and restore homeostatic EC-monocyte

communication. Moreover, senescent ECs produced more EVs

than control ECs. We showed that EVs from senescent ECs

enhance LPS-induced pro-inflammatory activation in

monocytes, while EVs from EGCG-treated senescent ECs

mitigate this activation, maintaining monocyte activation at

normal levels. Overall, these data suggest that EGCG appears to

have a senomorphic effect on senescent ECs, impacting their

secretome—including EVs—leading to reversal of the increased

monocyte activation and inflammation induced in response to

co-culture with senescent ECs. Reversal of endothelial

senescence and restoration of homeostatic EC-monocyte

crosstalk by EGCG should be explored further in the context of

age-related diseases.

Etoposide was used for this study due to its well-established

role in inducing senescence by targeting DNA double-strand

breaks (50, 51), making it an ideal tool for investigating

senescence-related processes. Our study showed Etoposide-

induced a senescent phenotype in ECs. EGCG, a compound

that influences numerous molecular pathways, has potential

benefits in treating various diseases such as cancer,

neurological, cardiovascular, respiratory, and metabolic

disorders (52). SASP factors such as pro-inflammatory and

immune-modulatory cytokines, chemokines, proteases, and

growth factors change during cellular senescence (48).

Numerous pro-inflammatory cytokines and growth factors,

including GM-CSF, IL-1, and IL-6 and anti-inflammatory

cytokines such as IL-4 and IL-13 are produced by senescent

cells (48, 53). Here, we demonstrated that EGCG treatment in

senescent ECs reduces senescent markers, including SASP. We

also evaluated the efficacy of two other senolytic/senomorphic

agents, quercetin and resveratrol, in mitigating EC senescence.

However, EGCG exhibited superior anti-senescent efficacy

compared to alternative agents within our experimental model

(Supplementary Figure 2).

Our data indicate that senescent ECs increase pro-

inflammatory factors and decrease anti-inflammatory factors, a

shift reversed by EGCG treatment, suggesting its

immunomodulatory impact in endothelial senescence. EGCG

has senolytic and senomorphic effects through various

mechanisms (38, 39). EGCG inhibits the premature senescence

of preadipocytes by suppressing the PI3K/Akt/mTOR pathway

and promotes senescent cell death through the modulation of

the Bax/Bcl-2 pathway (38). Additionally, EGCG exhibits

senomorphic effects by reducing SASP via the activation of

SIRT3 in preadipocytes (39). Our findings demonstrate that

EGCG treatment significantly reduced all indices of senescence

compared to senescent ECs (Figure 1A–D). Compared to non-

senescent controls, EGCG fully reversed most but not all

markers back to baseline, implying senomorphic potential and

in keeping with other emerging senomorphics that dampen the

spectrum of SASP (54). Consistent with earlier findings (8), our

data showed a decrease in pro-inflammatory responses in

monocytes co-cultured with untreated ECs. Specifically, EVs

from untreated ECs inhibited the activation of proinflammatory

markers (such as IL-12p40, IL-23p19, TNF-α, and IL-1β, while
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promoting the expression of markers associated with anti-

inflammatory response (such as IL-10, MRC1, and TGF-β). We

demonstrate for the first time that senescent ECs communicate

with monocytes, resulting in increased pro-inflammatory

responses in co-cultured monocytes, which can be mitigated by

treating senescent ECs with EGCG. Other studies have shown

the biological effects of EGCG in targeting molecular pathways

governing inflammation and oxidative stress (52). Our results

showed a similar effect: EGCG treatment of senescent ECs

alters communication with monocytes to suppress the activation

of inflammatory pathways and oxidative phosphorylation

compared to non-treated senescent ECs. Others have

demonstrated that EGCG downregulates several components of

the TNF-α-induced NF-κB signalling pathway, thereby reducing

the inflammatory response in ECs (55). Additionally, EGCG

can protect vascular ECs from oxidative stress-induced damage

by modulating the autophagy-dependent PI3K-AKT-mTOR

pathway (44). Our findings, together with previous studies,

suggest that EGCG can influence these pathways in senescent

ECs, altering their communication with monocytes and

resulting in decreased activation of inflammatory pathways and

oxidative phosphorylation. Previous studies have demonstrated

that ECs-EVs modulate the monocyte/macrophage phenotype

(8, 28–31). Here, we have shown for the first time how

senescent ECs communicate differently with monocytes through

EC-EVs. Our results show that exposure to senescent EC-EVs

increases the pro-inflammatory response in monocytes, while

EVs from EGCG-treated senescent ECs restore this response to

baseline levels. ECs have been shown to release different EV

cargo (e.g., miRNA, protein) when they undergo senescence

(56–58), and that these can propagate senescence to recipient

ECs (56, 59). Other work has demonstrated that EVs derived

from senescent vascular smooth muscle cells are carriers of

SASP components and can influence monocyte inflammatory

responses (60). Our data indicate that although EGCG

treatment does not alter the size or number of EVs produced

by senescent ECs, it significantly reduces monocyte activation

responses. Further studies are needed to confirm whether

senEC-EVs specifically carry SASP-associated cytokines and

chemokines and to explore the modulatory effects of EGCG on

EV composition and function.

A limitation of this study is the use of a drug

(Etoposide)-induced model, which offers rapid induction of

senescence. While this approach effectively activates senescent

programming in ECs, it may not fully represent the complex

and multifactorial processes involved in senescence associated

with natural aging. As a DNA-damaging agent, Etoposide may

also activate non-senescent stress responses in ECs. Alternative

approaches, such as replicative senescence models or oxidative

stress-induced senescence models, could provide a more

comprehensive understanding of these processes. There are

other markers of senescence that could be tested in future

experiments. We utilized HUVECs and THP1 cells in this

study, acknowledging that while HUVECs may not capture the

diverse characteristics of ECs from various vascular beds, and

THP1 cells may not fully replicate the behavior and
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heterogeneity of primary human monocytes in vivo, both cell

lines provide reliable in vitro data. Their established roles in

cell biology allow for meaningful comparisons with existing

research. A fundamental limitation of working with EVs is the

difficulty in ensuring the purity and consistency of isolated EV

populations, as contaminants like proteins or other vesicle

types can interfere with experimental results. Additionally, the

heterogeneity of EVs in size, cargo, and function can make it

challenging to draw definitive conclusions about their specific

roles in cell signalling or disease processes. Finally, future work

could explore the EV cargo released from senescent ECs and

specifically determine how this cargo is altered by treatments

that reverse senescent programming.

CVDs and atherosclerosis are global health issues significantly

impacted by aging (61). One of the primary contributors to

these conditions is monocyte inflammation and oxidative

phosphorylation (62, 63). This study suggests a potential

contribution of senescent ECs to this process. Here, we present

in vitro data indicating that EGCG treatment mitigates the

senescent EC secretome contributing to underlying processes

that can be associated with CVD and atherosclerosis,

positioning it as a potential therapeutic agent. Interestingly,

EGCG does have direct effects on ECs, where it has been shown

to scavenge reactive oxygen species and exert antiangiogenic, and

antithrombotic effects in a murine tumor model (64). Investigating

how EGCG-treated senescent ECs affects other monocyte

functions, such as adhesion and migration, is a crucial next step in

evaluating its potential as a therapeutic agent for age-related

diseases like atherosclerosis. As previously shown in a study from

our lab, identifying alterations in EV cargo can facilitate new

therapeutic discoveries (28); thus, further investigation is necessary

to determine how EGCG may modulate EV cargo, including

proteins and miRNAs, in the context of developing age-related

disease therapies.

With this study, we begin to understand how aging affects

intercellular communication within the hemothelium and the

potential role of senescent EC-EVs in age-related diseases. This

study determined the inflammation mediating impact of EGCG on

senescent EC-monocyte communication. We anticipate that EGCG

treatment can reduce senescent EC-EV-induced monocyte

dysfunction, which can be beneficial in the development of new

strategies to interrupt or mitigate senescence. Carefully designed in

vivo studies will ultimately be required to test the therapeutic utility

of EGCG for age-related vascular diseases.
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