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Cardiac cells and mesenchymal
stem cells derived extracellular
vesicles: a potential therapeutic
strategy for myocardial infarction
Dan Qin1, Xiaobo Wang1, Jun Pu1 and Houxiang Hu1,2*
1Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China,
2Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
Despite improvements in clinical outcomes of acute myocardial infarction (AMI),
mortality rates remain high, indicating the need for further understanding of the
pathogenesis and developing more effective cardiac protection strategies.
Extracellular vesicles (EVs) carry proteins and noncoding RNAs (ncRNAs) derived
from different cardiac cell populations, mainly including cardiomyocytes,
endothelial cells, endothelial progenitor cells, cardiac progenitor cells,
cardiosphere-derived cells, immune cells, fibroblasts and cardiac telocytes have
vital roles under both physiological and pathological process such as
myocardial infarction (MI). The content of EVs can also indicate the status of
their parental cells and serve as a biomarker for monitoring the risk of cardiac
injury. Examining these vesicles can offer fresh perspectives on the
development of MI and assist in creating innovative treatments. Additionally,
mesenchymal stem cells (MSCs) (MSC-EVs) derived EVs have been shown to
have significant potential in cardiac regeneration. In this review, we will discuss
the current understanding of the role of EVs in cardiac communication, with a
focus on the perspectives of EVs from various cardiac cells and MSCs for their
potential uses as cardiac therapies after MI.
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GRAPHICAL ABSTRACT
1 Introduction

Cardiovascular disease (CVD) continues to be a top cause of

mortality globally, with acute myocardial infarction (AMI)

representing one of its most critical forms (1). AMI is caused by

sudden interruption of myocardial blood supply, leading to

hypoxia and death of myocardial tissue, ultimately resulting in

left ventricular remodeling and heart failure. The outlook for

patients with ST-segment elevation myocardial infarction (MI)

(STEMI) is poorer than for those with non-STEMI within 28

days following an acute coronary syndrome (ACS). However,

over a decade of monitoring, the long-term mortality rates for

patients with STEMI and non-STEMI were high (19.6% and

22.8%, respectively) and similar (2). Timely reperfusion

treatment through percutaneous coronary intervention (PCI) has

been shown to enhance the clinical outcomes for individuals

suffering from AMI (3). Nevertheless, it is unable to promote

regeneration and functional recovery of the damaged

myocardium, and there is still ample scope to further improve

the mortality rates among patients with MI. Heart

transplantation is the only treatment for the latest stage of heart

failure. Consequently, there is an immediate need to further

enhance existing strategies or develop novel approaches to

promote cardiac protection and repair.

Extracellular vesicles (EVs), containing several molecules such

as proteins, lipids, and nucleic acids, have the ability to act as

intercellular messengers and have the disease diagnosis and

therapeutic potential. The cardiovascular system consists of
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various cell types, mainly including cardiomyocytes (CMs),

endothelial cells (ECs), endothelial progenitor cells (EPCs),

cardiac progenitor cells (CPCs), cardiosphere-derived cells

(CDCs), immune cells, cardiac fibroblasts (CFs) and cardiac

telocytes (CTCs) (4) that communicate via paracrine (such as

EVs) or cell-cell interaction and participate in numerous cardiac

physiological and pathological activities, which can be either

advantageous or harmful (5). In addition, mesenchymal stem

cells (MSCs) have received considerable interest owing to their

potential for multilineage differentiation and ease of isolation

and acquisition (6, 7). Transplantation of MSCs reportedly

alleviates myocardial injury and improves cardiac function post-

MI. However, it is unlikely that these benefits are solely due to

the direct replacement or differentiation of MSCs into cardiac

tissue, given that most transplanted cells are rapidly lost from the

heart (8). Moreover, cell transplantation carries the risk of

inducing rejection (9), embolism (10), calcification or ossification

of the infarct area (11), and arrhythmia (12). The therapeutic

benefits of MSCs are mainly due to the EVs (13), and multiple

studies have shown that MSC-derived EVs (MSC-EVs) can

alleviate MI through various mechanisms (14, 15).

This review aims to provide insight into EVs biogenesis,

composition and uptake. Furthermore, a comprehensive review

of the current knowledge about the roles of EVs released by

different cardiac cell types in MI and the advancements in

utilizing MSC-EVs for MI therapy. Furthermore, we highlight the

major challenges that must be overcome before clinical

translation and the strategies for enhancing the potency of EVs
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as biotherapeutics. Aiming to provide effective information for

developing treatment strategies based on EVs to improve

endogenous repair.
2 Biogenesis, composition and
uptake of EVs

2.1 Biogenesis of EVs

EVs are small vesicles released into the extracellular space and

serve as essential messengers for intercellular communication. EVs
FIGURE 1

Biogenesis, composition and uptake of EVs. cells secrete EVs (including exos
and exomeres) into the extracellular environment. Exosomes are produc
oncosomes) are formed through budding. Apoptotic bodies are vesicle
metabolites, and mitochondria. EVs can also form a corona on their surfac
and II molecules, tetraspanins like CD9, CD63, and CD81, as well as variou
receptor-ligand interactions, clathrin-mediated and clathrin-independent en
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comprise proteins, nucleic acids, and lipids, and their lipid bilayer

membranes protect their contents from enzymatic degradation (16).

EVs are primarily classified according to their origin and biogenesis.

Currently, researchers have recognized at least three primary

categories of EVs: exosomes, ectosomes, and apoptotic bodies (17)

(Figure 1). Exosomes, ranging from 30 to 120 nm, are formed

through the inward budding of endosomal compartments (18).

Ectosomes form through the outward budding of the cell

membrane and primarily consist of microvesicles (150–1,000 nm),

large oncosomes (1–10 μm), small ectosomes (30–150 nm), and

ARRDC1-mediated microvesicles (ARMMs) (30–150 nm), which

are not depicted in the illustration. Apoptotic bodies (100–
omes, ectosomes, and apoptotic bodies) and NVEPs (such as supermeres
ed via exocytosis, while ectosomes (such as microvesicles and large
s formed during apoptosis. EVs contain proteins, DNA, RNA, lipids,
e. The membrane of EVs predominantly includes GTPase, MHC class I
s receptors and ligands. EVs are primarily internalized by target cells via
docytosis, pinocytosis, and direct membrane fusion.
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5,000 nm) are generated by fragmentation of cells undergoing

apoptosis. Furthermore, there are several other specialized EVs,

mainly including migrasomes (500–3,000 nm) and exophers (3.5–

4 μm) (19, 20). Migrasomes are emitted from the retracting fibers of

cells in motion and might serve to eliminate impaired mitochondria

from cells (21). Furthermore, cells are capable of releasing

nonvesicular extracellular particles (NVEPs), such as exomeres (28–

50 nm) and supermeres (22–32 nm) (22, 23) (Figure 1). It is

believed that they transport a range of molecules including

RNA, DNA, and proteins, yet the process of how supermeres

and exomeres are formed remains a mystery.

Among those EVs, exosomes are mostly studied for therapy

development. Exosomes are produced via a complex endocytic

process, where the cell membrane invaginates to create early

endosomes, which then mature into late endosomes or

multivesicular bodies (MVBs) containing intraluminal vesicles

(ILVs). When MVBs merge with the cell membrane, ILVs are

discharged into the extracellular environment as exosomes (18).

Certain MVBs may be directed to lysosomes for breakdown or

merge with autophagosomes to form amphisomes. Amphisomes

may be moved to lysosomes for breakdown, or directed to the

plasma membrane to discharge their contents outside the cell.

The intricate processes governing cargo sorting and the creation

of ILVs involve both ESCRT-dependent and ESCRT-independent

pathways (24). The ESCRT system, comprising four soluble

protein complexes and auxiliary proteins like ALIX, VPS4, and

TSG101 (25), plays a crucial role in directing proteins to ILVs

and generating exosomes. In addition, the formation of MVBs

can be promoted by the ESCRT-independent pathway (26).

Studies have shown that the formation of MVBs could still occur

in ESCRT-depleted cells (27).

EVs of different types overlap in size, and consensus

has not yet emerged on specific markers of EVs

subtypes, complicating their separation with existing isolation

techniques like ultrafiltration, ultracentrifugation, precipitation,

immunoaffinity capture, and size exclusion chromatography (28,

29). The complexity of heterogeneous mixtures of EVs and

NVEPs makes their separation even more difficult. In response

to the numerous types of EVs and the uncertainty of their

biogenesis, the International Society for Extracellular Vesicles

(ISEV) recommends adopting the general term “EV” with

specific operational extensions, instead of using inconsistent and

potentially confusing labels like “exosomes” and “ectosomes,”

which are linked to intricate and hard-to-define biogenesis

processes (30). In this review, the EVs types will not be

differentiated and will be collectively called EVs. Further research

is required to develop optimal techniques for segregating and

characterizing distinct EVs subpopulations and improving

separation of distinct EVs and NVEPs, enabling the

establishment of a more accurate and specific nomenclature.
2.2 Composition of EVs

A single cell is capable of generating various kinds of EVs with

distinct structure and biochemical properties. A conserved range of
Frontiers in Cardiovascular Medicine 04
proteins are enriched in EVs, including tetraspanins (TSPANs)

(CD9, CD63, and CD81), TSG101, ALIX, and some specific lipids

(17). Major histocompatibility complex (MHC) molecules are

enriched on EVs compared to parent cells (31). Nonetheless, the

composition of EVs cargo, including proteins, nucleic acids, lipids,

and organelles, as well as their membrane and corona, can differ

significantly depending on their biogenesis, the source cell, cell

vitality, and the culture environment (32). Microvesicles are

characterized by expression of Annexin A1, Annexin A2 and

α-Actinin 4 (17). ARMMs characteristically express ARRDC1

and TSG101 (33, 34). Large oncosomes feature enrichment of

Annexin A1, ARF6, V-ATPase G1, and CK18 (16). Small

ectosomes are characterized by expression of CD9 and CD147.

Moreover, apoptotic EVs characteristically express Annexin V

(35). Additionally, migrasomes are enriched with TSPAN4,

cholesterol and integrins (36). Exophers contain protein

aggregates and damaged mitochondria (20). It should be noted

that CD9, CD63 and CD81 have long been used as exosome

markers. However, there is growing acknowledgment that

TSPAN-containing EVs can bud directly from the plasma

membrane (37). According to their biogenesis, these EVs can

be classified as ectosomes/microvessels (37). Interestingly,

MSC-EVs also express CD29, CD44, and CD73, molecules that

are surface markers of MSCs (38). Upon release into biological

fluids, EVs interact with extracellular components to form a

protein corona (PC) on their surface via electrostatic

interactions and protein aggregation (39, 40). The route of

EVs administration and the proteomic characteristics of

different pathological conditions can impact the composition

of the PC surrounding the EVs, which affects their

physicochemical properties, biodistribution, and targeting

ability (41, 42).
2.3 Uptake of EVs

EVs serve as a means of intercellular communication, capable

of delivering diverse molecules to nearby cells or across greater

distances, either through uptake or by the binding of EVs surface

proteins to cell receptors. After exiting the cell, EVs are primarily

internalized by target cells through interactions between receptors

and ligands, clathrin-dependent and clathrin-independent

endocytosis pathways, pinocytosis, and direct fusion, resulting in

alterations in the physiological state of target cells (43). EVs

possess features like minimal toxicity, reduced immune response,

the ability to traverse biological barriers including the blood-

brain barrier, and the capability to deliver cargo to target cells

(44). In this context, a substantial body of evidence has recently

emerged to demonstrate the therapeutic effects of MSC-EVs in a

range of pathological conditions (45).
3 EVs derived from cardiac cells

MI causes cardiac cell death, triggers angiogenesis and

inflammatory response, induces cardiac fibrosis, and ultimately
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leads to myocardial remodeling and heart failure. After MI, various

cardiac cells, mainly including CMs, ECs, EPCs, CPCs, CDCs,

macrophages (M ϕ), CFs, CTCs and epicardium-derived cells

(EPDCs), can communicate with each other through EVs to

promote improvement or impairment of cardiac function

(Figure 2). Considering the possible importance of EVs in the

mechanisms of injury, healing and tissue remodeling post-MI,

understanding EVs derived from cardiac cells holds promise for

improving endogenous repair opportunities through the use of

intervention strategies.
3.1 CM-derived EVs

EVs secreted by CMs (CM-EVs) mediate communication

between cardiac cells under healthy and ischemic conditions.

MicroRNAs (miRNAs) are small noncoding RNAs (ncRNAs)

that control gene expression at the post-transcriptional level (46).

EVs secreted by CMs cultured under hypoxic or ischemic

conditions can protect cardiac microvascular ECs (CMECs) from

oxidative damage and promote angiogenesis, which are

attributable to miR-222, miR-143 and circHIPK3 (47–49).

Interestingly, the EVs derived from CMs treated with hyperbaric

oxygen can induce upregulation of long non-coding RNA

MALAT1 (lncRNA MALAT) in CM-EVs to suppress miR-92a

expression, thereby promoting neovascularization (50).

Nonetheless, inhibition of miR-19a-3p in CM-EVs can

downregulate the protein level of hypoxia-inducible factor-1α

(HIF-1α) and promotes ECs proliferation and angiogenesis after

MI (51). MiR-939-5p (52) levels were notably reduced in EVs

from the coronary serum of myocardial ischemia patients,
FIGURE 2

The EV-mediated cross-talk among various cardiac cells such as CMs, EC
hypoxia or ischemia condition, which are involved in the regulation of angi
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enhancing angiogenesis via the miR-939-inducible nitric oxide

synthase (iNOS)-NO pathways, with CMs potentially being the

origin of these bioactive EVs.

AMI increases the production of cardiac EVs, originating

mainly from CMs and ECs. EVs accumulating in the ischemic

myocardium are rapidly taken up by infiltrating monocytes and

regulate local inflammation (53). MiR-146a-5p derived from CM-

EVs can induce inflammation and exert anti-inflammatory effects

by regulating macrophages polarization (54). EVs derived from

ferroptotic CMs induce M1 macrophages (M1 ϕ) polarization

and exacerbate cardiac inflammation during MI (55). The effect

of CM-EVs on CFs under hypoxic or ischemic conditions

seems to be inconsistent in different studies, and can promote

fibrosis reversal through miR-195 (56), miR-208a/b (57), miR-

92a (58), lncRNA Neat1 (59) and limb-bud and heart (LBH)

(60), or inhibit fibrosis response through lncRNA AK139128 (61)

and miR-30d (62).

CM-EVs can also act on CMs and regulate their survival. EVs

from hypoxic CMs regulate autophagy by transferring miR-30a

between CMs (63). After MI, the expression of HSP20 in CM-EVs

decreases, leading to CMs apoptosis and inflammatory response

(64). MiR-92a, miR-363, and miR-20b (belonging to the miR-

106a-363 cluster) secreted from EVs derived from human induced

pluripotent stem cell (iPSC) derived CMs (iCMs) promote CMs

re-entry into the cell cycle, induce cell proliferation and improve

ischemic myocardial injury (65). In addition, circulating EVs from

infarcted hearts can mediate the transfer of myocardiac miRNAs

to bone marrow (BM) mononuclear cells, downregulate CXCR4

expression, and increase the number of circulating progenitor cells.

Therefore, infarcted hearts released EVs can induce systemic

responses for cardiac repair (66).
s, EPCs, CPCs, CDCs, Mϕ, CFs, CTCs and EPDCs under normal, H2O2,
ogenesis, inflammatory response, cell death and myocardial fibrosis.
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3.2 EC and EPC-derived EVs

ECs and EPCs are another important source of EVs during MI

and play a important role in maintaining and establishing the

integrity of blood vessels. The levels of profilin 2 (PFN2) in

serum and EC-EVs of patients, mice, and pigs with MI are

elevated. PFN2 and EVs from PFN2-overexpressing ECs can

enhance ECs proliferation, migration, and tube formation, and

increase vessel numbers in infarcted myocardium (67). Khan

et al. have demonstrated that EVs secreted by EPCs (EPC-EVs)

can inhibit cell apoptosis, reduce scar size, and promote

neovascularization after MI (68). Inflammation can impair the

repair of the heart by EPC-EVs, and interleukin-10 (IL-10)

deficiency weakens the repair effect of EPC-EVs on infarcted

myocardium by upregulating integrin-linked kinase (68). CFs

have innate plasticity and can acquire CMs or endothelial

phenotype upon exposure to transcription factors and other

molecules (69, 70). EPC-EVs facilitate the transformation of CFs

into ECs, enhance angiogenesis post-MI, and prevent myocardial

fibrosis by delivering miR-1246, miR-1290, miR-218-5p, and

miR-363-3p to CFs (71, 72). Recently, zhao et al. have found that

coculture with EPC-EVs improved human umbilical venous ECs

(HUVECs) proliferation, angiogenic and migration ability, while

alleviated hypoxia-induced apoptosis in vitro.

Krüppel-Like Factor 2 is highly expressed in ECs under laminar

flow and has anti-inflammatory effects. EVs secreted by ECs

overexpressing krüppel-Like Factor 2 inhibit Ly6CHigh

monocytes recruitment by shuttle miR-24-3p, improve ischemia

reperfusion (I/R) injury, and alleviate cardiac inflammation (73).

LncRNA 174 (LINC00174) in EC-EVs mitigate I/R-induced

myocardial damage by inhibiting p53-mediated autophagy and

apoptosis of CMs (74).
3.3 CDC and CPC-derived EVs

CDCs and CPCs have shown significant potential in promoting

the regeneration and repair of damaged myocardium (75, 76). The

anti-apoptosis effect of CPCs derived EVs (CPC-EVs) can be

mediated by pregnancy-associated plasma protein-A (PAPP-A)

(77) and various RNAs, mainly including miR-21, miR-451,

miR-935, miR-133a, and miR-210 (78–82). In addition, miR-

133a in CPC-EVs can improve cardiac function in a rat MI

model by reducing fibrosis and hypertrophy and increasing CMs

proliferation and vascularization (81). CPC-EVs can also

promote ECs immigration via the degradation of extracellular

matrix (ECM) (83). MiR-132 in CPC-EVs has the potential to

boost angiogenesis both in vitro and in vivo by suppressing

RasGAP-p120 (82). Bioengineered CPC-EVs carrying a pro-

angiogenic miR-322 can increase ECs migration and capillary

tube formation via increased NADPH oxidase 2 (NOX2)-derived

ROS, and enhance angiogenesis in the border zones of infarcted

hearts (84). EVs derived from hypoxic CPCs (H-CPC-EVs) can

enhance tube formation of ECs and reduce the expression of

profibrotic gene in transforming growth factor-β (TGF-β)-

stimulated fibroblasts and cardiac fibrosis after I/R injury (85).
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The angiogenesis ability of H-CPC-EVs is highly correlated with

oxygen concentration, with the angiogenesis effect being most

effective at 5% O2 concentration and the angiogenesis signaling

pathway at 1% O2 concentration (86). In addition, Emmert et al.

have evaluated the safety, feasibility and efficacy of human

derived CPC-EVs in a pig model of AMI. Intracoronary (IC)

delivery of EVs reduced infarct size, improved left ventricular

ejection fraction (LVEF), significantly alleviated myocardial

fibrosis, and increased vascular density (87).

CDCs derived EVs (CDC-EVs) can exert cardioprotective

effects by transferring miR-146 (partially beneficial), thereby

reducing CMs apoptosis and promoting angiogenesis (88). EVs

released by hypoxic CDCs can induce angiogenesis via

enrichment of miR-126, miR-130a, and miR-210 (89). In

addition, CDC-EVs also act on macrophages by transferring

Y RNA fragments (YF1), enhancing the secretion of IL-10,

reducing CMs apoptosis, and promoting ischemic heart repair

(90). CDC-EVs can polarize M1 ϕ to a proangiogenic phenotype

dependent on arginase 1 upregulation and independent of

VEGF-A, which promote angiogenesis (91). CDC-EVs can

modify the polarization state of macrophages by transfer of miR-

181b into macrophages that inhibits proinflammatory signaling

and enhances phagocytosis to promote a cardioprotective

response in vivo (92). This helps to understand the immune

regulatory mechanism of CDC-EVs in macrophages polarization

after AMI. Study has revealed a mechanism for amplifying the

biological activity of EVs, in which CDC-EVs promote SDF1 and

VEGF secretion of fibroblasts, promote angiogenesis, and reduce

scar quality after MI by promoting phenotypic transformation

from inert fibroblasts to therapeutic active cells (93). In a large

animal study, intramyocardial (IM) delivery of CDC-EVs was

found to reduce scar formation, prevent adverse remodeling, and

increase vascular density in pigs with AMI and chronic MI

(CMI), but it appears to have the disadvantage of requiring IM

delivery (94). In addition, CDC-EVs can inhibit ventricular

arrhythmias in chronic ischemic cardiomyopathy by reducing

fibrosis, eliminating slow conduction electrical pathways, and

suppressing ventricular arrhythmias (95).
3.4 Macrophage-derived EVs

After MI, immune cells like monocytes and macrophages move

to the injured site to remove dead cells. Macrophages are versatile

cells within the innate immune system, essential for initiating

inflammation and aiding in tissue repair following MI. In

addition, it also participates in interactions with other cardiac

cells to coordinate the post MI process within the heart tissue.

Following MI, EVs derived from M1 ϕ (M1-EVs) deliver miR-

155 to ECs, diminishing their angiogenic capacity by

concurrently targeting Rac family small GTPase 1, p21 (RAC1)-

activated kinase 2, sirtuin 1 (Sirt1), and protein kinase AMP-

activated catalytic subunit alpha 2 (96), to CFs to decrease the

expression of son of sevenless 1, thereby inhibiting CFs

proliferation and promoting inflammation by lowering the levels

of suppressor of cytokine signaling 1 (97), and to CMs to inhibit
frontiersin.org
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CMs proliferation by inhibiting the IL-6R/JAK/STAT3 signaling

pathway (98).

EVs derived from M2 ϕ (M2-EVs) promote angiogenesis after

MI by delivering miR-132-3p to ECs and downregulating the

expression of THBS1 (99). M2-EVs can also deliver miR-1271-5p

to CMs, alleviating hypoxia induced apoptosis via down-

regulating SOX6 (100) and release circUbe3a into CFs, promoting

proliferation, migration, and phenotype transformation of CFs by

repressing RhoC, exacerbating myocardial fibrosis after AMI (101).
3.5 CF-derived EVs

During cardiac stress, CFs proliferate and differentiate into

myofibroblasts, secreting ECM proteins and pro-inflammatory

cytokines, leading to cardiac fibrosis and remodeling. CFs are

both a source of cardiac protection and a carrier of disease

fibrosis. EVs secreted by CFs under hypoxia/reoxygenation (H/R)

can mimic the beneficial effects of ischemic post-treatment

through miR-423-3p, reducing apoptosis of CMs (102) and

deliver miR-133a to CMs, targeting ELAVL1 and preventing

pyroptosis caused by I/R (103). Moreover, EVs secreted by CFs

(CF-EVs) can also regulate their own differentiation. MiRNA-133

in CF-EVs can promote the differentiation of CFs into CM-like

cells (104). Under hypoxic conditions, multiple ECM proteins in

CFs are upregulated, and CF-EVs have different effects on the

viability of CMs at different stages of hypoxia and reoxygenation

(105). Treatment of fibroblasts with long-term, low-dose

sulforaphane can enhance the release of their anti-remodeling

CM-targeted EVs, effectively reducing cardiac hypertrophy and

scar size and improving cardiac function post-MI (106).
3.6 Other cardiac cell-derived EVs

CTCs are a type of stromal cell with elongated extensions.

MiRNA-21-5p in EVs released by CTCs (CTC-EVs) can target the

cell death inducing p53 target 1 gene, which suppresses apoptosis

of ECs under ischemic and hypoxic conditions, facilitating

angiogenesis and regeneration following MI (107). In addition,

CTC-EVs can also decrease cardiac fibrosis following MI (108).

The outermost layer of the heart, known as the epicardium, can be

reactivated following an injury to an adult heart. EPDCs can

release EVs (EPDC-EVs) carrying miR-30a, miR-100, miR-30e,

and miR-27a, promoting the proliferation of CMs after myocardial

injury (109). In addition, clusterins of EVs in pericardial fluid

from AMI patients improve MI by activating the epicardium,

increasing arterial generation, and reducing CMs apoptosis (110).

Although some EVs are generated under normoxic conditions

and cannot reflect the state of the infarcted tissue, their beneficial

effects can provide us with ideas for developing new treatment

strategies. The majority of research relies on EVs extracted from

cells grown in vitro, potentially failing to represent the properties

of EVs released by different cells in ischemic heart tissue in vivo.

The seemingly opposite therapeutic effects may reflect different

levels of stress on cardiac cells, and it is necessary to further
Frontiers in Cardiovascular Medicine 07
elucidate the interactions between EVs from different sources in

the development of MI. In addition, it is necessary to explore the

components of EVs and their interactions with specific cardiac

targets. This will deepen our understanding of the function of

EVs and pave the way for new treatment strategies to alleviate

MI and promote cardiac repair.
4 Biological functions of MSC-EVs
in MI

4.1 Promotion of angiogenesis

MSC-EVs contain various ncRNAs and paracrine effector

molecules that promote angiogenesis (Figure 3). CMECs are

derived from coronary microvessels exhibiting rapid expansion,

tube formation, and proangiogenic abilities. CMECs are susceptible

to damage under ischemic and hypoxic conditions. MSC-EVs

containing miR-543 can enter CMECs and downregulate collagen

type IV alpha 1 (COL4A1), promotes CMECs angiogenesis after

MI (111). Adipose-derived MSC-EVs (ADMSC-EVs) containing

miR-205 which enhance the proliferation and migration of MECs,

inhibit apoptosis, reduce cardiac fibrosis, and increase angiogenesis

in mice with MI (112). The role of miRNA-21 in promoting

angiogenesis has been well-researched, with evidence showing that

EVs from human endometrial MSCs (EnMSCs) containing miR-21

enhance microvascular density via the PTEN/AKT signaling

pathway, offering better cardioprotection than those from

BMMSCs or ADMSCs (113). Additionally, miRNA-132 in MSC-

EVs was discovered to promote tube formation in HUVECs by

suppressing the target gene p120RasGap, thereby boosting

neovascularization in the peri-infarct region (114). Similarly, miR-

210 downregulated the Efna3 gene to enhance angiogenesis and

provide therapeutic benefits for MI (115). Xu et al. (116) have

revealed that neonatal rat CMs (NRCMs) cultured under hypoxic

conditions treated with EVs derived from BMMSCs, ADMSCs,

and umbilical cord MSCs (UCMSCs) reduced apoptosis and

promoted angiogenesis by increasing levels of VEGF, basic

fibroblast growth factor, and hepatocyte growth factor (HGF).

Notably, ADMSC-EVs exhibited the most pronounced effects. In

mice with MI, IM injection of cardiac MSC-EVs was shown to

promote capillary angiogenesis in the infarcted area, stimulate CMs

proliferation, and improve cardiac function (117). In addition, Takov

et al. have demenstrated for the first time that EVs secreted from

human foetal amniotic fluid MSCs can protect hearts from I/R

injury in vivo and markedly stimulated ECs migration in vitro, but

did not protect isolated primary CMs in models of simulated I/R

injury and were not proangiogenic in vitro (118). The combined

effects of multiple active substances in MSC-EVs collectively

regulate post-MI angiogenesis.
4.2 Anti-inflammation

MI can cause a strong inflammatory response, and the duration

and intensity of this inflammation are closely related to the
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FIGURE 3

Applications of MSC-EVs in MI. MSC-EVs can be utilized in their original state and enhanced autophagy through preconditioning, gene engineering,
membrane modification, encapsulation, hybridization and biomaterial-assisting. EVs can be applied via IM, IV, IC and iPC injection in MI or I/R animal
models. MSC-EVs can improve angiogenesis, inflammation, cell death (such as apoptosis, autophgy, pyroptosis, ferroptosis), oxidatve stress and
cardiac fibrosis after MI.
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prognosis. MiR-182-5p within BMMSC-EVs can reduce

inflammation and enhance heart function after MI by

suppressing the TLR4/nuclear transcription factor-κB (NF-κB)

signaling pathway (119) (Figure 3). High-mobility group box 1

(HMGB1) acts as a damage-associated molecular pattern

(DAMP), triggering cytokine release and attracting inflammatory

cells (120). The transfer of miR-129-5p through BMMSC-EVs

has been shown to inhibit CMs apoptosis, cardiac fibrosis, and

inflammatory response in mice with MI by targeting

HMGB1 (121). Shi et al. have reported that UCMSC-EVs

promote the transformation of fibroblasts into myofibroblasts

within an inflammatory setting, reducing the inflammatory

reaction and CMs apoptosis post-MI, while not exacerbating

cardiac fibrosis (122). The transcription factor forehead box o3

(Foxo3) plays a critical role in T cells activation (123). Recent

studies have revealed that intrapericardial (iPC) injection of

MSC-EVs accumulate in the mediastinal lymph nodes and

induce regulatory T cells (Tregs) differentiation, promoting

cardiac repair. The absorption of MSC-EVs by MHC-II + APCs

triggers Foxo3 activation through the PP-2A/Foxo3 signaling

route. Foxo3 promotes the production of IL-10, IL-33, and IL-34,

establishing a Treg-inducing niche in mediastinal lymph nodes.

Ultimately, this coordination results in the resolution of

inflammation and the promotion of cardiac repair post-MI (124).
Frontiers in Cardiovascular Medicine 08
The observed immunomodulatory effects post-MI indicate the

potential of EVs to coordinate the transition from the

inflammatory to the resolution phase following ischemic injury.

Following MI, cardiac macrophages undergo a transition from

proinflammatory M1 ϕ in the early stage (1–3 days) to reparative

M2 ϕ, which predominate in the late stage (after 5 days) (125).

This transition is crucial in limiting inflammation and facilitating

cardiac repair. Through gene sequencing and bioinformatics, it

was discovered that miR-24-3p within UCMSC-EVs can suppress

the expression of phosphoinositide-specific phospholipase C beta

3 and activate the NF-κB pathway, resulting in the promotion of

M2 ϕ polarization and alleviation of inflammatory responses

post-MI (126). Furthermore, ADMSC-EVs are capable of

triggering the sphingosine 1-phosphate/sphingosine kinase

1/sphingosine phosphate receptor 1 signaling pathway, resulting

in the polarization of M2 ϕ. This results in a reduction in local

inflammation and cardiac injury following MI (127). Compared

with BMMSC-EVs, EVs derived from lipopolysaccharide (LPS)-

pretreated BMMSCs exhibited superior therapeutic effects in

terms of promoting M2 ϕ polarization in vitro and alleviating

post-MI inflammation and CMs apoptosis in vivo by mediating

macrophage polarization in an MI mouse model (128). The

immunomodulatory properties of ADMSC-EVs may not be

constitutive but are instead induced by the inflammatory
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microenvironment. The immunosuppressive effect was apparent

only when ADMSCs were pre-activated by proinflammatory

stimuli. Pre-activated ADMSCs release EVs with higher levels of

miRNAs (such as miR-34a-5p, miR-21, and miR-146a-5p) that

regulate the M2 phenotype untreated EVs (129).
4.3 Anti-oxidative stress

Elevated oxidative stress and overproduction of reactive oxygen

species (ROS) following MI intensify mitochondrial DNA damage,

leading to greater myocyte injury and a subsequent rise in fibrosis

and tissue remodeling (130, 131). Mitochondrial transplantation is

a promising novel therapy for CVD. Mitochondrial transfer

between cells can be achieved through several methods, mainly

including tunneling nanotubes, EVs, and cell fusion (132). EVs

facilitate the transfer of functional mitochondria to recipient

cells, rescuing damaged cells through multiple pathways

(133, 134). MSC-EVs were discovered to restore mitochondrial

transcription factor A (TFAM) levels in recipient cells through

the delivery of TFAM mRNA and mitochondrial DNA. This

process prevents mtDNA damage and cytoplasmic mtDNA

leakage, effectively alleviating mitochondrial damage and

inflammation in acute kidney injury cells and animal models

(135). MSC-EVs represent a promising avenue for the

development of nanotherapies for diseases characterized by

mitochondrial damage. Currently, no direct evidence

demonstrates the independent functionality of mitochondria in

EVs (136). It is noteworthy that damaged cells release

mitochondrial DAMPs into circulation, which may have notable

immune consequences. Interestingly, selective packaging of

mitochondrial proteins into EVs appears to prevent this process

(137, 138). The macrophage migration inhibitory factor (MIF) is

essential for regulating cell homeostasis (139). Compared with

BMMSC-EVs, injection of EVs derived from BMMSCs

overexpressing MIF elicited superior cardioprotective effects in

attenuation of CMs injury post-MI by inhibiting mitochondrial

fragmentation, apoptosis, and ROS overexpression via activation

of the AMPK signaling pathway (140) (Figure 3). BMMSC-EVs,

which contain miR-214, can target Ca2+/calmodulin-dependent

protein kinase II (CaMKII) to inhibit oxidative stress-related

injuries in cardiac stem cells (CSCs), including apoptosis,

calcium imbalance, and excessive ROS accumulation (141). In

ADMSC-EVs, miR-196a-5p and miR-425-5p were found to

mitigate CMs ischemia-induced mitochondrial dysfunction and

excessive ROS production, increase angiogenesis, and promote M2

ϕ polarization. Furthermore, miR-196a-5p can reduce and reverse

myofibroblast activation and decrease collagen production (142).
4.4 Cell death reduction

4.4.1 Reducing cellular apoptosis and autophagy
Following MI, myocardial cells undergo apoptosis and severe

autophagy, causing cardiac injury and deterioration of cardiac

function. Moderate autophagy during myocardial ischemia is
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essential for maintaining tissue viability. The relationship

between cellular autophagy and apoptosis is complex, and

maintaining a balance between the two is critical for cell survival

(143, 144). The process of cell apoptosis is mainly initiated by

mitochondrial, death receptor, and endoplasmic reticulum (ER)

pathways (145–147). BMMSC-EVs preconditioned with hypoxia

reduced CMs apoptosis of rats with AMI by upregulating

microRNA-24 (148) (Figure 3). MSC-EVs loaded with miR-25-

3p can target pro-apoptotic genes (FasL and PTEN) and

enhancer of zeste homologue 2, leading to decreased apoptosis in

CMs and reduced inflammation in both in vivo and in vitro MI

models (149). SOX6, part of the SOXD group, can amplify LPS-

triggered apoptosis in CMs by stimulating the Bcl-2 family

pathway (150). UCMSC-EVs can prevent CMs apoptosis and

alleviate myocardial injury post-MI by transferring miR-19a to

target SOX6, subsequently activating AKT and suppressing Jun

N-terminal kinase 3 (JNK3)/caspase-3 activation (151).

Sun et al. have found that miR-221-3p derived from Aged

MSC-EVs attenuated the function of angiogenesis and promoted

the survival of CMs. Upregulation of miR-221-3p in aged MSCs

improved their ability of angiogenesis, proliferation and

migration, and reduced apoptosis via the PTEN/AKT pathway

(152). Furthermore, Zhang et al. have indicated that EVs derived

from young MSCs can enhance the activity of aged MSCs and

improve their myocardial repair function by transferring miR-

136 and downregulating apoptotic peptidase-activating factor

(153). BMMSC-EVs carrying itchy E3 ubiquitin ligase can

mediate ubiquitination of apoptosis signal-regulated kinase-1,

leading to the inhibition of CMs apoptosis and improved

myocardial injury post-AMI (154). EVs derived from UCMSCs

overexpressing MIF (MIF-EVs) exert cardioprotective effects,

such as the promotion of angiogenesis, inhibition of apoptosis,

alleviation of cardiac fibrosis, and preservation of heart function.

MIF-EVs exert their biological effects through miR-133a-3p and

the subsequent activation of the AKT signaling cascade (155).

MSC-EVs also contain molecules that exert destructive effects.

Low miR-153-3p expression in MSC-EVs significantly boosted

the activation of the angiopoietin-1/VEGF/VEGFR2/PI3 K/AKT/

eNOS signaling pathway, which inhibited apoptosis in ECs and

CMs while enhancing angiogenesis in an oxygen-glucose

deprivation model (156). Circular RNA (circRNA) is a kind of

ncRNA, involving in the development of CVD. Tian et al.

demonstrated that EVs originating from circRNA_0002113-

deficient BMMSCs could decrease H9C2 cell apoptosis caused by

H/R and mitigate MI by by sponging miR-188-3p to regulate

RUNX1 nuclear translocation. Specifically, the circRNA_0002113/

miR-188-3p/RUNX1 axis mediated apoptosis by regulating the

USP7/p53 pathway both in vitro and in vivo (157). CircRNA

0001273 in UCMSC-EVs can remarkably reduce myocardial cell

apoptosis in ischemic environment and promote MI repair (158).

Accumulation of unfolded or misfolded proteins in CMs, a

condition referred to as ER stress, can cause apoptosis and

fibrosis (159). Zhang et al. have found that UCMSC-EVs

alleviated ER stress-induced apoptosis in H9C2 cells subjected to

H/R by activating the phosphatidylinositol 3-kinase (PI3K)/AKT

pathway (160). Mitogen-activated protein kinase (MAPK) is
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crucial for controlling cell proliferation and apoptosis. Fu et al.

have found that miR-338 in MSC-EVs can inhibit CMs apoptosis

in MI model rats by regulating the MAP3K2/JNK signaling

pathway, thereby substantially improving cardiac function (161).

Reportedly, BMMSC-EVs carrying overexpressed miR-301

could reduce infarct area and improve cardiac function in rats

with MI by inhibiting myocardial autophagy compared with

BMMSC-EVs group (162) (Figure 3). The role of p53 in

autophagy is contingent upon its subcellular localization in the

nucleus or cytoplasm (163). Xiao et al. have demonstrated that

the benefits of MSCs transplantation post-MI can be attributed to

the improved autophagic flux. The mechanism of MSC-induced

autophagic inhibition involves the transfer of miR-125b-5p from

MSC-EVs to native cells, where it interferes with p53/B-cell

lymphoma 2-interacting protein 3 signaling (164). Compared with

healthy individuals, patients with AMI exhibit elevated serum

levels of miR-93-5p and inflammatory factors. In vitro and in vivo

experiments have shown that miR-93-5p in ADMSC-EVs can

alleviate heart damage after MI by targeting autophagy-related

protein 7-mediated autophagy and TLR4-mediated inflammation

(165). The mammalian target of rapamycin (mTOR) is a negative

regulator of autophagy. MiR-29c derived from BMMSC-EVs can

target PTEN to activate the AKT/mTOR pathway, ultimately

inhibiting CMs autophagy after I/R injury (166).
4.4.2 Reducing pyroptosis
Pyroptosis, a proinflammatory programmed cell death process,

is characterized by the disruption of cell integrity and the release

of inflammatory cytokines. In a mouse model of AMI, pyroptosis

was triggered within 24 h. Preventing pyroptosis has been

demonstrated to significantly decrease infarct size and enhance

heart performance (167). Sirt1 has been discovered to inhibit the

activation of the NLRP3 inflammasome. Mao et al. have

demonstrated that the lncRNA KLF3-AS1 acts as a competing

endogenous RNA (ceRNA) for miR-138-5p, which regulates the

expression of Sirt1. In vitro and in vivo experiments have shown

that lncRNA KLF3-AS1 within MSC-EVs can modulate Sirt1,

thereby preventing cell pyroptosis and reducing MI progression by

functioning as a ceRNA to sponge miR-138-5p (168) (Figure 3).

Proteomic analysis conducted seven days after ligating the left

coronary artery revealed that treatment with MSC-EVs could

substantially reduce leukocyte accumulation in the infarct area and

surrounding regions and decrease the expression of low-density

lipoprotein receptor-1 (LOX1), NLRP3 inflammasome, caspase-1,

cleaved caspase-3, GSDMD, Bcl-2, and Bax, resulting in

preservation of cardiac function (169). Liang et al. have reported

that miR-100-5p in UCMSC-EVs suppresses the expression of

Foxo3, inhibiting the activation of the NLRP3 inflammasome and

suppressing H/R-induced CMs pyroptosis (170). Yue and

colleagues have uncovered that gasdermin D (GSDMD) is robustly

expressed in H/R-exposed cardiac cells and I/R-injured myocardial

tissues. The upregulation of GSDMD promoted H/R-induced

cardiac cell pyroptosis. Further analysis revealed that GSDMD is a

miR-182-5p target. Administration of MSC-EVs carrying miR-

182-5p attenuated GSDMD-dependent pyroptosis and
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inflammation induced by H/R, improved cardiac function, reduced

MI, and decreased inflammation and pyroptosis in vivo (171).

4.4.3 Reducing other types of cell death
Ferroptosis, an iron-dependent form of programmed cell death,

is marked by the buildup of ROS, disrupted iron balance, and lipid

peroxidation. Divalent metal transporter 1 (DMT1), a Fe2

+transporter, is known to be markedly elevated in AMI. Song

et al. have showed that DMT1 is a target gene of miR-23a-

3p.Human umbilical cord blood derived MSC-EVs reduce DMT1

levels through miR-23a-3p, thereby preventing ferroptosis and

lessening heart damage, which is abolished in EVs with knocked

down miR-23a-3p expression (172) (Figure 3). Recently,

cuproptosis has been identified as a novel non-apoptotic cell

death process triggered primarily by intracellular copper

accumulation (173). A relationship between copper overload and

ferroptosis has been reported (174). A recent study identified 19

differentially expressed genes related to both copper overload and

ferroptosis (CFRGs) in healthy individuals and those with AMI.

Further research has identified the upregulation of immune-

related CFRGs (CXCL2, DDIT3, DUSP1, CDKN1A, TLR4, and

STAT3) in both animal models and patients, suggesting the

potential of these genes as early diagnostic biomarkers for AMI.

This evidence also indicates the interplay between cuproptosis

and ferroptosis pathways in the development of MI (175).

Recently, wang et al. have proposed an innovative treatment

strategy for MI using the circASXL1 signaling network, UCMSC-

EVs effectively repairs infarcted myocardium by stimulating CMs

cell-cycle reentry and cytokinesis in a circASXL1-dependent

manner (176).
4.5 Ameliorating cardiac remodeling

MiR-671 in ADMSC-EVs can directly bind to TGF-β receptor 2

and prevent SMAD2 phosphorylation, leading to decreased cell

apoptosis, inflammation, and fibrosis, thereby alleviating MI-like

symptoms both in vitro and in vivo models (177) (Figure 3). Low

levels of miR-212-5p expression were detected in clinical and

pathological samples, as well as in animal models of MI-induced

cardiac fibrosis. ADAMTS16, a disintegrin and metalloproteinase

with thrombospondin motif 16, was found to activate latent TGF-

β, accentuating fibrosis and cardiac function of the pressure-

overloaded heart (178). BMMSC-EVs containing miR-212-5p

(179) and miR-29b-3p (15) have been demonstrated to prevent

myocardial fibrosis caused by MI by suppressing the NLRC5/

VEGF/TGF-β1/SMAD pathway and reducing ADAMTS16

respectively. P53 is a target gene of miR-223, UCMSC-EVs

containing miR-223 reduced myocardial fibrosis and

inflammation in MI rat models and accelerated angiogenesis of

HUVECs through the p53/S100A9 axis (180). Moreover, MSC-

EVs can act directly on CFs and reduce fibrotic scar formation in

the ischemic heart by regulating the secretion of fibronectin and

collagen (181).

Xiao et al. have reported that BMMSC-EVs can improve heart

remodeling and function after MI by modulating the balance of the
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1493290
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Qin et al. 10.3389/fcvm.2024.1493290
RAS, specifically by upregulating ACE2-Ang1-7-Mas and

downregulating the ACE-AngII-AT1R pathway, promoting the

conversion of AngII to Ang1-7. This ultimately reduces Ang II-

mediated adverse effects on CMs (182). The suppression of

matrix metalloproteinases (MMPs) by tissue inhibitors of matrix

metalloproteinase 2 (TIMP2) is essential in the remodeling

process after MI. According to reports, UCMSC-EVs with high

levels of TIMP2 improve heart performance by reducing

oxidative stress and ECM remodeling, in part through the AKT/

secreted frizzled-related protein 2 (Sfrp2) pathway (183).

Compared with the use of EVs or MSCs alone, the combined

delivery of EVs and MSCs (first IM injection of EVs, followed by

transplantation of MSCs into the heart) further reduced the

collagen area, enhanced neovascularization, reduced infarct size,

and improved cardiac function. This may be attributed to EVs

improving the microenvironment and facilitating the recruitment

and retention of MSCs. The optimal time for continuous stem

cell delivery appears to be the third day after EVs treatment

(184). Likewise, the use of BMMSC-EVs as carriers to deliver

exogenous miR-19a/19b to infarcted tissues combined with MSCs

transplantation reduced cardiac fibrosis and substantially

improved cardiac function in mice with MI (185). Recently,

Tcf21 has been identified as a critical target for improving

cardiac fibrosis. LncRNA-Tcf21 antisense RNA inducing

demethylation (TARID) that enriched in UCMSC-EVs was

identified to up-regulate Tcf21 expression. Formulated lncRNA-

TARID-laden lipid nanoparticles up-regulated Tcf21 expression

in EPDCs and improved cardiac function and histology after MI

in vivo (186).
5 Effects improvement strategies of
MSC-EVs

Despite the considerable therapeutic potential of natural MSC-

EVs, limitations in their yield, targeting, on-demand delivery, and

treatment feedback have hindered their widespread application

(187). Therefore, it is important to improve the yield of EVs

production and regulate their biological functions, current

approaches including: preconditioning, gene engineering,

membrane modification, encapsulation, hybridization and

biomaterial-assisting (Table 1).
5.1 Preconditioning

The production and therapeutic properties of EVs are

markedly influenced by the tissue source, donor cells and culture

conditions. Preconditioning can help engineering specific MSC-

EVs. Preprocessing can be achieved by exposing MSCs to drugs,

cytokines, physiological stresses. Specific treatments include

atorvastatin, hemin, tongxinluo, tanshinone IIA, LPS, C1q-TNFα

related protein-9 (CTRP9), hypoxia, and three-dimensional (3D)

cell cultivation (188–194, 206, 225). Preconditioning typically

moduate the secretome of MSCs with altered cytokines,

chemokines, enzymes, or growth factors secretion, as well as
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influence the EVs synthesis process to enrich specific miRNA in

MSC-EVs. Platelet-derived growth factor (PDGF)-BB is a potent

mitogen of MSCs, enhancing the cardioprotection of MSCs by

suppressing the expression of miR-320 (226). Moreover, miRNAs

regulated by preconditioning also affect the survival of MSCs and

function of MSC-EVs. Ischemic preconditioning can induce the

expression of miR-107 in MSCs, thereby significantly improving

transplanted MSCs in infarcted myocardium (227). Compared

with normoxia-conditioned BMMSC-EVs, hypoxia-conditioned

BMMSC-EVs exhibited elevated expression of miR-125b-5p (206)

and miR-210 (188), which reportedly facilitate ischemic cardiac

repair by reducing CMs apoptosis. Low oxygen levels triggered

the production of HMGB1 in BMMSC-EVs, which promotes

angiogenesis via JNK/HIF-1α signaling (228). Studies have shown

that IFNγ and hypoxic pretreatment can induce partial changes

in miRNA in EVs in a donor dependent manner, but their

effects are far less important than their impact on protein

content (229). Preprocessing is believed to overcome inter-donor

variability in MSCs function. However, not all donors have similar

responses to pretreatment initiation, indicating the need to test and

optimize pretreatment for each individual indication, and careful

selection of donors may be necessary in allogeneic therapy. In

addition, attention should be paid to the degree of hypoxia.

Moderate hypoxia (3%–5% O2) has been shown to stimulate MSCs

proliferation (230). However, a sharp decrease in oxygen tension

(<1%) potentiated a glycolytic metabolism and cell quiescence (230).

By simulating the physiological environment of tissue

morphology and intercellular interactions in vivo, 3D cultures

can influence the biogenesis and function of EVs (231). The two

primary categories of 3D cultures are static (e.g., hydrogels and

fiber scaffolds) and dynamic (e.g., perfusion bioreactors and

microcarrier-based stirred bioreactors) (232). Cultivating

UCMSCs in scalable microcarrier-based 3D cultures has been

found to result in an approximately 20-fold increase in EVs

production when compared with two-dimensional (2D) cultures.

Moreover, the combination of tangential flow filtration and 3D

cultures can further enhance the EVs yield by 7-fold, resulting in

a 7-fold improvement in the transfer of small interfering RNA

(siRNA) to neurons. This evidence demonstrates the synergistic

enhancement in the EVs yield and transport properties (233).

Furthermore, MSC-EVs obtained from 3D cultures were found to

exhibit enhanced immunomodulatory potential, as evidenced by

previous studies (234, 235). Furthermore, a hollow-fiber

bioreactor-based 3D cultures system has been proven to

considerably boost the production of MSC-EVs, resulting in

robust cardioprotective effects in rats with AMI (194).
5.2 Gene engineering

Gene engineering can adjust the expression and release of EVs

in MSCs, allowing for targeted delivery to specific tissues.

Transduction of lentivirus, plasmid, and adenovirus vectors into

parental cells are successful methods for selectively altering the

composition of MSC-EVs (236). EVs released from BMMSCs

overexpressing miR-30e can improve myocardial injury, inhibit
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TABLE 1 Strategies for improving the therapeutic effect of MSC-EVs in MI.

Improvement
strategy

Therapeutic
agent

MSCs Animal
model

Mechanisms Results Reference

Preconditioning Hypoxia BMMSCs Rat/AMI Upregulated miR-24 Apoptosis↓ (148)

MSCs Rat/MI Regulated PI3K/AKT and p53 signaling Apoptosis↓, fibosis↓ (188)

Atorvastatin MSCs Rat/MI Up-regulating lncRNA H19 and its
downstream pathways

Apoptosis↓, angiogenesis↑ (189)

Hemin MSCs Mice/MI Regulated HMGB1/ERK pathway Fibrosis↓, CM senescence↓ (190)

Tongxinluo MSCs Rat/AMI Targetin IRAK1/NF-κB p65 pathway Apoptosis↓, inflammation↓ (191)

Tanshinone IIA UCMSCs Rat/MI/RI Inhibited CCR2 activation Angiogenesis↑, monocyte
infiltration↓

(192)

LPS BMMSCs Mice/MI Suppressed NF-κB pathway and partly
activated AKT1/AKT2 pathway

Inflammation↓, apoptosis↓ (128)

CTRP9-281 CBSC Mice/MI Upregulated SOD2/SOD3 expression Apoptosis↓, angiogenesis↑,
fibrosis↓

(193)

3D cell cultivation MSCs Rat/AMI – Apoptosis↓, angiogenesis↑,
inflammation↓

(194)

Gene engineering circRNA_0002113 BMMSCs Rat/I/R CircRNA_0002113/miR-188-3p/RUNX1
axis regulated the USP7/p53 pathway

Apoptosis↓ (157)

miR-301 BMMSCs Rat/MI Overexpressed miR-301 decreased LC3-II
LC3-I ratio and increased P62 expression

Autophagy↓ (162)

cTnI-targeted short
peptide

BMMSCs Rat/MI Inhibited the expression of Clic5,Homer1
and Hopx genes

CMs proliferation↑ (195)

miR-30e BMMSCs Rat/MI Inhibited LOX1 expression,
downregulating the activity of the NF-κB
p65/Caspase-9 signaling

Apoptosis↓, fibrosis↓ (196)

miR-486-5p MSCs NHP/MI Regulated fibroblastic MMP19-VEGFA
cleavage signaling

Angiogenesis↑ (197)

TIMP2 UCMSCs Rat/MI Upregulated the AKT Sfrp2 pathway Apoptosis↓, angiogenesis↑
oxidative stress↓, ECM
remodeling↓

(183)

AKT UCMSCs Rat/AMI Activated PDGF-D Angiogenesis↑ (198)

CXCR4 BMMSCs Rat/MI Upregulated AKT Signaling Angiogenesis↑, cardiac
Remodeling↓

(199)

SDF1 MSCs Mice/MI Activated the PI3K pathway Autophagy↓, angiogenesis↑,
Apoptosis↓

(200)

MIF BMMSCs Rat/MI Regulated the AMPK signaling Apoptosis↓, cardiac
remodeling↓

(140)

GATA-4 BMMSCs Mice/MI - Apoptosis↓, cardiac vessel
density↑ c-kit-positive cells↑

(201)

HIF-1α BMMSCs Rat/MI Increased VEGF and PDGF protein Angiogenesis↑, fibrosis↓ (202)

CSTSMLKAC BMMSCs Mice/MI - Apoptosis↓, inflammation↓
Angiogenesis↑, fibrosis↓

(203)

Membrane
modification

CMP BMMSCs Mice/I/R Decreased the levels of cTnI, CK-MB,
TNF-α, and IL-1β, Bax, upregulated Bcl-2
expression

Apoptosis↓, inflammation↓ (204)

DSPE-PEG-NHS EHBPE,
CP05 peptide thiolated
HA-SH

UCMSCs Rat/MI-IR Upregulated proteins Cx43, Ki67, CD31,
and α-SMA and genes VEGFA, VEGF-B,
vWF, Serca2a, downregulated genes
TGF-β1, MMP-9

Fibrosis↓, angiogenesis↑ Cell-
to-cell interactions↑ Cell
proliferation↑

(205)

IMTP BMMSCs Mice/MI Suppressed genes p53 and BAK1 Apoptosis↓ (206)

Encapsulation miR-590-3p BMMSCs Rat/MI Inhibited the expression of Clic5, Homer1
and Hopx gene

CMs proliferation↑ (195)

miR-19a/19b BMMSCs Mice/MI Reduced the expression of Bim and PTEN
genes, decreased the collagen I and III
levels

Fibrosis↓, cardiac HL-1 cells
apoptosis↓

(185)

miR-126, miR-146a ADMSCs Rat/AMI Upregulated CD31 and Cx43 Angiogenesis↑, fibrosis↓ (207)

miR-21 MSCs Mice/I/R Decreased cleaved caspase-3, IL-6,
RANTES, and IL-1α, increased IL-13

Apoptosis↓,inflammation↓ (208)

Hybridization Monocyte mimics BMMSCs Mice/MI/RI Via Mac1/LFA1-ICAM-1 interaction inflammation↓, M2 ϕ↑ ECs
maturation↑

(209)

SαV-NVs,PLT-NVs MSCs Mice/I/R – Inflammation↓, apoptosis↓ (210)

Macrophage membranes MSCs Mice/I/R Eliminated ROS Angiogenesis↑, M2 ϕ↑,
inflammation↓
inflammation↓,
angiogenesis↑

(211)

(Continued)
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TABLE 1 Continued

Improvement
strategy

Therapeutic
agent

MSCs Animal
model

Mechanisms Results Reference

Biomaterials PGN hydrogel UCMSCs Rat/MI Decreased the expression of TGF-β1,
TNF-α

Fibrosis↓, apoptosis↓
inflammation↓,
angiogenesis↑

(212)

(RADA)4-SDKP Hydrogel BMMSCs Rat/MI Decreased the expression of TGF-β1,
TNF-α

Fibrosis↓, apoptosis↓
inflammation↓,
angiogenesis↑

(213)

PPY-CHI Hydrogel EnMSCs Rat/MI Increased EGF/PI3K/AKT signaling Angiogenesis↑, apoptosis↓
alleviated arrhythmia

(214)

Angiogenin-1 hydrogel MSCs Mice/MI Increased the expression of genes FGF,
PGF, and VEGFB

Angiogenesis↑ (215)

RGD hydrogels UCMSCs Rat/AMI Upregulated miR-221–3p expression angiogenesis↑, apoptosis↓ (216)

Alginate hydrogel BMMSCs Rat/MI Increaed the levels of HGF, VEGF, and
PDGF-BB Via polarizing M2 ϕ

apoptosis↓, angiogenesis↑
inflammation↓

(217)

GelMA, HA loaded with
CAT

MSCs Rat/AMI Eliminated ROS and generated O2 CMs displayed mitotic
activity, increased capillary
density

(218)

OHA-PL hydrogel ADMSCs Rat/MI – ROS↓, angiogenesis↑,
apoptosis↓ inflammation↓,
fibrosis↓

(219)

Peptide hydrogel+ MSCs Pig/MI Reduced IFNγ, TNFα, and IL12p40 Angiogenesis↑,
inflammation↓

(220)

Acellular cardiac scaffolds MSCs Pig/MI Increased IL-1ra, IL-10, TGF-β3, MMP2,
TIMP1 IsoB4, reduced TNFα, CCL-2 ,GM-
CSF

Inflammation↓, fibrosis↓,
angiogenesis↑

(221)

MN Patch UCMSCs Mice/MI Decreased IL-1β, IL-6, TNF-α, iNOS, Col-I,
Col-III, MMP-2, and MMP-9 levels

Inflammation↓, fibrosis↓ (222)

Blended PCL/COL-1
nanofibrous patch
+TGF-β3

UCMSCs Rat/AMI – Angiogenesis↑, fibrosis↓,
apoptosis↓

(223)

Fibrinogen MSCs Mice/AMI – NRCM proliferation↑
angiomyogenesis↑, fibrosis↓

(224)

EHBPE, hyperbranched epoxy macromer; α-SMA, alpha-smooth muscle actin; vWF, von Willebrand factor; CCL2, chemokine (C-C motif) ligand 2; IRAK1, IL-1Rassociated kinase 1; CBSC,

cortical bone-derived mesenchymal stem cell; SOD, superoxide dismutase.
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myocardial cell apoptosis and cardiac fibrosis after MI in rats (196).

In non-human primate (NHP) MI models, EVs produced by MSCs

overexpressing miR-486-5p demonstrated substantial

improvements in cardiac function and angiogenesis, with no

increase in the incidence of arrhythmia-related complications

(197). Hu etal. have demonstrated that EVs derived from MSCs

overexpressing islet-1(ISL1) (ISL1-MSC-EVs) have the

independent ability of EC-protective and pro-angiogenic and

angiogenin-1 hydrogel can retain ISL1-MSC-EVs in ischemic

heart, improving the survival and angiogenesis of ECs and

promoting heart repair (215). GATA-4-expressing BMMSC-EVs

can induce BMMSCs differentiation into CM-like cells, reduce

hypoxia-induced CMs apoptosis, and improve myocardial

function post-MI (201). Studies have shown that EVs from MSCs

with overexpressing HIF-1α has been found to enhance

neovascularization and suppress myocardial fibrosis in rats with

MI (202). In a rat model of AMI, EVs secreted by MSCs

overexpressing AKT showed higher levels of PDGF-D, which

promoted post-MI angiogenesis and substantially improved

cardiac function (198). Furthermore, PDGF could stimulate

ADMSCs to secrete EVs carrying c-kit and stem cell factors,

enhancing their angiogenic capacity (237). CXCR4, a G-protein-

coupled receptor, in conjunction with stromal cell-derived factor
Frontiers in Cardiovascular Medicine 13
(SDF)-1α serves as a major regulator of stem/progenitor cell

activities. CXCR4-enriched MSC-EVs have been found to reduce

MI-induced cell death and promote angiogenesis by activating

the PI3K/AKT signaling pathway both in vitro and in vivo.

This finding suggests that CXCR4 plays a pivotal role in

angiogenesis (199). Moreover, overexpression of SDF1 in MSC-

EVs suppressed autophagy of ischemic CMs and promoted

microvascular production of ECs (200).

Genetic manipulation of parental cells represents a method to

obtain engineered EVs with target characteristics by recombining

functional peptides with EVs membrane proteins or lipid-binding

proteins/peptides and displaying functional peptides on the EVs

surface (238). Lysosome-associated membrane protein 2b (Lamp2b)

is the most frequently used membrane protein for decorating EVs

with targeting moieties. Wang et al. fused the ischemia-targeting

peptide (IMTP) CSTSMLKAC with Lamp2b and introduced it into

MSCs through lentivirus-based vector. This substantially enhanced

the targeting ability of EVs to both hypoxia-injured H9C2 cells and

the ischemic myocardium, thereby suppressing inflammation and

CMs apoptosis, reducing infarct size, and improving cardiac

function in mouse MI models (203). In terms of peptides that

cannot be effectively displayed on the EVs surface upon fusion with

Lamp2b, the introduction of a glycosylation sequence at a specific
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position in the engineered fusion protein may enhance stability (239).

Based on the high levels of cardiac troponin I (cTnI) detected in the

infarct area, Wang et al. expressed a cTnI-targeted short peptide on

the surface of MSCs through gene transfection to obtain cTnI-

targeted EVs. Furthermore, hsa-miR-590-3p was incorporated into

cTnI-targeted EVs via electroporation. Upon intravenous

administration, these EVs containing hsa-miR-590-3p localized to

the infarct area along the cTnI concentration gradient and were

endocytosed by CMs, thereby promoting CMs proliferation in the

peri-infarct area and improving cardiac function (195).
5.3 Membrane modification

The membrane modification of EVs can be achieved through

methods such as click chemistry and lipid insertion. Lipophilic

components can be easily inserted into the membrane. Especially,

distearoyl phosphoethanolamine (DSPE) can be embedded into the

phospholipid bilayer, thereby anchoring the attached components to

the EVs surface. In order to protect CM specific peptides (CMP,

WLSEAGPVVTVRALRGTGSW) from degradation, Gu et al.

modified CMP with covalently bound 1, 2-distearoyl-sn-glycero-3-

phosphoethanolamineN-[hydroxysuccinimidyl (polyethylene glycol)-

2000] (DSPE-PEG-NHS), and then linked the PEG modified

protein peptide to the EVs. Subsequently, the miR-302 mimic was

loaded into the engineered EVs using electroporation technology.

Compared with unmodified EVs, engineered EVs can be more

effectively taken up by CMs, promote CMs proliferation in vitro,

reduce CM apoptosis and inflammatory response, and improve

cardiac function after myocardial I/R injury (204). Targeting

peptides or fluorescent molecules can be decorated on EVs

surface through the click chemistry with these groups. Zou et al.

synthesized a hyperbranched epoxy macromer grafted with an

aniline tetramer to cross-link thiolated hyaluronic acid and thiolated

UCMSC-EVs anchoring a CP05 peptide via an epoxy/thiol “click”

reaction. The resulting Gel@Exo systemcan significantly result in a

prominent therapeutic effect on MI-I/R (205). Zhu et al. conjugated

EVs with a IMTP by bio-orthogonal chemistry, which showed

specific targeting to the ischemic area and exerted a significant

cardioprotective effect post-MI (206).
5.4 Encapsulation of medicinal agents

The methods for EVs loading mainly include incubation,

electroporation and permeabilization (240, 241). Suitable

packaging methods can be selected based on the properties of

the packaging molecules. Small molecules can be introduced

into EVs through incubation or ultrasound assistance.

Macromolecules need to enter EVs by electroporation. Sun

etal. have demonstrated that curcumin transported via EVs

remains more stable and achieves higher concentrations in the

bloodstream (242). Wang et al. used electroporation to load

miR-590-3p into EVs for systemic administration in animal

models of MI (195). However, it is important to note that this

method may induce the formation of siRNA aggregates, which
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can affect loading efficiency (243). In a mouse model with MI,

the combination of EVs loaded with miR-19a/19b and MSCs

transplantation significantly promoted the repair of infarcted

heart (185). In addition, ADMSC-EVs can be an effective

nanoshuttle for miR-126 and miR-146a (207). CD47

enables cells to evade clearance by macrophages through

CD47-signal regulatory protein α binding. EVs were isolated

from MSCs overexpressing CD47 (CD47-EVs) and then

loaded with miR-21a via electroporation, resulting in electro

CD47-EVs. Exogenous miR-21 was efficiently internalized

into CMs, leading to inhibition of apoptosis, reduced

inflammation, and improved cardiac function after myocardial

I/R (208).
5.5 Hybridization

EVs can readily be fused with other types of exogenous lipid

membrane structures by extrusion, filtration or freeze-thaw cycles

methods (244). This fusion combines the advantages of liposomes

and EVs, improving their circulation stability and drug delivery

efficiency (245, 246). Distinct from the original EVs, a kind of

hybrid EVs with liposomes can be used as delivery systems for

larger cargoes, such as CRISPR/Cas9 (247), expanding the

scope of applications of EVs as drug delivery systems. Zhang

et al. modified MSC-EVs with monocyte membrane by an

incubation-extrusion method, resulting in hybrid EVs with

regenerative potential of stem cells and inflammatory targeting

characteristics of monocytes. The interaction between

macrophage receptor 1 (Mac1)/lymphocyte function-associated

antigen 1 (LFA1)-intercellular cell adhesion molecule-1 (ICAM-

1)-induced adhesion and transmigration at least partly levered

the targeting efficiency. This modification markedly enhanced

the homing efficiency of EVs in injured hearts and effectively

alleviated myocardial I/R injury in mice (209). Recently, Lai

et al. (210) developed genetically modified hybrid nanovesicles

(hNVs) that include cell-derived nanovesicles with high-affinity

SIRPα variants (SαV-NVs), MSC-EVs, and nanovesicles from

platelets (PLT-NVs). SαV-NVs suppressed CD47-SIRPα

interaction, promoting macrophage phagocytosis of dead cells.

EVs components can alleviate inflammation. Furthermore, PLT-

NVs provide hNVs the ability to evade immune surveillance

and selectively target the infarct areas. The combined effects of

hNVs notably improved the LVEF on day 21 in an I/R mouse

model, offering a simple, safe, and robust strategy for boosting

cardiac repair. The liposome-based cellular engineering method

can be achieved by engineering parental cells with membrane

fusogenic liposomes to equip EVs with various functional

agents, including drugs, fluorophores and bio-orthogonal

chemicals (248). Zhang et al. constructed a hybrid cell-derived

EVs (N@MEVs) that was composed of MSCs and macrophage

membranes encompassed MitoN, a ROS scavenger, to boost the

healing of the heart. Fixing l-arginine within N@MEVs further

enhanced the potential for delivery to injured cardiac tissues.

This combination therapy has demonstrated synergistic effects on

cardiac repair and regeneration, specifically via the regulation of M2
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ϕ, promotion of angiogenesis, and reduction of DNA damage, thereby

restarting CMs proliferation (211).
5.6 Biomaterial-assisting

The therapeutic potential of MSC-EVs in cardiac repair has

been constrained by limitations such as poor retention, brief

biological half-life, necessity for repeated administration, and risk

of secondary tissue damage (249). With the rapid development

of biomaterials and tissue engineering, the combination of EVs

with biomaterials can compensate for the shortcomings of EVs

in specific applications of tissue repair. Injectable, biocompatible,

hydrophilic, tunable, conductive, and compositionally versatile

hydrogels serve as intriguing platforms for replicating cardiac

ECM (250). In addition, hydrogels provide a controllable delivery

system depending on the type of substrates used in their

structures. Hydrogels can be used as injectable matrix for direct

injection into injured myocardium and as myocardial patch

placed on the surface of injured area. Polymer-based hydrogels

infused with EVs, including hyaluronic acid (HA), gelatin,

chitosan, silk, and alginate, are utilized to enhance cardiac

healing (251). The use of hydrogels can enhance EVs stability

and delivery to a specific injury site in a controlled and

adjustable manner while enabling sustained in situ release.

Han et al. used a self-assembled peptide hydrogel (PGN

hydrogel) to encapsulate UCMSC-EVs. Administering the EVs/

PGN hydrogel mixture into the infarcted area improved cardiac

function, as evidenced by a reduction in inflammation, fibrosis,

and apoptosis, as well as an increase in angiogenesis (212). In

rats with MI, cardiac function was improved after IM injection

of MSC-EVs alone or in conjunction with (RADA)4-SDKP

hydrogel (213). Following MI, scar formation in and around the

infarction disrupts electrical signal propagation, leading to

desynchronized cardiac activation and contraction (252).

Conductive hydrogels have the potential to restore electrical

impulse propagation during MI, preventing arrhythmias and

protecting ventricular function (253, 254). Zou et al. formulated

an injectable conductive hydrogel containing thiolated CP05

peptide to anchor UCMSC-EVs. The electrical activity of the

hydrogel effectively improved the polarization of connexion 43

(Cx43) in cell-cell interactions, suppressing the risk of

arrhythmias. In addition, the hydrogel enhanced EVs retention,

consequently improving cardiac function and promoting vascular

regeneration after I/R (205). Yan et al. developed an injectable

hydrogel by incorporating EnMSC-EVs into polypyrrole chitosan

(PPY-CHI). This synergistic combination of EVs and PPY-CHI

improved cardiac function, as evidenced by the promotion of

angiogenesis, inhibition of cell apoptosis, and resynchronization

of electrical conduction (214). EVs from MSCs overexpressing

HIF-1α can promote the angiogenesis and the apoptosis of CMs

via upregulating the expression of miR-221-3p. RGD hydrogels

can enhance the therapeutic efficacy of HIF-1α engineered MSC-

EVs (216). IM injection the sodium alginate hydrogel

incorporated with MSC-EVs enhanced the reparative potency of

MSC-EVs in pro-angiogenesis, reducing fibrosis and improving
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cardiac function after MI (217). Recently, Wang et al. have

discovered that MSC-EVs encapsulated gelatin methacryloyl/HA

blended and oxygen releasing injectable hydrogel by CMs

induction and vascularization in rat MI model (218). Ren etal.

have demonstrated that an injectable ADMSC-EVs loaded HA-

polylysine hydrogel for cardiac repair via modulating oxidative

stress and the inflammatory microenvironment after MI (219).

Decellularized cardiac scaffold is a source of biological ECM

derived from natural heart tissue, with conserved ECM structures

and functional cardiac ECM components (255). The combination

of MSC-EVs and decellularized heart tissue represents a hopeful

tissue engineering approach, capable of locally administering

MSC-EVs and boosting their therapeutic impact to recover

cardiac function post-MI. Porcine heart adipose tissue-derived

MSC-EVs (cATMSC-EVs) and peptide hydrogels were embedded

in acellular porcine pericardial scaffolds for local myocardial

delivery. Subsequently, the engineered scaffolds were administered

to the ischemic myocardium of a pig model of MI. Six days after

implantation, the designed scaffolds integrated into the infarcted

heart tissue, resulting in an increase in vascular density and a

reduction in macrophage and T-cell infiltration within the

damaged myocardium (220). The same research group

subsequently evaluated the long-term functional impact of

cATMSC-EVs acellular cardiac scaffolds in a porcine MI model.

The authors discovered that cATMSC-EVs enhanced post-MI

right ventricular ejection fraction and ventricular dilation while

also alleviating adverse cardiac remodeling. Remarkably,

cATMSC-EVs also modulated the expression of inflammatory

mediators and fibrosis modulators (221).

Cardiac patches provide an efficient method for administering

treatments directly to the cardiac tissue. Yuan et al. designed a

biocompatible gelatin-based microneedle (MN) patch loaded with

UCMSC-EVs containing miRNA-29b mimics. The implantation

of the MN patch into the infarcted hearts of mice resulted in

increased EVs retention in the infarcted area, reducing

inflammation, infarct size and fibrosis, and improving

cardiac function (222). Guan et al. developed a blended

polycaprolactone/type I collagen (PCL/COL-1) nanofibrous patch

loaded with TGF-β3 and UCMSC-EVs (Exo@TGF-β3@NFs).

Exo@TGF-β3/NFs upregulated genes involved in angiogenesis

and mesenchymal differentiation in vitro. Four weeks post-

transplantation, Exo@TGF-β3@NFs resulted in elevated LVEF

and fraction shortening in vivo. Furthermore, Exo@TGF-β3@NFs

could substantially reduce the size of MI, inhibit fibrosis, and

increase scar thickness (223). Yao et al. designed and tested a

minimally invasive EVs spray using MSC-EVs and biomaterials.

In a mouse model of AMI, administration of this spray via

thoracoscopy improved cardiac function, reduced fibrosis, and

promoted endogenous angiomyogenesis in the post-MI heart.

This delivery method was found to increase the retention of EVs

and reduce surgical stress and inflammatory responses (224).

Born et al. have demonstrated that MSC-EVs can be

incorporated into a 3D-printed gelatin methacrylate (GelMA)

hydrogel bioink while retaining their bioactivity. By increasing

the crosslinker concentration, the initial burst release of EVs can

be reduced during gelation (256).
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6 Clinical trials of EVs in MI or I/R

Due to the inherent complexity of its mechanism of action,

the application of EVs in the treatment of CVD has

considerable appeal. EVs are being examined in clinical trials

to assess their safety and efficacy as therapeutic agents.

Nevertheless, clinical trials of EVs for cardiac indications are

still in their early stages, and evidence supporting their clinical

application in patients with MI or I/R is limited. As of August

2024, based on information from https://clinicaltrials.gov/

(Table 2). An ongoing trial (NCT05669144) is investigating the

combined transplantation of mitochondria and administration

of MSC-EVs in candidates for coronary artery bypass grafting

(CABG) surgery. Patients in the experimental group will

receive co-transplantation IM and IC injection of EVs (1 ml of

EVs containing 100 μg of EVs) and mitochondria(1 ml of EVs

containing 10 million mitochondria). Twenty patients will be

recruited and the evaluation of the patient’s recovery will be

performed 1 month after the surgery. There are also some

studies about EVs and MI or IR. A single-center study in the

United States (NCT04327635) is aiming to assess the safety of

purified EVs (PEP) derived from stored human blood in

patients undergoing coronary stent implantation. Twelve

patients who undergo PCI will be treated with a single dose of

PEP within 20 min after stent placement or post-dilation. The

study will conduct a one-year follow-up to evaluate the dose-

limiting toxicity and maximum tolerated dose of PEP with

increasing concentrations of EVs. In addition, the study plans

to assess infarct size and EF, as well as monitor the

alloimmune response. A French study (NCT05774509) plans

to evaluate the safety and efficacy of three IVs of EVs-enriched

secretome (20 × 10E9 particles/kg for each infusion) of CPCs

in severely symptomatic patients with drug-refractory left

ventricular dysfunction secondary to non-ischemic dilated

cardiomyopathy. Another registered trial (NCT04127591) aims

to determine the expression profile of miRNAs in peripheral
TABLE 2 Clinical trials of extracellular vesicles for cardiac indications (clinica

Conditions Interventions/treatment

Myocardial infarction
Myocardial ischemia
Myocardial stunning

Biological:
Mitochondria and MSC-derived exosomes

Rec

Percutaneous
Coronary intervention

Drug: PEP Enr
invi

Myocardial infarction Other: exosome Unk

STEMI Diagnostic Test:
CMR and blood collection

R e

Myocardial Infarction Drug: Ticagrelor
Drug: Clopidogrel

Com
WIT
RES

Heart failure with
reduced ejection fraction

Biological: extracellular vesicle-enriched secretome of
cardiovascular progenitor cells differentiated from
induced pluripotent stem cells

Rec

CMR, cardiovascular magnetic resonance.
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blood EVs of patients with MI and investigate their

relationship with MI. Furthermore, a multicenter observational

prospective study (NCT06070974) plans to assess the potential

of plasma EVs in identifying patients at a high risk of adverse

remodeling following STEMI at an early stage. This could

facilitate appropriate patient management and reduce the risk

of cardiovascular events. Consecutive patients with STEMI will

be enrolled three days after PCI to investigate the correlation

between the EVs profile and the severity of MI. A Phase IV

trial (NCT02931045) examined the concentrations of platelet

EVs, c-reactive protein, IL-6, and elastase in patients after 6

months of antiplatelet therapy with ticagrelor or clopidogrel.

The objective of this study is to identify an additional

mechanism of the action of ticagrelor, which might contribute

to the observed clinical benefits in patients treated with

ticagrelor. Although the safety of cardiac or intravenous

injections of EVs has been assessed in clinical trials, notable

concerns regarding the safety and tolerability of repeated

injections remain.

Compared with parental cells, MSC-EVs have several potential

advantages: relative safety, because they cannot replicate and their

smaller size allows them to pass through capillaries without

clogging (257); low immunogenicity and easy to store, they can

be stored at −20°C for up to 6 months without significant

damage (258); they can transit physiological barriers, such as the

blood-brain barrier (259). However, there are still several factors

to be addressed for effective clinical translation, including

production, isolation, dosage and administration method of

MSC-EVs (260). In addition, although the safety of cardiac or

intravenous injections of EVs has been assessed in clinical trials,

notable concerns regarding the safety and tolerability of repeated

injections remain. Improving the biological benefits of MSC-EVs

by engineering parental cells or post-production EVs and

improving the delivery of EVs by encapsulation in biomaterial to

prolong their efficacy, which may help to promote their

clinical translation.
lTrials.gov).

Status Study
type

Sponsor Clinical trial
number

ruiting Interventional Tehran University of Medical
Sciences

NCT05669144

olling by
tation

Interventional Christopher
J. McLeod

NCT04327635

nown status Observational Xinhua Hospital, Shanghai
Jiao Tong University School of
Medicine

NCT04127591

cruiting Observational Centro
Cardiologico Monzino

NCT06070974

pleted
H
ULTS

Interventional Medical University of Warsaw NCT02931045

ruiting Interventional Assistance Publique- Hôpitaux
de Paris

NCT05774509
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7 Conclusions

Over the past decade, significant progress has been made in

the understanding of the biology of EVs and their important role

in cardiovascular pathology and physiology. As multifunctional

carriers of molecular signals, EVs from cardiac cells can either

transmit both protective and damaged signals in MI.

Moreover, it has been well-recognised that MSC-EVs have

great potential in the treatment of MI, potential mechanisms

including promoting angiogenesis, mitigating inflammation

and oxidative stress, inhibiting cell death and improving

cardiac remodeling, typically indicating that EVs are as

effective as their parental cells.

However, there are still many challenges such as the isolation

and characterization of clinical grade biological products EVs,

scalable production, and batch standardization. Maldistribution

of EVs within the body after systemic administration is also a

challenge for achieving targeted drug delivery. In addition,

despite preclinical studies on EVs demonstrating the apparent

lack of immunotoxicity, immunological clearance remains

largely unexplored. The rapidly growing EVs therapeutics and

drug delivery systems requires an understanding of undesired

immunogenicity, which is critical for the development of safe

and efficient clinical products. The use of immortalized cell

lines can minimize variability of EVs to improve the

reproducibility of clinical outcomes. We know little about how

cardiovascular pathophysiology changes the EVs biology, how

EVs derived from different types of myocardial cells mediate

intercellular communication in damaged myocardium and how

MSC-EVs are designed to maximize their beneficial effects in

the hypoxic/ischemic microenvironment. It is still unclear

whether specific promotion or inhibition of EVs production will

be beneficial for MI. The progress in these fields not only helps

to reveal previously unknown mechanisms of CVDs, but also

lead to new treatment methods to improve clinical outcomes.

The development of technologies could provide novel insights
Frontiers in Cardiovascular Medicine 17
into EVs biology and the clinical applications of MSC-EVs,

paving the way for developing personalized precision medicine.
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