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Extracellular vesicles (EVs) are nanosized particles secreted by cells that play
crucial roles in intercellular communication, especially in the context of
cardiovascular diseases (CVDs). These vesicles carry complex cargo, including
proteins, lipids, and nucleic acids, that reflects the physiological or
pathological state of their cells of origin. Multiomics analysis of cell-derived
EVs has provided valuable insights into the molecular mechanisms underlying
CVDs by identifying specific proteins and EV-bound targets involved in disease
progression. Recent studies have demonstrated that engineered EVs, which are
designed to carry specific therapeutic molecules or modified to enhance their
targeting capabilities, hold promise for treating CVDs. Analysis of the EV
proteome has been instrumental in identifying key proteins that can be
targeted or modulated within these engineered vesicles. For example, proteins
involved in inflammation, thrombosis, and cardiac remodeling have been
identified as potential therapeutic targets. Furthermore, the engineering of EVs
to increase their delivery to specific tissues, such as the myocardium, or to
modulate their immunogenicity and therapeutic efficacy is an emerging area
of research. By leveraging the insights gained from multiomics analyses,
researchers are developing EV-based therapies that can selectively target
pathological processes in CVDs, offering a novel and potentially more
effective treatment strategy. This review integrates the core findings from EV
multiomics analysis in the context of CVDs and highlights the potential of
engineered EVs in therapeutic applications.
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1 Introduction

Cardiovascular diseases (CVDs) remains a leading cause of mortality and morbidity

worldwide, posing significant challenges to global health. Despite advances in medical

technology and therapeutics, the burden of CVDs continues to grow, driven by factors

such as aging populations, lifestyle changes, and the increasing prevalence of risk
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factors such as hypertension, diabetes, and obesity (1). Although

effective to some extent, traditional therapeutic approaches often

fail to address the complex and multifactorial nature of CVDs

fully. This has led to a growing interest in innovative treatment

strategies that can more precisely target the underlying

pathophysiological mechanisms of the disease (2). One promising

area of research focuses on the use of EVs as novel therapeutic

agents because of their natural role in intercellular

communication and their ability to carry and deliver a diverse

array of biomolecules (3).

EVs are nanosized particles secreted by virtually all cell types

and are increasingly recognized for their critical role in mediating

intercellular communication. EVs include a variety of subtypes,

including exosomes, microvesicles, and apoptotic bodies, each

distinguished by their size, biogenesis, and molecular composition

(4). These vesicles carry a complex cargo of proteins, lipids,

nucleic acids, and other biomolecules, which reflect the

physiological or pathological state of their cells of origin.

Exosomes (30–150 nm) carry proteins, RNA, and lipids and are

formed through the inward budding of endosomes, with release

via the fusion of multivesicular bodies with the plasma membrane.

Microvesicles (100–1,000 nm), which are shed directly from the

plasma membrane, contain cytoskeletal proteins, heat shock

proteins, integrins, and posttranslationally modified proteins such

as glycosylated and phosphorylated proteins. Apoptotic bodies

(1–5 µm), which are released during cell death, contain complete

organelles, chromatin, and a small amount of glycosylated proteins

(5). In the context of CVDs, EVs influence various aspects of

disease progression, including inflammation, thrombosis, and

cardiac remodeling, by transferring bioactive molecules between

cells (6). This capacity to modulate cellular behavior makes EVs

attractive candidates for therapeutic applications, particularly in

the targeted treatment of CVDs.

The potential of EVs as therapeutic agents is further amplified

by advancements in multiomics technologies, which have allowed

for a comprehensive analysis of the molecular cargo within these

vesicles. Multiomics analyses, including proteomics, genomics,

transcriptomics, and metabolomics, have provided valuable

insights into the molecular mechanisms underlying CVDs by

identifying specific proteins and EV-bound targets involved in

disease progression (7). These findings not only deepen our

understanding of the pathophysiology of CVDs but also open

new avenues for the development of engineered EVs designed to

carry specific therapeutic molecules or to enhance their targeting

capabilities. Moreover, the integration of these omics-driven

insights with innovative engineering techniques has enabled the

creation of EVs with enhanced therapeutic properties, including

improved delivery efficiency, tissue specificity, and reduced

immunogenicity (8). This review aims to integrate the core

findings from EV multiomics analyses in the context of CVDs

and to highlight the emerging potential of engineered EVs in

therapeutic applications. By exploring the intersection of EV

biology, multiomics research, and bioengineering, this review

seeks to provide a comprehensive overview of how engineered

EVs could revolutionize the treatment of CVDs, offering novel

strategies to address its complex and multifaceted nature.
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2 Composition and function of EVs

2.1 Molecular cargo of EVs

EVs are intricate and biologically active particles secreted by cells

that carry diverse cargos, including proteins, lipids, nucleic acids, and

metabolites. The composition of these vesicles is closely linked to the

cell of origin and its physiological or pathological state (9). Proteins

within EVs often consist of enzymes, signaling molecules, and

structural components that facilitate their role in intercellular

communication and the modulation of recipient cell functions.

Lipids, which form the vesicle membrane, not only maintain

structural stability but also play a critical role in the interaction of

EVs with target cells, influencing their uptake and cargo delivery.

EVs are characterized by a diverse molecular cargo that reflects their

cellular origin and biological functions. Key protein markers of EVs

include tetraspanins (CD9, CD63, and CD81), play critical roles in

EVs structure and function. These proteins are involved in the

organization of membrane microdomains, facilitating the sorting of

specific cargo and mediating interactions with recipient cells. CD63,

for example, is associated with late endosomal compartments and is

crucial in EVs formation, while CD9 and CD81 are linked to

membrane fusion events during EVs release or uptake (5, 10, 11).

Endosomal Sorting Complex Required for Transport (ESCRT)-

associated proteins (TSG101 and Alix), which are crucial for EV

biogenesis and serve as evidence of their endosomal origin. TSG101,

a component of the ESCRT-I complex, is essential for EVs

biogenesis, specifically in the sorting of ubiquitinated proteins into

intraluminal vesicles (ILVs) within multivesicular bodies (MVBs).

Alix, another key ESCRT-associated protein, interacts with

ESCRT-III components and facilitates the budding of ILVs into

MVBs (12, 13). Heat shock proteins, such as HSP70 and HSP90,

contribute to EV stability and immune-modulatory functions

(14, 15). Lipids, including cholesterol, sphingolipids, ceramides, and

phosphatidylserine, further distinguish EV membranes, enhancing

their stability and recipient cell interactions. Additionally,

RNA-binding proteins like hnRNPA2B1 and AGO2 mediate

selective RNA packaging, underscoring the regulatory potential of EV

cargo (16, 17). Nucleic acids such as mRNAs, miRNAs, and other

noncoding RNAs are key functional elements within EVs, enabling

them to modulate gene expression and cellular responses in recipient

cells (18). This molecular versatility positions EVs as crucial

mediators of various biological processes, particularly in the context

of cardiovascular health and disease.
2.2 Functional role of EVs in cardiovascular
disease

EVs uptake is a complex, multifaceted process critical for their

role in cell-to-cell communication and therapeutic applications.

EVs interact with recipient cells through various pathways, often

dictated by the molecular composition of the EVs membrane,

such as tetraspanins, integrins, and glycoproteins, as well as the

surface receptors of the target cell (19). Uptake mechanisms

include clathrin-mediated endocytosis, where receptor-ligand
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interactions trigger vesicle internalization through clathrin-coated

pits, and caveolin-mediated pathways, which utilize lipid raft

domains (20–22). Macropinocytosis, an actin-driven process,

allows non-specific engulfment of EVs, while phagocytosis is

predominantly used for larger EVs and involves their recognition

by phagocytic receptors (23, 24). Direct fusion of EV membranes

with the plasma membrane or endosomal membranes following

endocytosis provides an alternative route for cargo delivery (25,

26). The uptake route may vary depending on the molecular

composition of both the EVs and the target cell, suggesting a

heterogeneous and complex entry process.

Cardiovascular pathologies including a wide range of

conditions, including atherosclerosis, myocardial infarction,

hypertension, and heart failure, which collectively represent the

leading causes of morbidity and mortality globally. These diseases

are characterized by multifaceted processes involving chronic

inflammation, oxidative stress, and endothelial dysfunction, which

disrupt vascular homeostasis and promote plaque formation,

thrombosis, and vascular remodeling (27, 28). Atherosclerosis,

driven by lipid accumulation and immune cell infiltration, serves

as a precursor to many acute events such as myocardial infarction,

where ischemia and subsequent tissue damage result in

cardiomyocyte death and fibrosis (29). Hypertension exacerbates

vascular injury through increased shear stress and endothelial cell

activation, further contributing to target organ damage (30). Heart

failure, often a consequence of ischemic injury or chronic pressure

overload, involves maladaptive remodeling, impaired cardiac

output, and activation of neurohormonal pathways (31). These

interconnected processes highlight the complexity of cardiovascular

disease, necessitating novel therapeutic strategies to address its

underlying mechanisms.

In CVDs, EVs have emerged as promising therapeutic agents

capable of supporting and enhancing cardiovascular health

through various mechanisms. One of the primary therapeutic

roles of EVs in CVDs is their ability to facilitate tissue repair and

regeneration, particularly following MI (32). EVs derived from

stem cells, such as mesenchymal stem cells (MSCs) or cardiac

progenitor cells (CPCs), have been shown to carry regenerative

factors, including growth factors, antiapoptotic proteins, and

proangiogenic miRNAs (33, 34). These EVs can be taken up by

cardiac cells, where they promote cell survival, reduce apoptosis,

and stimulate angiogenesis, thereby assisting in the repair of

damaged myocardial tissue. For example, EVs enriched with

miR-21 have been demonstrated to reduce fibrosis and enhance

the regenerative capacity of the heart by targeting pathways

involved in apoptosis and inflammation (35). Additionally, EVs

carrying vascular endothelial growth factor (VEGF) can promote

the formation of new blood vessels, improving the blood supply

to ischemic areas and facilitating tissue recovery (36, 37). These

therapeutic actions underscore the potential of EV-based

therapies to mitigate the damage caused by acute cardiovascular

events and support long-term recovery.

Another significant role of EVs in CVDs is their capacity to

modulate immune responses and reduce inflammation, which is a

critical factor in the progression of many cardiovascular

conditions. EVs derived from certain cell types, such as regulatory
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T cells (Tregs) or MSCs, carry anti-inflammatory molecules and

immunomodulatory miRNAs that can suppress excessive immune

activation and promote a more balanced immune response (38).

By delivering these therapeutic molecules to immune cells, EVs

can reduce chronic inflammation, which is a key driver of

atherosclerosis and other CVDs. For example, EVs carrying

miR-146a have been shown to downregulate proinflammatory

cytokines and inhibit the activation of NF-κB, a major

inflammatory signaling pathway, thereby reducing the inflammatory

burden on the cardiovascular system (39). Moreover, a study

demonstrated that engineered EVs derived from M2 macrophages

(M2 Exo), loaded with hexyl 5-aminolevulinate hydrochloride

(HAL) have shown inflammation-tropism, anti-inflammatory

effects, and potential for both therapy and imaging in

atherosclerosis through targeted cytokine release and HAL

metabolism (40). EV-derived circ_0001785 has been identified as a

novel biomarker in atherosclerosis and has been shown to reduce

endothelial cell injury and delay plaque formation through the

miR-513a-5p/TGFBR3 ceRNA network mechanism, providing a

potential EV-based therapeutic strategy for atherogenesis (41).

Extracellular vesicle-packaged noncoding RNAs (ncRNAs) have

shown potential as biomarkers and therapeutic targets in

hypertension, playing critical roles in vascular remodeling and

offering new avenues for the diagnosis and treatment of

hypertension-related pathologies. Urinary EV-derived miR-146a has

been identified as a potential biomarker for early renal injury in

hypertension, with low expression levels strongly associated with

albuminuria and capable of discriminating the presence of urinary

albumin excretion (42). Mesenchymal stem cell-derived EVs

alleviate hypoxic pulmonary hypertension by reducing pulmonary

vascular remodeling, right ventricular hypertrophy, and pulmonary

artery pressure through the inhibition of the Hsp90aa1/ERK/pERK

pathway and the suppression of PASMC proliferation, migration,

and resistance to apoptosis (43). Moreover, EVs are involved in

processes such as thrombosis and heart remodeling. For example,

EVs can carry factors that promote angiogenesis and reduce

thrombosis risk, thereby improving vascular function and

preventing adverse cardiovascular events (44). In heart remodeling,

EVs can deliver miRNAs that modulate fibrotic responses and

promote the regeneration of healthy cardiac tissue (45). Through

these mechanisms, EVs represent a novel and promising strategy

for the treatment of CVDs, with the potential to improve patient

outcomes by addressing both the underlying causes and the

consequences of cardiovascular pathology (Figure 1).
3 Comprehensive multiomics profiling
of cell-derived EVs in cardiovascular
disease

3.1 Integrative multiomics approaches for
EVs characterization

Multiomics approaches have revolutionized the study of EVs

by providing a comprehensive and integrative view of their

molecular cargo. These approaches combine various omics
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FIGURE 1

Composition and functional roles of EVs in CVDs. EVs, including proteins, lipids, nucleic acids and metabolites, have been identified as carriers of
essential biomolecules that influence key biological processes, such as angiogenesis, inflammation regulation, cardiomyocyte survival and
regeneration, and tissue repair. The figure was partly generated via Servier Medical Art, provided by Servier, licensed under a CC BY 3.0.
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technologies—such as proteomics, genomics, transcriptomics, and

metabolomics—to analyze the full spectrum of biomolecules

within EVs (7). Proteome profiling revealed that EVs carry

selectively enriched protein cargo associated with biological

functions such as angiogenesis and inflammation regulation,

notably excluding nuclear proteins. This selective cargo is crucial

for intercellular communication and tissue repair, particularly in

MSCs (46, 47). Using an unbiased proteomic approach based on

super-SILAC and high-resolution mass spectrometry, researchers

identified 1,212 proteins in the proteome of exosomes, among

which 22 proteins were universally enriched, including syntenin-

1, a potential universal exosome biomarker (48).

Transcriptomics is used to examine the RNA content,

identify genetic material that can be transferred between cells,

and influence gene expression and cellular behavior. Research

by Zhang et al. revealed that EVs derived from MSCs contain

therapeutic miRNA components that may provide a

nephroprotective effect (49). Furthermore, a study identifies

two distinct extracellular RNA (exRNA) profiles released by

mast cells, termed high-density (HD) and low-density (LD)

exRNA. While both contain mRNA and miRNA, HD exRNA is

enriched in lincRNA, snoRNA, and snRNA, whereas LD

exRNA features mitochondrial rRNA, tRNA, and full-length
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ribosomal RNA. Proteomic and electron microscopy analyses

link both fractions to extracellular vesicles, with HD proteins

associated with nuclear components and LD proteins linked to

mitochondria. These findings highlight the diversity of exRNA

types and their complex biological roles (50). Several studies

have also confirmed that EVs released by various cultured cells

possess distinct RNA signatures, including sequences mapped

to ncRNA including rRNA, Y-RNA, snRNA, tRNA and

genomic repeats such as long interspersed nuclear elements

(LINE), short interspersed nuclear elements (SINE), and long

terminal repeats (LTR) elements (51–53).

Metabolomics provides insights into the small-molecule

metabolites carried by EVs, which can affect metabolic

pathways in recipient cells. The EV lipid signature discriminates

ST-elevation myocardial infarction (STEMI) patients, and these

findings may contribute to the identification of novel biomarkers

and signaling mechanisms related to cardiac ischemia (54). In a

detailed lipidomic study of exosomes from metastatic prostate

cancer PC-3 cells, researchers identified approximately 280 lipid

species, revealing significant differences in lipid composition

between exosomes and their parent cells. Exosomes were notably

enriched in glycosphingolipids, sphingomyelin, cholesterol, and

phosphatidylserine, with an 8.4-fold higher lipid-to-protein ratio
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compared to parent cells, and exhibited selective lipid sorting that

may inform mechanisms of exosome formation and function (55).

By integrating data from these different omics layers,

researchers can gain a holistic understanding of the composition

and function of EVs, particularly in the context of CVDs

(Table 1). Moreover, the integration of these omic approaches

has profound implications for EVs biology. In a study exploring

proteome dynamics in a mouse model of pathological cardiac

hypertrophy, the integration of transcript abundance, protein

abundance, and protein turnover data led to a 75% increase in

the identification of disease gene candidates. Importantly, protein

turnover data revealed insights into post-transcriptional

regulation and implicated unique disease-associated proteins that

were not identified through transcript or protein abundance

alone (66). Using proteomics and vesiculomics, Mark et al.

identified disease-specific EV cargoes, including 773 proteins and

80 microRNAs, and linked them to procalcific Notch and Wnt

signaling in carotid arteries and aortic valves, respectively (67).

The combined analysis of proteomics and miRNA omics

confirmed the distinctive profile of purified eFat-EVs from

patients with atrial fibrillation (AF). in vitro, purified and

unpurified eFat-EVs from patients with AF had a greater effect

on proliferation and migration of human mesenchymal stromal

cells and endothelial cells, compared with eFat-EVs from patients

without AF (68). In summary, these techniques enable the

identification of disease-specific EVs signatures, advancing the

discovery of biomarkers for early diagnosis and prognosis.
3.2 Key molecular insights from multiomics
analyses of EVs in cardiovascular disease

Multiomics studies have provided critical insights into the role

of EVs in CVDs by identifying key proteins, RNAs, and metabolites

that contribute to disease progression and therapeutic responses.

One of the significant findings from these studies is the
TABLE 1 Multiomics analysis of EVs in cardiovascular disease.

Omics
approach

Type of CVDs Key molecules identified

Proteomics MI C1QA, C5, APOD, APOC3, GP1BA,
PPBP

P

Proteomics MI PLG, C8B, F2 P

Proteomics Hypertension OLFM4, AT3, MPO U

Proteomics MI-I/R PAPP-A, NID1 C

Transcriptomics MI miR-4516
miR-203

P

Transcriptomics MI lncRNA-UCA1 h

Transcriptomics MI lncRNA- HCG15 S

Transcriptomics CHD S1PR5
CARNS1

P

Metabolomics Hypercholesterolemia Phosphatidyl-cholines C

Lipidomics STEMI Sphingomyelins P

Lipidomics MI Phosphatidylcholine, sphingo-
myelins, triglycerides

M
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identification of specific proteins within EVs that are associated

with cardiovascular pathologies (69). For example, proteomic

analyses have revealed that EVs derived from cardiovascular cells

often contain proteins involved in inflammation, coagulation,

and extracellular matrix remodeling (18). These proteins not only

serve as biomarkers for the early detection of CVDs but also

offer potential therapeutic targets. By modulating the levels or

activities of these proteins within engineered EVs, researchers are

exploring new ways to mitigate the adverse effects of CVDs, such

as reducing inflammation or preventing reactive oxygen species

overaccumulation. A study by Shen et al. presented a two-step

EVs delivery system that enhances the cardiac targeting and

therapeutic efficacy of curcumin for myocardial infarction while

minimizing systemic toxicity and avoiding entrapment by the

mononuclear phagocyte system (70). Furthermore, multiomics

analyses have highlighted the presence of cardioprotective

molecules or biomarkers within EVs, such as antiapoptotic

factors or matrix metalloproteinases, which can be leveraged in

therapeutic applications to increase the resilience of cardiac tissue

to stress and injury (71, 72).

In addition to proteins, the RNA content of EVs has emerged

as a crucial component in CVDs, particularly noncoding RNAs

such as microRNAs (miRNAs) and long noncoding RNAs

(lncRNAs). Multiomics studies have identified specific miRNAs

within EVs that regulate key pathways involved in cardiac

hypertrophy, fibrosis, and angiogenesis. For example, certain

miRNAs in EVs have been shown to inhibit profibrotic signaling

pathways, thereby reducing cardiac fibrosis and improving heart

function following heart failure. For example, a study by Liu

et al. revealed that decreased levels of exosomal miR-425 and

miR-744 in plasma indicate the development of fibrosis during

heart failure (73). Other miRNAs promote angiogenesis by

targeting antiangiogenic factors, facilitating the repair of ischemic

tissues. For example, cardiosphere-derived EVs enhanced heart

function in a mouse model of MI by utilizing miRNA-146

to reduce apoptosis and inflammation while promoting
Source of
EVs

Biological role in CVDs Ref

lasma Postinfarct pathways of complement activation (56)

lasma Tissue repair, cell proliferation, angiogenesis and
maintaining vascular integrity

(57)

rine Glycosaminoglycan degradation, coagulation and
complement system, and oxidative stress

(58)

PC-EVs IGF-R signaling pathway and angiogenesis. (59)

lasma SFRP1 may be involved in lipid metabolism (60)

MSC Promoting anti-apoptotic effects. (61)

erum Facilitated cardiomyocyte apoptosis and inflammatory
cytokine production.

(62)

lasma Myocardial fibrosis, endothelial cell permeability, and
macrophage efferocytosis.

(63)

M-EVs EVs secretion, lipid metabolism, adipocyte differentiation (64)

lasma Endothelial cell function, and inflammatory signaling (54)

SC-EVs Tissue regeneration and regulation of the immune system (65)
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cardiomyocyte proliferation and angiogenesis (74). The ability to

manipulate the RNA cargo of EVs through engineering

techniques opens new avenues for therapeutic interventions,

where tailored EVs can deliver specific miRNAs to modulate

disease processes in a controlled manner. Overall, the discovery

of novel ncRNAs within EVs has expanded our understanding of

the regulatory networks involved in CVDs, providing further

opportunities for the development of RNA-based therapies.

Metabolomics, though less explored than proteomics and

transcriptomics, has also contributed valuable insights into the

role of EVs in CVDs. Metabolomic analyses of EVs have

identified metabolites involved in energy metabolism, oxidative

stress, and lipid signaling, all of which are critical in the context

of cardiovascular health (75). Currently, therapeutic approaches

that utilize EVs to deliver lipid metabolites for CVDs treatment

are limited. The primary objective of metabolomics focused on

EVs is to diagnose and identify potential lipid biomarkers

associated with disease. For example, a study by Barile et al.

demonstrated that the lipidomic signature of EVs, particularly

sphingolipids, can accurately differentiate STEMI patients from

controls, highlighting their potential as novel biomarkers for

cardiac ischemia (54). These findings highlight the promising

role of metabolomics in uncovering new therapeutic strategies,

where EVs could be strategically engineered to deliver targeted

metabolites, potentially restoring metabolic balance and offering

protection against the progression of cardiovascular diseases.
4 Engineering extracellular vesicles for
therapeutic applications in
cardiovascular disease

4.1 Strategies for enhancing EVs cargo and
targeting efficiency

The therapeutic potential of EVs in CVDs is significantly

amplified through strategic engineering to increase their cargo

and targeting efficiency (76). One approach involves the genetic

modification of donor cells to overexpress specific therapeutic

molecules, such as cardioprotective proteins or anti-inflammatory

miRNAs, which are subsequently packaged into EVs (77–79).

Additionally, physicochemical modifications can be employed to

load EVs with small-molecule drugs, peptides, or nucleic acids.

The study of Sun et al. has encapsulated curcumin into EVs

through physical mixing, which not only retains the stability of

curcumin in vitro, but also enhances the bioavailability of

curcumin in vivo (80). Besides, a study used iron oxide

nanoparticles (IONPs)-incorporated MSCs (IONP-MSCs) to

develop exosome-mimetic EVs, which showed increased retention

in infarcted hearts under magnetic guidance. The approach

enhanced the levels of therapeutic molecules in IONP-MSCs and

IONP-NVs, addressing challenges such as low exosome

productivity (81).

To improve targeting efficiency, surface modification of EVs

with specific ligands or antibodies that recognize receptors on

diseased cardiovascular tissues is a promising strategy (82).
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Magnetic nanoparticles with an Fe3O4 core and a silica shell,

functionalized with antibodies targeting CD63 on EVs and

myosin-light-chain markers on injured cardiomyocytes, have

demonstrated efficacy in myocardial infarction models by locally

capturing and releasing EVs (83). These modifications can guide

EVs to sites of injury or inflammation, thereby increasing the

localized therapeutic effect while minimizing off-target effects.

These engineered EVs offer a more precise and effective

approach for treating CVDs, addressing the limitations of

conventional therapies.
4.2 Targeted delivery and functional
modulation of engineered EVs

Improving heart targeting while minimizing non-specific

absorption and enhancing uptake efficiency by target cells are

key challenges in this field (84). One of the most critical

challenges is ensuring that these vesicles are delivered specifically

to affected tissues, such as the myocardium or vascular

endothelium, and that they retain their therapeutic function once

they reach their target (85, 86). To achieve this goal, several

innovative strategies have been developed to enhance the targeted

delivery of engineered EVs. One approach involves the use of

tissue-specific targeting ligands, such as peptides, antibodies, or

aptamers, which are conjugated to the surface of EVs (87, 88).

These ligands can recognize and bind to receptors that are

overexpressed in diseased cardiovascular tissues, ensuring that

the EVs are preferentially taken up by the target cells (89, 90).

For example, a study from Cheng et al. revealed that exosomes

conjugated with a cardiac homing peptide (CHP) improve targeted

delivery to the infarcted heart, enhancing cardiac function,

reducing fibrosis, and promoting angiogenesis following

myocardial infarction (88). Integrins on EVs surfaces facilitate

targeted interactions with recipient cells through the recognition

of extracellular matrix components or specific cell surface

ligands. This integrin-mediated binding not only enables efficient

internalization of EVs via endocytic pathways but also modulates

downstream signaling in recipient cells. Studies have shown that

blocking integrins αv/β3 on the cell surface significantly reduces

the uptake of EVs (91, 92). Given their critical roles in

myocardial fibrosis, integrins present promising targets for future

therapeutic strategies, including EV-based approaches aimed at

targeting the myocardium. By modulating integrin pathways,

such therapies could reduce fibrosis and improve cardiovascular

outcomes following heart injury (93).

Reducing off-target uptake by other tissues is essential to

increase the therapeutic impact of EVs and reduce systemic

side effects. A study introduced a two-step exosome delivery

strategy to enhance targeting by first blocking macrophage

uptake with “exosomeblocking” (siClathrin-loaded exosomes),

followed by delivering “exosometherapeutic” (miR-21a-loaded

exosomes). This method improved heart-specific delivery and

significantly enhanced cardiac function in a doxorubicin-induced

cardiotoxicity model, offering a promising approach for targeted

gene therapy (94).
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In addition, the functional modulation of EVs plays a crucial

role in optimizing their therapeutic efficacy. This can involve

engineering EVs to carry specific signaling molecules that

activate regenerative pathways or inhibit pathological processes

within the cardiovascular system (76, 95). For example, EVs

can be loaded with miRNAs or other types of RNAs that

modulate gene expression in recipient cells, leading to the

suppression of proinflammatory or profibrotic pathways (96–98).

This modulation is particularly important in conditions such

as heart failure or atherosclerosis, where the progression of the

disease is driven by chronic inflammation and fibrosis (99, 100).

By precisely modulating these pathways, engineered EVs

can help restore normal tissue function and prevent further

damage (Figure 2).

Furthermore, advances in bioengineering have allowed the

development of engineered EVs that can respond to specific

stimuli in the cardiovascular environment. These EVs can be

designed to release their therapeutic cargo in response to changes

in pH, proinflammatory cytokines, the adverse infiltration of

neutrophils, the mobilization of monocytes and the degradation

of the ECM (101). For example, a study presented an injectable

conductive hydrogel (Gel@Exo) that binds exosomes from

human umbilical cord mesenchymal stem cells, featuring

conductivity matching the native myocardium, soft and dynamic
FIGURE 2

Engineering strategies for the targeting and functional modulation of EV
overexpress therapeutic nucleic acids or proteins, surface modification for
techniques (e.g., extrusion, freeze–thaw cycles, sonication, electroporatio
These strategies aim to improve targeted delivery to cardiovascular tissues,
reduce fibrosis, and repair damaged heart tissue. The figure was partly ge
CC BY 3.0.
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stability adapting to heartbeats, and excellent cytocompatibility,

significantly improving cardiac function and reducing fibrosis in

a rat model of myocardial infarction-ischemia/reperfusion (MI-I/

R) (102). This level of control not only enhances the effectiveness

of EV-based therapies but also reduces the risk of side effects,

making them safer options for the long-term treatment of

CVDs (Figure 2).
4.3 Improving the stability and functional
longevity of engineered EVs

The clinical success of engineered EVs in treating CVDs also

depends on their stability and functional longevity in the

circulatory system. Although they are inherently stable, EVs can

be further optimized to resist degradation and maintain their

therapeutic function over extended periods. Strategies to

increase EVs stability include surface modifications with

polyethylene glycol (PEG) to prevent rapid clearance by the

immune system and the encapsulation of EVs in protective

hydrogels or nanomaterials that prolong their circulation time

(103, 104). Additionally, engineering EVs to carry antioxidant

enzymes or molecules holds great promise for protecting their

cargo from oxidative stress, offering a hopeful avenue for
s. Strategies such as genetic modification of parent (donor) cells to
improved targeting (e.g., cardiac-homing peptides), and cargo loading
n, incubation or combination with biomaterials) have been developed.
functional modulation of EVs, and their ability to support angiogenesis,
nerated via Servier Medical Art, provided by Servier, licensed under a
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combating CVDs more effectively in the future (80, 105). By

ensuring that EVs remain functional and stable until they reach

their target tissue, these strategies significantly improve the

potential of EV-based therapies to provide sustained therapeutic

effects in CVDs management.
5 Potential and challenges of EV-based
therapies for cardiovascular disease

5.1 Therapeutic potential of EVs in
cardiovascular disease

EVs hold immense promise as therapeutic agents in the

treatment of CVDs, offering a novel approach that leverages their

natural roles in intercellular communication and tissue repair.

EVs, particularly those derived from stem cells, have been shown

to promote tissue regeneration, reduce inflammation, and

improve cardiac function following myocardial infarction or

other cardiac injuries. Their ability to deliver diverse cargoes of

proteins, lipids, and nucleic acids directly to target cells makes

them uniquely suited for addressing the complex pathology of

CVDs. By modulating key signaling pathways and promoting

cellular repair processes, EVs could revolutionize the way CVDs

is treated, moving beyond traditional pharmacological interventions

to more targeted, regenerative therapies.
5.2 Challenges in the development and
clinical translation of EV-based therapies

Despite the promising therapeutic potential of EVs, significant

challenges must be addressed to facilitate the transition from

experimental research to clinical application. One of the primary

challenges is the large-scale production and standardization of

EVs (106). The process of isolating and purifying EVs is

complex and labor intensive and requires sophisticated techniques

such as ultracentrifugation, size-exclusion chromatography, or

immunoaffinity capture. Variability in the production process can

lead to inconsistencies in the quality and potency of EVs

preparations, posing a significant hurdle for their use in clinical

settings. Furthermore, the lack of standardized protocols for EVs

isolation, characterization, and storage complicates the comparison

of results across different studies and hinders the establishment of

reliable therapeutic products (107). Addressing these issues will

require the development of more efficient and scalable production

methods, as well as the establishment of rigorous standards and

quality control measures for EV-based therapies.

Advances in bioreactor systems and microfluidic technologies

have increased yields and streamlined purification while

maintaining bioactivity (108). Current frameworks, such as the

minimal information for studies of extracellular vesicles

(MISEV) guidelines, require refinement to meet clinical needs,

including harmonization of parameters such as particle size,

purity, and bioactivity (109). Efforts by organizations such as

the International Society for Extracellular Vesicles (ISEV) aim
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to establish robust quality control standards, validated potency

assays, and critical quality attributes (CQAs) essential for

regulatory compliance and reproducibility (110–112). Furthermore,

regulatory challenges for EV-based therapies arise from ambiguous

classification and varying criteria across agencies such as the Food

and Drug Administration (FDA) and the European Medicines

Agency (EMA). Addressing these issues requires early engagement

with regulators and international collaboration to harmonize

manufacturing standards and product characterization.

Another critical challenge is the safety and regulatory approval

of EV-based therapies. While EVs are generally considered to

have low immunogenicity and good biocompatibility, there are

still concerns regarding the heterogeneity of EVs populations,

along with the complexity of their cargo, making it difficult to

predict and control their biological activity (113). Evaluating

the long-term safety of EV-based therapies is critical to their

clinical success and widespread adoption. Key safety concerns

include tumorigenicity, immune modulation, off-target effects,

and unexpected toxicities (114). Current clinical trials often lack

extended follow-up periods, underscoring the need for

comprehensive long-term monitoring protocols (115). Moreover,

advanced imaging technologies and biomarker-based approaches

offer innovative solutions for real-time safety assessment, enabling

a deeper understanding of biodistribution, accumulation, and

clearance over time (116). Regulatory agencies need to establish

clear guidelines for the safety assessment of EV-based products,

including rigorous preclinical testing and well-designed clinical

trials, to evaluate their efficacy and potential risks (117).

Additionally, establishing centralized databases to aggregate trial

data across studies is vital for identifying rare adverse events,

conducting meta-analyses, and setting safety benchmarks (118)

(Figure 3). These efforts will provide essential insights into the

long-term viability and regulatory acceptance of EV-based therapies.
5.3 Future directions for EV-based
cardiovascular therapies

To fully realize the potential of EV-based therapies for CVDs,

future research must focus on overcoming current limitations and

advancing the field through innovative approaches. One key area

is improving the precision of engineering techniques to increase

both the targeting and functional capabilities of EVs (113, 119).

Advances in bioengineering, such as surface modification and

genetic manipulation, are essential for creating EVs that can

deliver therapeutic molecules with greater specificity to diseased

cardiovascular tissues (120). Additionally, improving the

scalability of EVs production is critical to meet clinical demand.

Techniques such as microfluidic devices for EVs isolation or the

use of bioreactors to culture donor cells may help produce EVs

at a larger scale without compromising their quality (121, 122).

Moreover, enhancing the stability of EVs in circulation, perhaps

by optimizing their lipid composition or through encapsulation

strategies, will be essential for increasing their longevity and

therapeutic efficacy in patients with CVDs in the near

future (123–125).
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FIGURE 3

Therapeutic applications and challenges of EV-based therapies for CVDs. The therapeutic applications of EVs include various CVDs, including
myocardial infarction (MI), hypertension, atherosclerosis, and diabetic cardiomyopathy, where EVs promote tissue repair, reduce inflammation, and
increase angiogenesis. On the diagnostic side, EVs show promise as biomarkers for CVDs, with their lipid, protein, and RNA contents in blood and
body fluids providing critical information for early detection and disease monitoring. The challenges faced in the clinical translation of EV-based
therapies include issues related to large-scale production, standardization of isolation and characterization techniques, the “batch effect” leading
to variability in EVs properties, and concerns over the safety of EV-based treatments (e.g., off-target effects, immunogenicity of EVs and
radioactivity of the tracer). These barriers must be overcome to fully realize the potential of EVs in CVDs theranostics. The figure was partly
generated via Servier Medical Art, provided by Servier, licensed under a CC BY 3.0.
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The integration of EV-based therapies with other emerging

technologies holds significant promise for the development of

next-generation therapeutics. For example, CRISPR/Cas9-based

technologies have revolutionized gene editing, and their

application in EVs offers tremendous potential for targeted

therapeutic strategies. Combining EV-based delivery systems

with gene editing technologies, such as CRISPR/Cas9, could

allow for highly targeted interventions at the genetic level,

correcting the molecular defects that contribute to

cardiovascular disease (125, 126). By editing the cargo of EVs,

such as RNA or proteins, we can design EVs with enhanced

therapeutic properties or more specific targeting capabilities. A

study developed CRISPR-Cas9-loaded EVs with cardiac-

targeting peptides for precise genome editing of miR-34a in

myocardial infarction. This system reduces apoptosis, improves

cardiac function, and shows promise as a tissue-specific gene

therapy for cardiovascular disease (127). This strategy could

address some of the limitations associated with the current

heterogeneity of EVs and improve their consistency and

efficacy in clinical applications.

Synthetic biology approaches also offer the possibility of

designing EVs with customized properties tailored to specific

therapeutic needs, such as engineered EVs that respond to
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environmental stimuli within the cardiovascular system

(88, 128). Therefore, artificial or synthetic EVs offer a

promising alternative to natural EVs by enabling controlled and

scalable production processes. A previous study demonstrated

that artificial leukosomes, which are biomimetic nanovesicles

that combine liposome and leukocyte properties, are effective

vehicles for targeted doxorubicin delivery and significantly

inhibit tumor growth in breast cancer and melanoma models

(129). Chen et al. developed cationic biomimetic EVs via a

microemulsion and micelle assembly method, incorporating

DEC205 monoclonal antibodies for dendritic cell (DC)

targeting together with reduced cytotoxicity and enhanced

cellular uptake, highlighting their potential as antigen carriers

for specific DC targeting (130). These engineered vesicles can

be designed to mimic the structure and function of natural EVs

while addressing challenges such as low yield and batch

variability. Additionally, their cell-free nature reduces the risks

associated with donor variability or immune responses.

Collaborations among researchers, clinicians, and regulatory

bodies will be critical to ensure the safe and effective

translation of these advanced EV-based therapies into clinical

practice (131–133). Continued preclinical research, rigorous

clinical trials, and regulatory frameworks will be needed to
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ensure that these innovative approaches can provide safe,

effective, and accessible treatment options for patients with

cardiovascular disease.
6 Conclusion

This review highlights the significant role of EVs in CVDs

treatment. EVs, particularly exosomes, facilitate intercellular

communication by delivering essential molecular cargo,

including proteins, lipids, and nucleic acids, to modulate

disease progression and tissue repair. Through multiomics

analyses, we identified key molecular players within EVs that

can serve as both biomarkers and therapeutic agents in CVDs.

Furthermore, the engineering of EVs for enhanced cargo

delivery and targeting has shown promise in the development

of more effective and precise therapeutic strategies. Although

challenges such as production scalability and standardization

remain, the potential of EVs in cardiovascular therapy

is undeniable.

The future of EV-based therapies holds great promise for more

personalized and targeted treatment approaches in CVDs. As

engineering techniques advance, EVs can be designed to deliver

therapeutic molecules tailored to individual patients, moving

beyond traditional treatments. The integration of EVs with

technologies such as gene editing and synthetic biology could

further increase their therapeutic potential, offering precise

interventions that address the underlying molecular causes of

CVDs. With continued innovation, EV-based treatments could

dramatically change the landscape of CVDs therapy, providing

more effective solutions for patients.
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