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Application prospect of speckle
tracking echocardiography in
pacemaker implantation
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Ultrasonic Medicine, The First People’s Hospital of Neijiang, Neijiang, China
More than 1 million permanent pacemakers are implanted worldwide each year,
half of which are in patients with high-grade atrioventricular block. Pacemakers
provide adequate frequency support in the initial stage, but traditional right
ventricular (RV) pacing may lead to or aggravate left ventricular dysfunction
and arrhythmia. Several potential risk factors for heart failure and arrhythmias
after pacemaker surgery have been identified, but their occurrence remains
difficult to predict clinically. Compared with RV pacing, His bundle pacing
(HBP) and left bundle branch pacing (LBBP) activate the intrinsic His–Purkinje
conduction system and provide physiological activation, but whether HBP and
LBBP also cause ventricular mechanical dyssynchrony remains uncertain. The
implantation of cardiac resynchronization therapy and implantable cardioverter
defibrillator depends on left ventricular ejection fraction (LVEF). LVEF This
depends on volume changes and is less reproducible. Speckle tracking
echocardiography (STE) is a technique that can accurately quantify the degree
and duration of systolic deformation. STE detects changes in myocardial
function more sensitively than traditional measures of diastolic and systolic
function, including LVEF. Clinicians can evaluate myocardial strain and
synchrony based on strain (percent change in segmental length from baseline)
and strain rate (strain per unit time). This review and case series investigate the
clinical use of speckle tracking echocardiography in pacemaker implantation.
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1 Introduction

On 8 October 1958, cardiac surgeon Ake Senning implanted the first complete

pacemaker, which is considered the actual birth of today’s pacemaker therapy (1). With

the continuous development of pacemaker technology, the pacemaker was gradually

transferred from thoracotomy to transvenous pacemaker (TV-PM). Pacemaker

technology reduces mortality in patients at high risk for second-degree type II or third-

degree atrioventricular block (AVB). It also improves the prognosis of patients with

bradycardia due to other causes such as sick sinus syndrome (2). To pursue better

prognosis, the battery, electrode, and stimulation mode of pacemaker have been

gradually adjusted and optimized (3). The availability of leadless pacemakers has

reduced the risks of lead dislocation, pocket hematoma, lead failure, and local and

systemic infections (4). However, there are still some adverse events after pacemaker

implantation. Under physiological conditions, the point activity from the sinoatrial

node travels down the His bundle through the atrioventricular (AV) node and reaches
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the right ventricle and left ventricle through the right bundle

branch and left bundle branch, respectively (5). The ideal

stimulation mode is to make the pacing signal transmit along the

physiological pathway to achieve physiological stimulation.

Worsening of systolic function has also been observed when

ventricular leads are implanted for frequency support at the right

ventricular (RV) apex, septum, and right ventricular outflow tract,

whether single-chamber or dual-chamber AV pacing (6). Electrical

pulses are not conducted through the Purkinje system, and

disruption of normal electrical and subsequent mechanical

activation of the ventricle results in delayed basal and lateral

activation of the left ventricle (7). This results in systolic

hypofunction, elevated filling pressures, and ultimately maladaptive

cardiac remodeling and leads to the development of clinical heart

failure with PICM (8). The incidence of PICM can reach 10%–20%

within 3–4 years after pacemaker implantation (9, 10). His bundle

pacing (HBP) and left bundle branch pacing (LBBP) have been

developed to provide physiological activation by activating the

intrinsic His–Purkinje conduction system (11). However, whether

HBP and LBBP also cause ventricular mechanical dyssynchrony

is uncertain. For cardiac resynchronization therapy (CRT) and

implantable cardioverter defibrillator (ICD), the preoperative

implantable pointer depends on left ventricular ejection fraction

(LVEF) (12, 13), and there are no clear predictors of postoperative

treatment and prognosis.

Speckle tracking echocardiography (STE) tracks acoustic

scattering (speckle) of the myocardium frame by frame to

calculate strain or deformation of the myocardium. Compared

with conventional echocardiography, it is more valuable in

evaluating systolic function, cardiac synchrony, myocardial

fibrosis, and regional strain (14, 15). These indicators should be

paid attention to by clinicians when implanting a pacemaker.

This article will discuss the application value of STE technique in

pacemaker implantation.
2 Speckle tracking echocardiography

STE is a technique that analyzes motion by tracking “spots” on

two-dimensional (2D) or three-dimensional (3D) black-and-white

echocardiograms (14). Spots are generated by the reflection and

scattering of ultrasound, but they do not exist as true structures.

Consecutive frame-by-frame tracking of the spots was performed

using the absolute difference sum algorithm. The image

processing algorithm tracks user-defined regions of interest (16).

Its ultrasound image consists of stable acoustic spots evenly

distributed within the myocardium. During the tracking process,

small random errors accumulated in speckle pattern detection

will lead to inaccurate tracking results, but compared with

conventional Doppler ultrasound, there is no angle dependence,

and the results are less affected by the examiner (17). STE tracks

the distances between frames and points or their spatiotemporal

displacements (regional strain velocity vectors) during each

cardiac cycle and can distinguish between normal myocardial

segmental displacements that occur passively due to myocardial

hypertrophy or restriction by adjacent myocardial tissue (18). It
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provides valuable information on myocardial focal, phasic, and

global myocardial strain. Two-dimensional STE (2D-STE) can

measure myocardial longitudinal strain (LS) to evaluate cardiac

function. Global circumferential strain (GCS) and global radial

strain (GRS) were measured in three short-axis and three apical

views to obtain global longitudinal strain (GLS) (19). Three-

dimensional STE (3D-STE) can automatically measure GCS,

GRS, and GLS with only one apical image acquisition (20).

These strain indices in STE represent the ratio of the maximum

systolic change in myocardial length in each direction to its

initial magnitude. During systole, when the myocardium

contracts, the length decreases, resulting in strain parameters that

are usually expressed as negative values. Lower negative values

indicate better ventricular systolic function (21) (Figure 1).

Speckle tracking strain can detect the focal changes of

myocardial function. In daily use, it has a better value than

conventional echocardiography for the early diagnosis of

cardiomyopathy, cardiac tumors, and ischemic heart disease (14).

Due to bradyarrhythmia implanted with cardiac pacemaker,

especially right ventricular apical pacing, electrical stimulation of

the pacemaker can cause interventricular and intraventricular

dyssynchrony, resulting in structural changes caused by abnormal

myocardial perfusion and heart failure (22, 23). STE can be used

to assess myocardial synchrony during electrical pacing to

predict the risk of heart failure induced by the pacemaker (24).

For patients with cardiac dyssynchrony requiring pacemaker

resynchronization therapy, STE can evaluate the systolic

synchronization of left ventricular segments and identify suitable

sites for new activation (25). STE can also be used to guide the

left ventricular lead pacing site and the latest activation segment,

so as to improve the CRT response rate and prognosis of

patients (26).
3 Application of speckle tracking
technology before pacemaker
implantation

3.1 Right ventricular pacing

The right ventricular apex is the classic site of pacemaker

ventricular lead placement. However, when the proportion of

ventricular pacing is more than 40%, right ventricular apical

pacing will increase the incidence of heart failure and atrial

fibrillation (27). In patients with sinus node dysfunction, dual-

chamber pacing can reduce the risk of atrial fibrillation, but it

does not improve heart failure and survival (28). This conclusion

is consistent with indications for ICD implantation in patients

with no indication for cardiac pacing but an LVEF ≤40% (6).

The ventricular activation sequence during right ventricular

septum pacing (RVSP) is relatively consistent with the

physiological law, but the pacing signal cannot be transmitted

through the patient’s own conduction system, which will lead to

conduction delay (29). During RV pacing, the presence of

myocardial fibrosis leads to electrical and mechanical

dyssynchrony and more severe left ventricular remodeling (30).
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FIGURE 1

Speckle tracking map. (A) Strain time curve and strain peak time plot. Upper left myocardial Doppler 2D measurement image of the region of interest.
The middle curve is the strain–time curve. The lower right panel shows the time-to-peak bull’s eye plot, and the values in the lower right panel show
the strain values, GLS, and longitudinal strain time-to-peak dispersion in each section. (B) Bull’s eye plot of LV longitudinal strain, with approximately
red color representing greater myocardial deformability. (C) Bull’s eye plot of the time to peak in the left ventricle, the longer the time to peak, the
darker the color.
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In addition, local myocardial fibrosis will lead to increased

impedance after pacemaker implantation, which will affect the

pacing effect and battery life (31, 32). Myocardial scar is an

independent predictor of right ventricular pacing-induced heart

failure (33).

Therefore, in addition to cardiac structure, the degree of

cardiac fibrosis and scarring should also be taken into account

before right ventricular pacing. Cardiac magnetic resonance

(CMR) late gadolinium enhancement (LGE) is the gold standard
Frontiers in Cardiovascular Medicine 03
for detecting focal and diffuse cardiac chamber fibrosis, but its

use is limited by its availability and the use of contrast agents

(34). Compared with CMR, STE can be used for evaluation and

semi-quantitative analysis without the use of contrast media, and

the degree of myocardial fibrosis can be evaluated by measuring

myocardial strain (35, 36). In an STE program to identify

children and adolescents with focal myocarditis without reduced

ejection fraction, patients with sustained reduction in GLS had

residual focal myocardial fibrosis on follow-up CMR. The
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1484520
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Xu et al. 10.3389/fcvm.2024.1484520
reduction in GLS was consistent with the amount and location of

edema on CMR (37). STE can be used to evaluate the degree of

myocardial fibrosis and scar before pacemaker implantation,

which may have guiding value for the selection of pacing site

and pacing parameters.
3.2 His bundle pacing and left bundle
branch pacing

HBP and LBBP achieve true physiological pacing through their

own conduction systems (38). The 2018 ACC/AHA/HRS

guidelines for the evaluation and management of patients with

bradycardia and cardiac conduction delay state that patients with

atrioventricular block and indications for permanent pacemaker

implantation with an LVEF between 36% and 50% have a higher

risk of cardiac dysfunction. If the proportion of ventricular

pacing is predicted to be more than 40%, pacing to maintain

physiological ventricular excitation can be selected. The 2023

HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for

the avoidance and mitigation of heart failure also pointed out

that for patients with LVEF between 36% and 50% and

permanent pacing indications, extensive ventricular pacing is

expected to be required, and HBP and LBBP are reasonable

options to reduce the risk of PICM (8). However, for patients

with normal cardiac function and predicted ventricular pacing

rate >40%, the guideline does not recommend whether His–

Purkinje system pacing (HPSP) is also preferred (39). STE can

quantitatively analyze the deformation of the myocardium in the

longitudinal, radial, and circumferential directions during the

cardiac cycle, and detect myocardial dyskinesia in the early stage.

It is a more sensitive indicator of myocardial contraction than

LVEF (40). Previous studies have shown that LBBP under the

guidance of STE is an optimal pacing mode for patients with

preoperative pacemaker dependence and normal LVEF (41). In

addition, to ensure LBBP implantation, it is essential to

accurately evaluate the cardiac structure, especially the thickness

of the basal interventricular septum and the presence or absence

of septal scar before operation (38).
3.3 Cardiac resynchronization therapy

CRT is a device therapy for heart failure patients with LVEF

≤35% and left ventricular dyssynchrony with QRS duration

≥120 ms (13). STE can evaluate the myocardial dyssynchrony by

measuring the maximum time delay between the peak systolic

strain of the two segments and the dyssynchrony index of the

left ventricle, which is not affected by the measurement Angle

and can evaluate the cardiac synchronization more accurately

(42, 43). A multicenter prospective study using four speckle

tracking methods to assess baseline dyssynchrony demonstrated

that circumferential and longitudinal strain predicted response to

CRT. This indicates that dyssynchrony measured in STE is

associated with prognosis after CRT implantation (44). In

addition, studies have shown that mechanical dyssynchrony
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assessed by STE has high value in predicting responsiveness to

CRT. Preoperative STE may be helpful in deciding the indication

for CRT, especially if it is necessary to avoid non-response after

CRT (45). Abdelfattah et al. also found that STE measurement of

maximum interval to lateral delay is a good tool for predicting

CRT response before implantation (46).
3.4 Implantable cardioverter-defibrillators

ICD is a primary and secondary prevention method for

sudden cardiac death in patients with heart failure and

structural heart disease (47). It is highly effective in terminating

life-threatening ventricular arrhythmias (VA). Current risk

prediction used to determine the need for an ICD relies

primarily on LVEF (12, 47). But LVEF represents the condition

of cardiomyopathy, although not necessarily the tendency to

arrhythmia. The meta-analysis showed that LVEF had a

sensitivity and specificity of 59% and 78% for significant

arrhythmic events, respectively (48). LVEF as a single reliable

predictor of VA leading to sudden cardiac arrest (SCA) is

questioned (49). STE is an independent predictor of VA in both

patients with previous myocardial infarction and patients with

non-ischemic heart disease (NIHD), and its predictive value is

also confirmed in patients with LVEF >35% (49). In a

prospective study of patients with NIHD, STE was more

accurate in predicting arrhythmic events than LVEF (50). In

studies of patients with heart failure, worsening systolic

function as assessed by STE was associated with increased risk

for SCA (51). Therefore, some scholars have proposed that

STE can be used for arrhythmia risk stratification in patients

with ICD, especially in the case of unclear indications. It was

considered that the risk of antitachycardia pacing (ATP) or

shock with ICD increased at lower GLS, and the hazard ratio

(HR) for the first ICD therapy increased by 1.65 for each

SD unit of GLS (52). Nikoo et al. also suggested that GLS in

patients with hypertrophic cardiomyopathy (HCM) had the

highest accuracy in predicting ICD indications in

HCM patients, and could be used as a reliable index for early

prediction of fatal arrhythmia (53).
4 Application of speckle tracking
technology after pacemaker
implantation

4.1 Right ventricular pacing

Right ventricular pacing may cause interventricular and

intraventricular dyssynchrony, leading to abnormal myocardial

perfusion and endothelial function, poor cardiac output, and

clinical manifestations of heart failure and/or arrhythmias (54).

This condition is called pacing-induced cardiomyopathy (PICM)

(55). Multiple risk factors for PICM include male sex, wider

initial and pacing QRS durations, and a higher percentage of

right ventricular pacing. However, tools to predict which patients
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will develop PICM remain limited (55, 56). GLS of left ventricle

appeared before the significant change of LVEF (54). It was

suggested that GLS measured at 1 month after surgery could

predict left ventricular dysfunction 1 year later (57). The lower

the baseline GLS measured by STE, the higher the risk of PICM

(58). Such patients require more frequent follow-up and may

even require His bundle pacing or an upgrade to biventricular

pacing (58). Even in the BUDAPEST-CRT Upgrade trial,

upgrading to a CRT-D reduced the risk of death from any cause,

hospitalization for heart failure, or combined ventricular

remodeling among patients with a pacemaker or ICD who had a

significant RV pacing burden and a reduced ejection fraction (59,

60). Cardiac synchrony in heart failure patients with previous

pacemaker implantation can be used as one of the references for

pacemaker upgrading. GLS detected by STE after RV pacing can

predict PICM earlier (61). Early detection and intervention of

PICM can help to prevent its occurrence (62).
4.2 His bundle pacing and left bundle
branch pacing

HBP and LBBP activate the intrinsic His–Purkinje conduction

system, thereby maintaining ventricular contraction synchrony and

are thought to provide physiological activation (63). But whether

LBBP also causes ventricular mechanical dyssynchrony remains

uncertain (64). STE can measure myocardial strain and quantify

left ventricular function and ventricular systolic synchrony.

Global and regional ventricular wall function can be analyzed

(65). A number of studies have used STE to evaluate even and

long-term cardiac conditions in patients after LBBP and

RV pacing, providing more clinical evidence for the advantages

of LBBP (41, 63, 66). STE used in the evaluation after

LBBP implantation may more accurately predict the prognosis of

patients and reflect the advantages of LBBP.
4.3 Cardiac resynchronization therapy

Patients whose clinical and echocardiographic performance

improves after CRT implantation are defined as “CRT responders,”

but about 30% who do not improve are called “CRT non-

responders” (67, 68). STE allows more strain analysis, including

radial strain (myocardial thickening) and circumferential strain

(myocardial shortening) in the axial view, and longitudinal strain

(myocardial shortening) and transverse strain (myocardial

thickening) in the apical view (69). Suffoletto et al. first reported

that desynchronization of STE radial strain quantification

correlated with CRT response (26). The combination of Doppler

imaging (TDI) longitudinal velocity, reverse wall delay, and

STE radial strain has added value in predicting CRT response. The

Speckle Tracking and Resynchronization (STAR) study is the first

prospective, multicenter study to investigate the relationship

between speckle tracking strain dyssynchrony and LVEF response
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and long-term survival after CRT (25). The combined application

of speckle tracking radial strain to assess short-term baseline left

ventricular dyssynchrony reported by Imanishi et al. was able to

more accurately predict long-term outcomes after CRT (70).

Delgado et al. showed that STE measurements of left ventricular

dyssynchrony, left ventricular lead position, and myocardial

scarring predicted long-term survival in patients with ischemic

heart failure treated with CRT (71). In addition, it has also been

shown that mechanical activation patterns elicited by STE can

identify newly activated sites. This parameter can be used to guide

the left ventricular lead pacing site and the latest activation

segment so as to improve the CRT response rate and prognosis of

patients. This can also be a basis for programming pacing

parameters after CRT (72–74). Multi-parameter evaluation using

STE is expected to improve the prediction of CRT response and

may provide more useful information for the selection of

CRT patients.
4.4 Implantable cardioverter-defibrillators

Shock therapy after ICD implantation is a clinical concern. In

the antiarrhythmics versus implantable defibrillators (AVID) trial,

51% received an ICD shock or antitachycardia pacing within the

first year. The first arrhythmia treated was ventricular

tachycardia (VT) in 63% of cases and ventricular fibrillation (VF)

in 13% of cases (75). Shock reduction is particularly important in

patients who receive ICD secondary prevention because of the

high risk of treatment and the potential for adverse outcomes

from ICD shocks (76). Although ICD programming should be

adjusted based on prior knowledge of VT/VF, VA is still not

predicted (77). Guerra et al. investigated the relationship between

GLS and mechanical dispersion in predicting first and

subsequent VA events in patients with ICD. It is proposed that

lower GLS is associated with higher risk (52). Another study

involving 63 patients with ICD also showed that mechanical

dispersion and global longitudinal peak strain (GLPS) were

independent predictors of appropriate ICD therapy. Measured

mechanical dispersion and GLPS help distinguish high-risk

patients who benefit from ICD therapy (78).
5 Concluding remarks and future
perspectives

Although STE is less affected by the angle of examination than

TDI, the reproducibility of the obtained values remains a major

concern. The clinical application of STE needs to be further

confirmed by different researchers in large samples. STE has a

more comprehensive detection of the heart than TDI, but it is

not as good as MRI in detecting myocardial fibrosis and scar.

However, it is undeniable that STE has become a new tool to

evaluate regional and global cardiac function, especially

mechanical dyssynchrony. These parameters are of great value
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for the evaluation before pacemaker implantation and the

prediction of postoperative adverse events. Speckle tracking can

initially evaluate the local myocardial scar before device

implantation and guide the electrode implantation site. With the

increasing demand for pacemaker implantation, physiological

pacing has developed rapidly. STE may provide more clinical

evidence for physiological pacing mode. For patients treated with

CRT, in the study by Ypenburg et al., radial strain from speckle

tracking analysis was used to assess the regional systolic reserve

of CRT left ventricular pacing lead, and it was found that the

systolic reserve of left ventricular pacing lead region only existed

in responders, so it could predict left ventricular reverse

remodeling after CRT (79). In HBP and LBBP, in addition to

strain analysis, it is helpful to use contrast injection to delineate

the tricuspid valve and septal region. The use of a pacing system

analyzer that can record His bundle and left bundle electrograms

is more helpful for recording and confirming conduction system

capture (8). Regardless of the type of pacemaker implanted, early

prediction of postoperative adverse events can help adjust the

treatment plan in a timely manner and improve the prognosis of

patients. Currently, we are witnessing a shift from LVEF to

GLS in both research and clinical applications. The evaluation

before and after pacemaker implantation still needs to be solved

by multimodal imaging. Although there is a lack of large

randomized controlled trials to study the choice of pacing mode

guided by STE, we now have some clinical data to refine the

selection of pacing mode and site by STE. The ideal stimulation

mode is pacing signal transduction without reducing myocardial

segmental strain.
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