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Interleukin-6 and thyroid-
stimulating hormone index
predict plaque stability in carotid
artery stenosis: analyses by
lasso-logistic regression
Li Zhigao1, Qin Jiabo2, Zheng Lei3 and Qiao Tong1*
1Department of Vascular Surgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical
University, Nanjing, China, 2Department of General Surgery, Nanjing Drum Tower Hospital Clinical
College of Nanjing Medical University, Nanjing, China, 3Department of Vascular Surgery, The Affiliated
Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
Objective: To develop and validate a new prediction model based on the Lass-
logistic regression with inflammatory serologic markers for the assessment of
carotid plaque stability, providing clinicians with a reliable tool for risk
stratification and decision-making in the management of carotid artery disease.
Methods: In this study, we retrospectively collected the data of the patients who
underwent carotid endarterectomy (CEA) from 2019 to 2023 in Nanjing Drum
Tower Hospital. Demographic characteristics, vascular risk factors, and the results
of preoperative serum biochemistry were measured and collected. The risk
factors for vulnerable carotid plaque were analyzed. A Lasso-logistic regression
prediction model was developed and compared with traditional logistic
regression models. The Akaike information criterion (AIC) and Bayesian
information criterion (BIC) were used to evaluate the performance of three models.
Results: A total of 131 patients were collected in this study, including 66 (50.4%) in
the vulnerable plaque group and 65 (49.6%) in the stable plaque group. The final
Lasso-logistic regression model included 4 features:IL-6, TSH, TSHI, and TT4RI;
AIC= 161.6376, BIC= 176.0136, both lower than the all-variable logistic
regression model (AIC= 181.0881, BIC= 261.5936), and the BIC was smaller than
the stepwise logistic regression model (AIC= 154.024, BIC= 179.9007). Finally,
the prediction model was constructed based on the variables screened by the
Lasso regression, and the model had favorable discrimination and calibration.
Conclusions: The noninvasive prediction model based on IL-6 and TSHI is a
quantitative tool for predicting vulnerable carotid plaques. It has high
diagnostic efficacy and is worth popularizing and applying.
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carotid artery stenosis, thyroid hormone sensitivity, stability of plaques, lasso-logistic
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1 Introduction

Carotid artery stenosis is a primary risk factor for ischemic stroke, a condition

responsible for a large proportion of all stroke cases. This stenosis primarily results

from atherosclerosis, where narrowing of the vessel lumen due to atherosclerotic

plaques is the main characteristic (1). Clinically, carotid artery stenosis often presents

with cerebral ischemia and stroke, contributing to a growing global stroke burden as

stroke incidence shifts toward younger populations (2). Consequently, the evaluation
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and treatment of carotid artery disease have been central topics in

cardiovascular and neurological research.

While stenosis severity has traditionally guided risk assessment,

research indicates that the characteristics of carotid plaques—such

as volume, composition, and stability—are critical in determining

stroke risk. Indeed, carotid stenosis alone may not fully predict

stroke occurrence (3). Thus, identifying vulnerable, instability-prone

plaques is crucial for stroke prevention and for assessing

cardiovascular event risk (4). Identifying and managing these

plaques can aid in clinical decision-making, especially for patients

undergoing carotid endarterectomy (CEA), where plaque stability

impacts postoperative outcomes and risks (5). Vulnerable plaques,

marked by inflammation and intraplaque neovascularization, have

been associated with adverse events post-surgery, including

thrombosis, restenosis, and even stroke (6–8).

Traditional imagingmethodshelpassessplaque size and locationbut

have limitations in predicting rupture risk (9, 10). Given that vulnerable

plaques exhibit distinct histopathologic features—such as lipid-rich

necrotic cores, a fragile fibrous cap, and inflammatory activity (11–13)

—biomarker-based assessments are increasingly considered as

adjunctive tools (14). Research into blood-based biomarkers, including

high-sensitivity C-reactive protein and interleukins, has shown

associations with cardiovascular events and may help in assessing

plaque stability (15–17). Thyroid hormones have been suggested to

influence atherosclerotic plaque stability through mechanisms

involving lipid metabolism, inflammation, oxidative stress, and

endothelial function, yet their role remains under debate. Indicators

such as TSH and FT4, reflecting overall thyroid hormone levels, have

been linked to an increased risk of atherosclerosis, particularly when

TSH is high or FT4 is low (18, 19). However, given the complexity of

the hypothalamic-pituitary-thyroid axis, single serum markers may

not capture thyroid function adequately. Composite thyroid hormone

sensitivity indices offer a more comprehensive approach to

understanding the relationship between thyroid function and carotid

atherosclerotic plaque stability, though their specific relevance to

plaque vulnerability requires further study.

Considering the potential collinearity among thyroid hormone

indices, lipid metabolism markers, and serum inflammation

indicators, we chose to use Lasso regression for variable selection

and model development. This approach helps mitigate

multicollinearity, allowing for the identification of the most

relevant predictors and reducing overfitting risk.

Therefore, our study aims to develop and validate a clinical

predictive model centered on serologic markers for assessing

carotid plaque stability. We envision this model as a non-

invasive, cost-effective adjunct to existing imaging-based

diagnostic approaches, providing clinicians with a practical risk

stratification tool for managing carotid artery disease.
2 Materials and methods

2.1 Patients

This single-center retrospective study consisted of patients

from the Department of Vascular Surgery in Nanjing Drum
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Tower Hospital between 2019 and 2023 who underwent carotid

endarterectomy. Inclusion criteria were as follows: Age ≥45
years, with no gender restriction. Diagnosis of carotid stenosis

confirmed by carotid ultrasound examination within the past 3

months. Underwent carotid endarterectomy at our hospital and

isolated carotid plaques were obtained. Informed about the study

details, and signed the informed consent form. Exclusion criteria

were the presence of hematologic systemic diseases or malignant

tumors. Presence of other cardiovascular diseases (e.g., severe

coronary artery disease, valvular heart disease, atrial fibrillation).

History of abnormal thyroid function or thyroid surgery. Use of

thyroid hormone replacement therapy or antithyroid

medications, such as methimazole or propylthiouracil. Presence

of chronic kidney disease, hepatic, or other organ insufficiency.

Presence of autoimmune diseases (e.g., Sjögren’s syndrome,

Takayasu arteritis, ulcerative colitis, Crohn’s disease). Patients

with incomplete e s sential clinical data, such as preoperative age

and relevant laboratory indicators, were excluded from the study.

General information of the patients and preoperative

examination results were collected for this study, which was

approved by the Ethics Committee of Nanjing Drum Tower

Hospital (No. 2024-866-01).
2.2 Detection methods and observational
indexes

2.2.1 Basic data
Gender, age, body mass index (BMI), history of hypertension,

diabetes mellitus, and stroke were documented for each study

subject upon hospitalization.

2.2.2 Laboratory indices
Routine preoperative serum biochemistry data were collected

upon hospitalization, including albumin, glucose, triglycerides,

total cholesterol, C-reactive protein, hemoglobin, procalcitonin,

IL-6, D-dimer, thyroid hormones, and others.

2.2.3 Plaque stability assessment
Histological characteristics of vulnerable plaques include active

inflammation, large necrotic cores, thin fibrous caps, and

intraplaque hemorrhage (11–13). Macrophages not only initiate

inflammation in ruptured plaques but also degrade the

extracellular matrix through protease secretion, leading to fibrous

cap thinning and fracturing. Reduced smooth muscle cells

diminish extracellular matrix synthesis and collagen repair,

resulting in decreased fibrous cap thickness. Vulnerable plaques

were assessed using a cumulative score based on intraplaque

macrophages, collagen fibers, contractile smooth muscle cells,

and intraplaque hemorrhage (20). Plaque processing involved:

immunohistochemistry for CD68 and α-SMA to label

macrophages and smooth muscle cells, respectively, quantified

using ImageJ; Masson staining to detect collagen fiber content,

also quantified with ImageJ; Prussian blue staining to evaluate

intraplaque hemorrhage. Specific scoring criteria included:

macrophage infiltration (none/slight = 0 points, moderate/severe
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= 1 point), collagen fiber quantity (moderate/majority = 0 points,

none/small amount = 1 point), smooth muscle cell presence

(moderate/majority = 0 points, none/small amount = 1 point),

and intraplaque hemorrhage (absent = 0 points, present = 1

point). Higher scores indicate poorer plaque stability, with scores

≤2 classified as stable plaques and >2 as vulnerable plaques

(Supplementary Figure S1).

2.2.4 Calculation of thyroid hormone sensitivity-
related indices

Serum concentrations of TSH, FT3, and FT4 were measured

using a fully automated immunochemiluminescence kit. The

reference ranges for TSH, FT3, and FT4 were 0.27–4.2 mIU/L,

3.1–6.8 pmol/L, and 12–22 pmol/L. Indices reflecting central

thyroid hormone sensitivity include TSHI, TT4RI, and TFQI.

TSHI is a simple index proposed by Jostel et al. for assessing

pituitary sensitivity to thyroid hormones. Maximum pituitary

TSH reserve is assessed by extrapolating the TSH feedback

inhibition from the measured FT4 concentration to the

standardized uninhibited TSH, assuming the FT4 value to be 0

(21, 22). The TT4RI index, first proposed by Yagi et al., assesses

pituitary sensitivity to thyroid hormones (23). TFQI, a quartile-

based thyroid feedback index, was introduced by Laclaustra’s

team. It quantifies the deviation of the pituitary’s response to the

inhibitory effects of thyroid hormones in a continuous manner,

showing the deviation of TSH measurements from actual values.

This index is advantageous as it remains relatively stable even in

the presence of abnormal thyroid function (24, 25). TSHI,

TT4RI, and TFQI reflect central sensitivity to thyroid hormones,

with higher values indicating lower central sensitivity. The

calculated values based on existing studies are presented in

Supplementary Table S2.

2.2.5 Lasso-logistic modeling fundamentals
In this study, we employ the Least Absolute Shrinkage and

Selection Operator (Lasso) regression method. The Lasso method

falls under the umbrella of coefficient regularization techniques,

leveraging penalization within the context of least squares

regression (26). Let (Xi, yi), i = 1, …, n represent the observed

values from n independent samples, where Xi = (Xi.1, …, Xi, j)

denotes the jth attribute value of the ith individual, and yi ∈ {0,

1} indicates the outcome categories, with 0 denoting a stable

carotid plaque and 1 denoting a vulnerable carotid plaque. The

coefficient estimation is expressed as follows:

b̂LASSO ¼ argmin
b

Xn
i¼1

(
yi

�
b0 þ

XJ

j¼1

xi,jbj

�

�log

�
1þ exp

�
b0 þ

XJ

j¼1

xi,jbj

���
þ l

XJ

j¼1

jbjj

where b̂LASSO represents the coefficient estimate of the Lasso-

logistic regression model. λ serves as the regularization

parameter, controlling the impact of the penalty term through its

adjustment. The choice of λ is critical, influencing the extent of
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compression; larger values of λ lead to increased sparsity in

parameter estimation, reducing non-zero parameter independent

variables and enhancing variable selection within the model. The

most commonly used method for λ estimation is 10-fold cross-

validation, which selects the λ associated with the smallest error

as the optimal tuning parameter.

2.2.6 Model fitting evaluation
The most fundamental method of evaluating model

performance involves the direct calculation of metrics such as

average absolute error, average variance, coefficient of

determination (R²), and adjusted coefficient of determination

(R²_adj), among others, selecting the model with the smallest

error and highest correlation. Dichotomous classification models

are typically evaluated using Receiver Operating Characteristic

(ROC) curves and the Area Under the Curve (AUC), where a

larger AUC indicates better classification performance. However,

these evaluation methods share a common limitation in that they

only assess model performance, irrespective of model complexity.

In contrast, information criteria adeptly balance model complexity

and performance, scoring models using probabilistic statistics.

2.2.6.1 The Akaike information criterion (AIC)
AIC assesses the goodness of fit of a statistical model, based on

entropy, which not only considers the complexity of the

estimated model but also evaluates the model’s fit to the data

(27). Generally, a larger sample size results in a smaller AIC

value, indicating better model fit. Therefore, models with the

smallest AIC value are preferred during the fitting process.

2.2.6.2 The Bayesian information criterion (BIC)
BIC developed on Bayesian probability principles, aims to estimate

partially unknown states using subjective probabilities and correct

occurrence probabilities using Bayesian formulas (28). It then makes

optimal decisions based on expected values and corrected

probabilities. Similar to AIC, BIC maximizes likelihood function

estimation, with smaller BIC values indicating better model fit. In

contrast to BIC, AIC imposes a smaller penalty on model parameters

and tends to select more complex models, while BIC imposes stricter

penalties and favors simpler models with fewer parameters.

Both AIC and BIC have strengths and weaknesses in

evaluating model effects; therefore, this study combines both to

comprehensively assess model fitting. To compare variable

selection using the Lasso method, this study applies traditional

logistic regression, stepwise logistic regression, and Lasso-

logistic regression models, evaluating their fitting effects using

AIC and BIC.

2.2.7 Statistical analyses
All statistical analyses were performed using the R-4.3.0

software. Quantitative data that conformed to normal

distribution were expressed as Mean ± SD and independent

samples t-test was used for comparison between groups;

quantitative data that did not conform to normal distribution

were expressed as M (P25, P75), and Mann-Whitney U-test was

used for comparison between groups; and categorical data were
frontiersin.org
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expressed as the number of cases (percentage), and Pearson’s chi-

square test was used for comparison between groups. A Lasso-

logistic regression model was developed using the “glmnet”

software package to explore the factors associated with vulnerable

plaques, and the selection of the reconciliation parameter λ was

performed using cross-validation, which was compared with

all-variable logistic regression (univariate followed by multivariate,

with multifactorial included at p < 0.2) and stepwise logistic

regression (backward, conditional, α in = 0.05, α out = 0.10). Akaike

information criterion (AIC) and Bayesian information criterion

(BIC) were used to evaluate the fit goodness of the model. The

receiver operating characteristic curve (ROC) curve was used to

analyze the predictive value of relevant clinical variables on carotid

plaque stability. The area under the curve (AUC) and calibration

curve were used to assess the differentiation and accuracy of the

prediction model. Nomograms of the Lasso-logistic regression

model and calibration curves were plotted using the “rms” package.

The test level was taken as α = 0.05 (two-side).
FIGURE 1

Flow chart of study design.
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3 Results

3.1 Baseline data of enrolled patients

A total of 131 patients who underwent carotid endarterectomy

were included in this study, including 107 (81.68%) males and 24

(18.32%) females, as illustrated in Figure 1. Their average age was

(67.61 ± 9.16) years. According to the plaque vulnerability score, 66

cases (50.38%) were vulnerable plaques and 65 cases (49.62%) were

stable plaques (Supplementary Table S3). Comparing the

vulnerable plaque group with the stable plaque group, there were

no statistically significant differences in gender, age, BMI, smoking,

history of hypertension, history of diabetes, history of stroke,

albumin, glucose, triglycerides, total cholesterol, H-cholesterol,

L-cholesterol, Apo AI, Apo B, C-reactive protein, hemoglobin,

procalcitonin, D-dimer, FT3, and FT4 (p > 0.05). There was a

statistical difference between the two groups in terms of alcohol

consumption history. Compared with patients in the carotid plaque
frontiersin.org
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stabilization group, patients in the plaque vulnerability group had

higher IL-6, TSH, TSHI, TT4RI, and TFQI, and the difference was

statistically significant (P < 0.05) (Table 1).
3.2 Factors associated with plaque stability:
univariate logistic regression analysis

Univariate analysis revealed that the vulnerable plaque

group had higher levels of TSH, TSHI, TT4RI, and TFQI. The

ORs for these variables were as follows: TSH, OR = 2.05 (95%

CI: 1.44–2.91); TSHI, OR = 4.41 (95% CI: 2.05–9.48); TT4RI,

OR = 1.05 (95% CI: 1.03–1.07); and TFQI, OR = 6.57 (95% CI:

2.10–20.57). All associations were statistically significant, with

P-values < 0.05 (Table 2).
TABLE 1 Baseline data of 131 patients.

Features Total
(n= 131)

Stable
(n = 65)

Gender (n, %)

Female 24 (18.32) 14 (21.54)

Male 107 (81.68) 51 (78.46)

Age (years) 67.61 ± 9.16 66.17 ± 8.92

BMI (kg/m2) 23.98 ± 3.22 24.18 ± 3.03

Smoking history (n, %)

No 79 (60.31) 40 (61.54)

Yes 52 (39.69) 25 (38.46)

Alcohol history (n, %)

No 104 (79.39) 47 (72.31)

Yes 27 (20.61) 18 (27.69)

Hypertension (n, %)

No 33 (25.19) 17 (26.15)

Yes 98 (74.81) 48 (73.85)

Type 2 diabetes (n, %)

No 87 (66.41) 45 (69.23)

Yes 44 (33.59) 20 (30.77)

Stroke (n, %)

No 63 (48.09) 36 (55.38)

Yes 68 (51.91) 29 (44.62)

Alb (g/L) 39.70 (38.50, 41.20) 39.70 (39.20, 41.30)

Glu (mmol/L) 4.99 (4.42, 5.85) 5.08 (4.60, 5.87)

TG (mmol/L) 1.17 (0.81, 1.67) 1.23 (0.84, 1.68)

TC (mmol/L) 3.69 (3.17, 4.22) 3.72 (3.19, 4.22)

HDL (mmol/L) 1.10 (0.90, 1.33) 1.04 (0.88, 1.32)

LDL (mmol/L) 1.90 (1.60, 2.54) 1.93 (1.62, 2.41)

Apo AⅠ (g/L) 1.07 (0.93, 1.22) 1.05 (0.93, 1.22)

Apo B (g/L) 0.62 (0.56, 0.79) 0.62 (0.57, 0.77)

CRP (mg/L) 3.60 (2.50, 5.45) 3.60 (2.70, 5.20)

Hb (g/L) 134.00 (124.00,145.50) 134.00 (122.00, 145.0

PCT (ng/ml) 0.05 (0.03, 0.17) 0.04 (0.03, 0.13)

IL-6 (pg/ml) 6.90 (3.60, 15.32) 5.70 (2.41, 13.65)

D-dimer (mg/L) 0.33 (0.21, 0.58) 0.31 (0.18, 0.51)

TSH (mIU/L) 2.25 (1.53, 3.42) 1.74 (1.38, 2.40)

FT3 (pmol/L) 4.64 (4.28, 4.92) 4.64 (4.41, 4.92)

FT4 (pmol/L) 16.10 (14.75, 17.60) 16.30 (15.00, 17.50)

TSHI 2.95 (2.65, 3.33) 2.75 (2.39, 3.03)

TT4RI 35.36 (25.38, 52.61) 28.39 (23.43, 39.02)

TFQI 0.02 (−0.21, 0.24) −0.09 (−0.27, 0.05)

Abbreviations are provided in Supplementary Materials.

The bold values indicate P < 0.05.
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3.3 Variable selection and results in
multivariate logistic regression

All-variable logistic regression and stepwise logistic regression

(backward, conditional, α in = 0.05, α out = 0.10) were established.

The stability of plaque served as dependent variable. Statistically

different correlations in the univariate analysis served as the

independent variables; Lasso-logistic regression was established

utilizing the relevant factors selected by Lasso regression.
3.3.1 Correlation analysis and multiple covariance
diagnosis among independent variables

Considering the correlation among different independent

variables, the Pearson correlation coefficient (29) was chosen to
Vulnerable
(n = 66)

Statistics P-value

χ² = 0.89 0.345

10 (15.15)

56 (84.85)

69.03 ± 9.23 t =−1.80 0.074

23.78 ± 3.40 t = 0.71 0.480

χ² = 0.08 0.775

39 (59.09)

27 (40.91)

χ² = 3.95 0.047

57 (86.36)

9 (13.64)

χ² = 0.06 0.801

16 (24.24)

50 (75.76)

χ² = 0.46 0.498

42 (63.64)

24 (36.36)

χ² = 2.75 0.097

27 (40.91)

39 (59.09)

39.60 (38.02, 41.08) Z =−1.08 0.279

4.80 (4.34, 5.71) Z =−1.40 0.162

1.15 (0.78, 1.58) Z =−0.87 0.384

3.65 (3.04, 4.21) Z =−0.24 0.813

1.15 (0.97, 1.35) Z =−1.04 0.297

1.88 (1.54, 2.63) Z =−0.12 0.903

1.10 (0.92, 1.23) Z =−0.50 0.616

0.62 (0.54, 0.79) Z =−0.16 0.876

3.50 (2.50, 5.70) Z =−0.03 0.978

0) 134.00 (124.25, 145.75) Z =−0.30 0.763

0.05 (0.03, 0.19) Z =−1.21 0.227

9.30 (4.41, 15.96) Z =−2.23 0.026

0.35 (0.25, 0.63) Z =−1.11 0.266

2.91 (2.04, 3.63) Z =−4.24 <.001

4.62 (4.21, 4.97) Z =−0.62 0.533

15.90 (14.07, 17.95) Z =−0.24 0.813

3.20 (2.85, 3.45) Z =−4.49 <.001

45.33 (33.68, 56.30) Z =−4.52 <.001

0.12 (−0.11, 0.35) Z =−3.45 <.001
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TABLE 2 Univariate logistic regression analysis of factors associated with
plaque stability in patients with carotid artery stenosis.

Features Β S.E Z P OR (95% CI)

Gender (n, %)
Female 1.00 (Reference)

Male 0.43 0.46 0.94 0.347 1.54 (0.63–3.77)

Age (years) 0.04 0.02 1.78 0.076 1.04 (1.00–1.08)

BMI (kg/m2) −0.04 0.05 −0.71 0.477 0.96 (0.86–1.07)

Smoking history (n, %)
No 1.00 (Reference)

Yes 0.10 0.36 0.29 0.775 1.11 (0.55–2.23)

Alcohol history (n, %)
No 1.00 (Reference)

Yes −0.89 0.45 −1.95 0.051 0.41 (0.17–1.00)

Hypertension (n, %)
No 1.00 (Reference)

Yes 0.10 0.40 0.25 0.801 1.11 (0.50–2.44)

Type 2 diabetes (n, %)
No 1.00 (Reference)

Yes 0.25 0.37 0.68 0.498 1.29 (0.62–2.66)

Stroke (n, %)
No 1.00 (Reference)

Yes 0.58 0.35 1.65 0.099 1.79 (0.90–3.58)

Alb (g/L) −0.08 0.07 −1.15 0.252 0.93 (0.81–1.06)

Glu (mmol/L) 0.06 0.09 0.67 0.502 1.07 (0.89–1.28)

TG (mmol/L) −0.15 0.22 −0.68 0.499 0.86 (0.56–1.33)

TC (mmol/L) 0.08 0.16 0.51 0.610 1.09 (0.79–1.50)

HDL (mmol/L) 0.36 0.58 0.62 0.535 1.43 (0.46–4.43)

LDL (mmol/L) 0.13 0.19 0.66 0.512 1.14 (0.78–1.66)

Apo AⅠ (g/L) 0.10 0.80 0.13 0.897 1.11 (0.23–5.32)

Apo B (g/L) 0.63 0.65 0.98 0.328 1.88 (0.53–6.71)

CRP (mg/L) 0.04 0.03 1.41 0.158 1.04 (0.99–1.10)

Hb (g/L) 0.00 0.01 0.39 0.694 1.00 (0.98–1.03)

PCT (ng/ml) 1.03 0.93 1.11 0.268 2.80 (0.45–17.36)

IL-6 (pg/ml) 0.03 0.02 1.77 0.077 1.03 (1.00–1.06)

D-dimer (mg/L) 0.32 0.29 1.07 0.283 1.37 (0.77–2.44)

TSH (mIU/L) 0.72 0.18 4.01 <.001 2.05 (1.44–2.91)

FT3 (pmol/L) −0.10 0.29 −0.36 0.717 0.90 (0.51–1.58)

FT4 (pmol/L) −0.02 0.08 −0.21 0.835 0.98 (0.85–1.14)

TSHI 1.48 0.39 3.79 <.001 4.41 (2.05–9.48)

TT4RI 0.05 0.01 4.06 <.001 1.05 (1.03–1.07)

TFQI 1.88 0.58 3.23 0.001 6.57 (2.10–20.57)

B, beta coefficient; S.E, standard error of the mean; CI, confidence interval; OR, odds ratio;
CI, confidence interval.
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analyze the correlation among all quantitative independent variables,

and finally, a total of 6 items (LDL, Apo B, Apo AI, TSHI, TT4RI,

TFQI) showed covariance problems. (Figure 2) Multiple

covariance diagnosis was performed for all variables using variance

inflation factor as well as tolerance. If VIF value >10 and tolerance

<0.1 were used as criteria for covariance (30), a total of 9 items

(TC, HDL, LDL, Apo B, TSH, FT4, TSHI, TT4RI, TFQI) showed

severe covariance (Supplementary Table S4).
3.3.2 Results of lasso regression analysis
Lasso regression analysis was performed on all independent

variables with ten-fold cross-validation to screen the most

representative predictors of vulnerable plaques, and the results
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are shown in Figures 3, 4. The location of the log(λ) parameter

in this study was chosen to be the dashed line leaning to the left

in Figure 3, i.e., the value of λ at which the model error is the

smallest. Then the solution paths of Lasso regression coefficients

containing 27 independent variables are plotted according to the

optimal λ values screened in Figure 3, as shown in Figure 4, and

four independent variables are finally screened out.

The variation of the independent variables in Lasso regression

with the value of λ is shown in Figure 3: Figure 3 shows the

relationship between log(λ) and Lasso regression coefficients,

with the vertical coordinate is the model regression coefficients,

the lower horizontal coordinate being log(λ), and the upper

horizontal coordinate being the number of non-zero coefficients

independent variables in the model corresponding to different

log(λ). As λ increases, the degree of compression of each

independent variable coefficient estimate increases, and the

independent variable coefficients that have less impact on the

model prediction results are compressed to 0, and the number of

independent variables gradually decreases; Figure 4 shows the

relationship between log(λ) and the corresponding number of

independent variables, with the vertical coordinate being the

model mean square error, the lower horizontal coordinate being

log(λ), and the upper horizontal coordinate being the non-zero

coefficients in the model of the independent variables

corresponding to the different log(λ) Number. The left dotted

line indicates lambda.min, which is the value of λ when the

model mean square error is at its minimum, at which time the

number of variables in the model is four. The right dotted line

indicates lambda.1se, which is the value of λ when the model

mean square error is at one standard error, at which time the

number of variables in the model is two. In this study, we chose

λ = 0.0617 as the optimal model, and then the independent

variables screened by the Lasso regression were: IL-6, TSH,

TSHI, and TT4RI, with corresponding beta values of −0.01,
−0.16, −0.28, and −0.01, respectively.

3.3.3 Vulnerable plaque risk factor analysis results
and model evaluation

In this study, Lasso-logistic regression was performed and

compared with all-variable logistic regression as well as stepwise

logistic regression, and the results are shown in Table 3. IL-6

showed statistically significant (P < 0.05) in all of three models.

Among them, the Lasso-logistic regression model AIC = 161.6376

and BIC = 176.0136 were lower than the all-variable logistic

regression (AIC = 181.0881 BIC = 261.5936), and the BIC was

smaller than the stepwise logistic regression (AIC = 154.024 BIC

= 179.9007), suggesting that the Lasso-logistic regression model

has a better model fitting performance.

In addition, based on the four independent variables screened

by Lasso, several prediction models were fitted with carotid

plaque stability (stable plaque group or vulnerable plaque

group) as the dependent variable, as shown in Supplementary

Figure S2. Prediction models with favorable differentiation were

screened based on the AUC > 0.75, yielding model 6, 7, 12, 13,

and 15, and IL6 + TSHI was ultimately selected to construct the

clinical prediction model. Reason: Model 6 includes only two
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FIGURE 2

Heat map of correlation between quantitative independent variables. *Denotes statistically significant correlations with p < 0.05.
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independent variables, namely, variables IL6 and TSHI, relative to

other models, so the model structure is relatively simple, easier to

interpret and understand, and easier to apply in clinical practice.

Fewer variables reduced the complexity of data collection and

processing, as well as the risk of potential multicollinearity and

overfitting in the models. According to above reasons, model 6

was finally selected to construct the clinical prediction model.

The optimal threshold of the model is 0.46, with a specificity of

0.72 and a sensitivity of 0.85 (Supplementary Table S5).

Figure 5 shows the calibration curve of the Lasso-logistic

prediction model, where the horizontal coordinate indicates the

observed probability and the vertical coordinate indicates the

predicted probability, the long dashed line in the figure indicates

the ideal state, the short dashed line Apparent is the risk

probability based on the calculation of this model once in

agreement with the actual probability, and the solid line

Bias-corrected refers to the data of the constructed model for the

self-lifting weight sampling Post-calibration curves. Bootstrap

resampling refers to repeatedly (the number of times is usually

100 or 1,000) randomly selecting a sample of n observations
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from the original data evaluating the calibration of each sample,

and then calculating the average value. Compared with

calculating the risk probability at one time, this average risk

probability based on a random sample better reflects whether the

model is stable or not, and also avoids data with model

overfitting. Mean Absolute Error (MAE) of the calibration

curve is 0.073.

Figure 6 shows the decision curve analysis (DCA) of the Lasso-

logistic prediction model. The final DCA curve showed that if the

threshold probability of patients or clinicians is between 25% and

65%, using this model based on our nomogram to predict

vulnerable plaque adds more benefit than either screen-none or

screen-all strategies.

Figure 7 shows a nomogram of the Lasso-logistic regression

prediction model, visualizing the predicted score of vulnerable

carotid plaques. For example, a carotid artery stenosis

patient with an IL-6 level of 20 pg/ml and a TSHI level of

3 corresponding to a total score of 100 has a probability

predictive value of approximately 0.85 for vulnerable

carotid plaques.
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FIGURE 3

Cross-validation plot of lasso regression.

FIGURE 4

Path diagram of lasso regression variable selection.
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4 Discussion

The occurrence of vulnerable plaques in patients with carotid

artery stenosis is influenced by a combination of different factors.
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In this study, we explored the correlation between carotid plaque

stability and a series of clinical factors, ultimately found that IL-6

as well as the TSHI had a certain predictive efficacy for carotid

plaque stability. The study aimed to compare the disease
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TABLE 3 Comparison of three models for factors influencing the vulnerable carotid plaque.

Features All-variable logistic
regression model

Stepwise logistic regression
model

Lasso-logistic regression
model

P OR (95%CI) P OR (95%CI) P OR (95%CI)

Gender (n, %)
Female

Male

Age (years) 0.441 1.02 (0.97–1.07)

BMI (kg/m2)

Smoking history (n, %)
No

Yes 0.014 3.83 (1.32–11.13)

Alcohol history (n, %)
No

Yes 0.377 0.62 (0.22–1.79) 0.023 0.218 (0.06–0.81)

Hypertension (n, %)
No

Yes

Type 2 diabetes (n, %)
No

Yes

Stroke (n, %)
No

Yes 0.259 1.59 (0.71–3.54)

Alb (g/L)

Glu (mmol/L)

TG (mmol/L)

TC (mmol/L) 0.090 0.22 (0.04–1.26)

HDL (mmol/L) 0.015 20.15 (1.81–224.86)

LDL (mmol/L)

Apo AⅠ (g/L)

Apo B (g/L) 0.053 1,658.12 (0.91–3,010,764.95)

CRP (mg/L) 0.308 1.06 (0.95–1.17) 0.267 1.06 (0.95–1.18)

Hb (g/L)

PCT (ng/ml)

IL−6 (pg/ml) 0.015 1.05 (1.01–1.10) 0.004 1.07 (1.02–1.11) 0.008 1.05 (1.01–1.10)

D-dimer (mg/L)

TSH (mIU/L) 0.758 1.33 (0.21–8.30) 0.287 2.04 (0.55–7.62)

FT3 (pmol/L)

FT4 (pmol/L)

TSHI 0.167 7.92 (0.42–148.70) <.001 6.83 (2.78–16.80) 0.213 5.60 (0.37–84.26)

TT4RI 0.893 0.99 (0.83–1.18) 0.606 0.96 (0.84–1.11)

TFQI 0.590 0.38 (0.01–12.76)

AIC 166.10 154.02 161.64

BIC 194.85 179.90 176.01
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characteristics of stable and vulnerable plaque populations in a

single-center retrospective study, to find the independent risk

factors of vulnerable carotid plaque. Risk factors would be used

to establish a noninvasive diagnostic model for vulnerable plaque

based on Lasso-logistic regression. This model would provide a

new reference tool for the clinical diagnosis of vulnerable plaque.

The results of this study suggest that IL-6 is an independent

risk factor for vulnerable carotid plaque, which is consistent with

previous correlative studies in coronary arteries (31). Similar

studies have also shown that inflammatory markers such as IL-6,

TNF-α, and C-reactive protein can predict vulnerable carotid

plaque (32). Specific mechanisms may be activation of
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inflammation, vascular endothelial dysfunction, oxidative stress,

Th17 cell differentiation, JAK/STAT pathway activation, and

altered lipid metabolism. Specifically, IL-6 is secreted as a

circulating cytokine in a wide range of cells (including

macrophages, monocytes, fibroblasts, and endothelial cells) and

serves as a potent inducer and proinflammatory factor for Th17

cells.IL-6 signaling induces a downstream inflammatory response

leading to an elevation of acute-phase reactants, such as high-

sensitivity C-reactive protein, fibrinogen, etc., and therefore

contributes to an increase in atherosclerosis (33). In addition, IL-

6 activates chronic inflammation through the JAK/STAT pathway

and increases the expression of adhesion molecules in the
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FIGURE 5

Calibration curve of lasso-logistic regression prediction model.
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vasculature, leading to endothelial dysfunction, monocyte/

macrophage recruitment and smooth muscle cell migration.

These processes lead to increased lipid deposition, plaque

development, and plaque instability, and IL-6 exacerbates the

atherosclerotic process by up-regulating RUNX2 and RANKL/

RANK gene expression, which promotes the differentiation of

vascular smooth muscle cells to osteoblasts, which in turn causes

the deposition of calcium-phosphorus complexes (34).

Thyroid hormone sensitivity indexes in this study including

TSHI, TT4RI, and TFQI are used to assess the sensitivity of

thyroid hormones to feedback regulation of the hypothalamic-

pituitary-thyroid axis. They are more stable than the single

indexes such as TSH, FT3, and FT4. The results of univariate

logistic regression analysis in this study showed that the

vulnerable plaque group had higher levels of TSHI, TT4RI, and

TFQI, suggesting that reduced central sensitivity to thyroid

hormones is associated with vulnerable plaques. The interaction

between inflammation and thyroid hormone sensitivity plays a

critical role in calcium and phosphorus metabolism, which may

contribute to atherosclerosis development. Inflammatory

cytokines like IL-6 can disrupt thyroid hormone activity, altering

calcium homeostasis by affecting bone resorption and vascular

calcification (35). In our study, four independent variables, IL-6,

TSH, TSHI, and TT4RI, were finally screened based on Lasso

regression, this further supports the aforementioned viewpoint

from another perspective. Although the statistical significance of

the thyroid-related sensitivity indices was not less than 0.05, they

were still retained after screening by Lasso regression, because

statistical significance (e.g., p-value) and clinical relevance were

not always consistent and they were considered to contribute to

the final model. The correlation indexes were also suggested to

be associated with the final outcome in univariate logistic

regression. Based on the conclusions of previous studies, this

study finally chose IL-6 and TSHI as predictors to construct a
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simple clinical prediction model of vulnerable carotid plaque.

Related studies have shown that thyroid dysfunction can have

profound effects on cardiac metabolism and hemodynamics, with

both subclinical hyperthyroidism and hypothyroidism associated

with increased systolic and diastolic blood pressure, and thus

increased cardiovascular risk (36). A more evidence-graded study

using a Mendelian randomization methodology approach to

assess the relationship between thyroid function and

atherosclerosis found that lower free thyroxine (FT4) levels in the

normal range were significantly associated with increased carotid

intima-media thickness (CIMT). This study suggests that there

may be a U-shaped relationship between FT4 levels and CIMT,

suggesting that thyroid hormone supplementation in hypothyroid

patients may help to reduce CIMT, thereby reducing the risk of

carotid atherosclerosis. This study emphasizes the importance of

monitoring thyroid function for cardiovascular risk assessment

and implies that thyroid hormone supplementation therapy may

play a positive role in mitigating atherosclerosis risk (37). Our

study found that reduced thyroid hormone sensitivity,

particularly central resistance, may exacerbate progress of

atherosclerosis by linking metabolic dysregulation to plaque

vulnerability. Previous studies have shown that gender factors

and hypertension are also related to carotid plaque stability (38),

while gender and hypertension were not the influencing factors

of plaque stability in this study, and we hypothesized that it

might be related to the small sample size included in this study.

Alcohol consumption was found to be significantly different

between the stable and vulnerable plaque groups in the baseline

comparison (p = 0.047). However, this association did not reach

statistical significance in the univariate logistic regression analysis

(p = 0.051). After adjusting for other variables in multivariate

analysis, alcohol consumption demonstrated a different effect.

This discrepancy highlights the influence of different statistical

methods, as the chi-square test assesses group differences while
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FIGURE 6

Decision curve analysis of lasso-logistic regression prediction model.
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logistic regression evaluates the independent effect of variables.

Additionally, the relatively small sample size may have limited

the statistical power of the logistic regression, leading to

borderline significance. Moreover, alcohol consumption’s

potential impact on the hypothalamic-pituitary-thyroid axis, as

previously reported, may contribute to the observed association
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between TSHI and plaque vulnerability (39). These findings

emphasize the need for larger cohort studies to further explore

the role of alcohol consumption in carotid plaque stability.

Several recent studies have investigated serum markers to

predict carotid plaque vulnerability, identifying specific

biomarkers that show promise for clinical application. For
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FIGURE 7

Nomogram of lasso-logistic regression prediction model.
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instance, a study examined the use of MMP-9, LOX-1, and YKL-

40. It found that the combined use of these three markers

achieved a high diagnostic accuracy (ROC AUC = 0.85) for

identifying vulnerable plaques (16). Another study demonstrated

that combining miR-124, IL-1β, and TNF-α achieved an AUC of

0.85, with a sensitivity of 0.83 and specificity of 0.79 (40). Our

model using IL-6 and TSHI achieved an AUC of 0.77, accuracy

of 0.79, sensitivity of 0.85, and specificity of 0.72. Although our

model’s AUC is slightly lower, but its high sensitivity

demonstrates potential for identifying vulnerable plaques in

clinical applications.

In this study, we developed a sample to operate and visualize

column-line graph prediction model based on the Lasso-logistic

regression model. The high predictive efficacy of the column-line

graph model was confirmed by ROC curves. It is expected that the

Lasso-logistic regression-based column-line diagram model developed

in this study has a high clinical potential for predicting vulnerable

carotid plaques. Of course, this study has some limitations. Firstly,

this study is a retrospective study, and the patients all suffered from

carotid artery stenosis and underwent carotid endarterectomy, which

may have some selective bias. Secondly, despite the rigorous control

for common comorbidities such as hypertension, diabetes, and

stroke in our study, the retrospective nature of our study posed

certain limitations. Specifically, other less common comorbid

conditions and medication use (antiplatelet and lipid-lowering

therapies) were not accounted for, which may have introduced

unmeasured confounding factors. Future studies should consider a

broader range of comorbidities and medication exposures to enhance

the robustness of the findings. Once again, this study was a single-

center investigation with a small sample size and a limited number

of female participants, which may have introduced gender bias and

affected the statistical significance of the results. Larger, prospective

studies are needed in the future to achieve gender balance, provide

more comprehensive insights into the studied population, and

validate the findings.

Histologic classification is the gold standard for evaluating

atherosclerotic plaques (41), so this study took advantage of the ability

to obtain a certain amount of carotid plaque specimens and used a
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pathologic method to assess plaque stability. In order to give more

accurate results of carotid plaque stability compared with imaging

methods. However, considering that stable and vulnerable plaques

were only based on pathological sections and immunohistochemical

results, there was a subjective nature of manual scoring, and

quantitative analysis was not used. Subsequent studies would be better

to use quantitative analysis to accurately assess plaque stability

through more specific metrics such as, for example, intraplaque

hemorrhage, inflammation, and lipid necrotic cores.

In conclusion, the present study utilized IL-6 and TSHI to

establish a column-line graph prediction model based on Lasso-

logistic regression as a quantitative tool for the clinical diagnosis

of vulnerable plaques, which has high diagnostic efficacy and

benefit, and is worthy of promotion and application.
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