Skip to main content

MINI REVIEW article

Front. Cardiovasc. Med.
Sec. Coronary Artery Disease
Volume 11 - 2024 | doi: 10.3389/fcvm.2024.1487668

Early Growth Response-1, a Dynamic Conduit in Cardiovascular Disease

Provisionally accepted
  • University of New South Wales, Kensington, Australia

The final, formatted version of the article will be published soon.

    The transcription factor, early growth response-1 (Egr-1) is the product of a prototypic immediate-early gene that plays an integral role in the pathogenesis of multiple cardiovascular diseases. Egr-1 has been linked with atherogenesis, myocardial ischemia-reperfusion injury, cardiac fibrosis and heart failure. Egr-1 expression is triggered by a host of factors including cytokines, hormones, growth factors, hyperglycaemia, biomechanical forces and oxygen deprivation. Egr-1 is a molecular conduit that links changes in the cellular environment with the inducible expression of genes whose products play a causative role in this inflammatory disease. It is rapidly synthesised, undergoes post-translational modification, interacts with a range of cofactors and drives gene expression. Studies in Egr-1 deficient mice, animal models using DNAzymes, RNA interference, oligodeoxynucleotide decoys, antisense oligonucleotides, and new insights provided by technologies such as single cell RNA sequencing, have shaped our understanding of the importance of Egr-1 in the initiation and progression of cardiovascular disease. This article describes Egr-1’s role in various cardiovascular settings and discusses potential mechanisms of action. Given the range of conditions linked to Egr-1, this zinc finger protein may serve as a therapeutic target for intervention.

    Keywords: cardiovascular disease, Early growth response-1, Egr1, Acute Coronary Syndrome, Vascular biology

    Received: 28 Aug 2024; Accepted: 14 Oct 2024.

    Copyright: © 2024 Khachigian. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Levon M. Khachigian, University of New South Wales, Kensington, Australia

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.