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Background and aims: Ultrasound derived carotid intima-media thickness
(cIMT) is valuable for cardiovascular risk stratification. We assessed the relative
importance of traditional atherosclerosis risk factors and plasma proteins in
predicting cIMT measured nearly a decade later.
Method: We examined 6,136 UK Biobank participants with 1,461 proteins
profiled using the proximity extension assay applied to their baseline blood
draw who subsequently underwent a cIMT measurement. We implemented
linear regression, stepwise Akaike Information Criterion-based, and the least
absolute shrinkage and selection operator (LASSO) models to identify potential
proteomic as well as non-proteomic predictors. We evaluated our model
performance using the proportion variance explained (R2).
Result: The mean time from baseline assessment to cIMT measurement was 9.2
years. Age, blood pressure, and anthropometric related variables were the strongest
predictors of cIMT with fat-free mass index of the truncal region being the
strongest predictor among adiposity measurements. A LASSO model incorporating
variables including age, assessment center, genetic risk factors, smoking, blood
pressure, trunk fat-free mass index, apolipoprotein B, and Townsend deprivation
index combined with 97 proteins achieved the highest R2 (0.308, 95% C.I. 0.274,
0.341). In contrast, models built with proteins alone or non-proteomic variables
alone explained a notably lower R2 (0.261, 0.228–0.294 and 0.260, 0.226–0.293,
respectively). Chromogranin b (CHGB), Cystatin-M/E (CST6), leptin (LEP), and
prolargin (PRELP) were the proteins consistently selected across all models.
Conclusion: Plasma proteins add to the clinical and genetic risk factors in
predicting a cIMT measurement. Our findings implicate blood pressure and
extracellular matrix-related proteins in cIMT pathophysiology.
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Introduction

Ultrasound derived carotid intima media thickness (cIMT) is well-established tool

used to noninvasively measure the thickness of the carotid artery in high-resolution (1).

Suggested applications of cIMT include using the measurement to improve

cardiovascular risk stratification and the prediction of future cardiovascular events over
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that possible with traditional risk factors alone, as well as the

assessment of the efficacy of cardiovascular drugs (2–5).

Nevertheless, the reproducibility of cIMT images has long been

its major limitation because performing cIMT measurements and

image analysis requires standardized equipment and protocol, as

well as a trained sonographer (6).

High throughput profiling of circulating proteins in the plasma

has emerged as a useful approach to improved risk prediction as

well as to provide novel insights on the biology of complex

human traits (7). When integrated with genetic and

environmental determinants of diseases, proteomic-based models

can outperform clinical risk factor models in predicting

cardiovascular events (8, 9). However, it is unknown to what

extent plasma proteomics correlate with cIMT, and whether they

improve its prediction over clinical measures.

We aimed to evaluate the potential of a signature of plasma

proteins to predict the measurement of cIMT nearly a decade

later in a generally healthy population. To accomplish this task,

we leveraged data from the UK Biobank (UKBB) to investigate

individuals with measurements of circulating proteins in the

plasma, genetic variation, lifestyle factors, and health outcomes,

and ultrasound imaging of the carotids (10).
Methods

Study population

We analyzed a sub cohort of UKBB participants of the UKBB

who underwent both high-throughput proteomic profiling as well

as a cIMT study (Figure 1A). The study design, as well as the

methods of data collection of the UKBB is described elsewhere in

detail (11, 12). Briefly, participants’ baseline visit occurred between

2006 and 2010 (Instance 0) during which baseline characteristics

and a personal health history were collected using touchscreen

questionnaires, physical measures, and verbal interviews. Blood

was also drawn and banked. A subset of participants returned for

an imaging visit starting in 2014 (Instance 2). The UKBB received

ethical approval from the National Information Governance Board

for Health and Social Care and the Northwest Multicenter

Research Ethics Committee. All participants provided their written

informed consent at baseline.
Plasma proteomic biomarkers

A total of 1,463 circulating proteins in plasma were previously

measured using the antibody-based Proximity Extension Assay by

Olink. Extensive quality control of protein measures was

implemented by the UKBB using a set of predefined criteria as

previously described (10). Levels were normalized using a two-

step approach of within-batch and across-batches intensity

normalization (13). We excluded data for two proteins with a

high missing rate across our study samples (NPML with 74%

and PCOLCE with 63% missing). The values were log-

transformed and standardized before analysis. Missing
Frontiers in Cardiovascular Medicine 02
normalized protein expression (NPX) values were imputed with

their mean values.
Outcome

The cIMT was measured at the imaging visit (instance 2) in four

angles using the CardioHealth Station ultrasound system and UKBB

predefined standards (14, 15). We included only individuals with

cIMT measurements that did not fail any quality control indicators

in our analyses. The average value of cIMT of the four angles was

taken as the primary outcome measure in this study. The

distribution of cIMT measures was acceptable (skewness = 0.89)

after removing outliers of larger than five standard deviations (SD)

from the mean. A detailed description of how the cIMT

measurement was acquired is included in the Supplementary File.
Selection of non-proteomic covariates

Potential non-proteomic covariates were selected based on a

careful literature review focused on the identification of previously

established and/or suspected non-proteomic predictors of cIMT.

We considered the following groups of variables documented at

baseline: demographic characteristics (sex, age when attending the

baseline assessment and the imaging assessment, self-reported

race/ethnicity, Townsend deprivation index, and assessment center

location), anthropometric characteristics (waist circumference,

body mass index, calculated whole body and trunk fat as well as

fat-free mass index estimated through whole-body bio-impedance),

health behaviors (alcohol consumption, ever smoked, and

categorized physical activity groups), medical conditions,

medications, physical measures (blood), nine biochemistry

markers, five genetic principle components, and four polygenic risk

scores (PRS) of health traits related to cardiometabolic risk from

the “Standard PRS Set” UKBB resource (16, 17).
Statistical analyses

We first determined the marginal association between each non-

proteomic factor and cIMT. Subsequently, we selected five non-

modifiable characteristics (sex, age including at baseline and at the

imaging visit, center of imaging visit, and self-reported ethnicity) to

define a minimally adjusted model. We then applied an Akaike

information criterion (AIC) based stepwise model selection

algorithm to the remaining non-proteomic covariates of interest to

identify a subset that improved the AIC for cIMT in a multivariable

variable framework. Non-proteomic variables that were selected

were then further grouped into four to allow for multivariate testing

of five linear regression models (LM) with increasingly progressive

covariate adjustment: (1) the five basic non-modifiable

characteristics (LM 1), (2) model 1 plus multiple PRS (LM 2), (3)

model 2 plus health behaviors (LM 3), (4) model 3 plus physical

measures (LM 4), and (5) model 4 plus medical conditions (LM 5).

More detailed analysis plan is described in Supplementary File.
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FIGURE 1

(A) Study population. (B) Analysis workflow.

Chen et al. 10.3389/fcvm.2024.1478600

Frontiers in Cardiovascular Medicine 03 frontiersin.org

https://doi.org/10.3389/fcvm.2024.1478600
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 Demographic and clinical characteristics of total study
population.

Overall

n 6,136
Male (%) 2,901 (47.3)

Age at baseline 54.39 (7.86)

Age at imaging visit 63.61 (8.08)

Ethnicity group (%)
Asian 67 (1.1)

Black 51 (0.8)

Mixed 41 (0.7)

Other 52 (0.8)

White 5,925 (96.6)

Townsend deprivation index at recruitment [median (IQR)] −2.56 [−3.88, −0.24]
Ever smoked (%) 3,597 (58.6)

Alcohol intake frequency (%)
Never or missing 296 (4.8)

One to three times a month or special occasions only 1,154 (18.8)

Once or twice a week 1,564 (25.5)

Three or four times a week 1,727 (28.1)

Daily or almost daily 1,395 (22.7)

Physical activity category (%)
Missing 884 (14.4)

Low 981 (16.0)

Moderate 3,648 (59.5)

High 1,507 (24.6)

Waist circumference (cm) 87.61 (12.43)

BMI (kg/m2) 26.48 (4.21)

Whole body fat mass index (kg/m2) 8.10 (3.19)

Chen et al. 10.3389/fcvm.2024.1478600
Next, we used the least absolute shrinkage and selection

operator (LASSO) regression to identify a subset of plasma

proteomic measures predictive of cIMT alone, or in combination

with non-proteomic covariates. We built the LASSO model using

10-fold cross-validation after creating a randomly selected

training (70%) and testing (30%) subset. Factors were centered

and scaled before analysis. We trained six LASSO models, with a

pair of models drawing only from protein levels, a pair drawing

only from non-proteomic variables, and a pair drawing from a

combination of both. Within each pair, one model was trained

after forcing the five non-modifiable characteristics of model 1

without penalty. Lastly, we quantified model improvement after

adding proteomic measures to other non-proteomic variables by

evaluating improvements in variance explained (R2) and

reductions in the root mean square error (RMSE) in the testing

set. The 95% confidence intervals were generated by

bootstrapping 1,000 samples. The Benjamini-Hochberg False

Discovery Rate (FDR) threshold of 0.05 was used to account for

multiple testing of proteomic-cIMT associations.

Sensitivity analyses were performed excluding protein

measurements with a high proportion of NPX values flagged as being

below the limit of detection (LOD) corresponding to each sample’s

plate ID. We repeated the six LASSO models in the same training

and testing population after excluding proteins with below LOD

measures for >25%, >10%, and >3% of the participants, respectively.

95% confidence intervals were generated by bootstrapping 1,000

samples. Statistical analyses were performed with R, version 4.1.1.
Whole body fat-free mass index (kg/m2) 18.40 (2.51)

Trunk fat mass index (kg/m2) 4.47 (1.64)

Trunk fat-free mass index (kg/m2) 10.25 (1.26)

SBP (mmHg) 135.96 (18.54)

DBP (mmHg) 80.99 (10.55)

LDL direct [mmol/L, median (IQR)] 3.50 [2.96, 4.09]

HDL cholesterol [mmol/L, median (IQR)] 1.43 [1.21, 1.71]

TG [mmol/L, median (IQR)] 1.38 [0.98, 1.98]

Cholesterol [mmol/L, median (IQR)] 5.63 [4.94, 6.39]

HbA1c [mmol/mol, median (IQR)] 34.50 [32.10, 37.00]

Apolipoprotein A [g/L, median (IQR)] 1.52 [1.36, 1.70]

Apolipoprotein B (g/L, median [IQR] 1.00 [0.86, 1.17]

Lipoprotein A [nmol/L, median (IQR)] 19.96 [9.34, 57.83]
Gene set enrichment analysis

We implemented gene set enrichment analysis (GSEA) to

investigate the possible enrichment of biochemical pathways from

proteins identified in the previous screening method (18–22). For

this analysis, the normalized enrichment score (NES) was the

primary statistic. We considered two levels of significance, an

FDR q value of less than 0.05 and a more liberal FDR q value of

less than 0.25 if no gene sets met the more stringent threshold of

significance. GSEA software (v4.3.2) was used for this analysis.

C-reactive protein [mg/L, median (IQR)] 1.05 [0.54, 2.10]

Vascular/heart problems diagnosed by doctor (%) 1,278 (20.8)

Diabetes diagnosed by doctor (%) 137 (2.2)

Blood pressure medication (%) 497 (8.1)

Cholesterol lowering medication (%) 492 (8.0)

Statin use (%) 628 (10.2)

Aspirin use (%) 661 (10.8)

PRS for CVD −0.15 (0.95)

PRS for HTN −0.11 (0.93)

PRS for ISS −0.08 (0.91)

PRS for T2D −0.22 (0.95)

Follow up time (days) 3,369.91 (697.15)

Mean cIMT (micrometers) 680.67 (123.99)

All continuous measurements were documented in mean (SD) unless otherwise specified.

IQR, interquartile range; BMI, body mass index; SBP, systolic blood pressure; DBP,
diastolic blood pressure; TG, triglycerides; HbA1c, glycated hemoglobin; PRS, polygenic

risk score; CVD, cardiovascular disease; HTN, hypertension; ISS, ischemic stroke; T2D,

type 2 diabetes; PC, principal components.
Results

Cohort characteristics

A total of 1,461 plasma proteins levels in 6,136 participants were

included in our analysis (Figure 1A). The baseline characteristics of

the study population are shown in Table 1. The mean time from

baseline visit to imaging visit for cIMT visit was approximately 9

years with a little less than half of the participants being men.

Summary statistics of the full list of covariates considered are

included in Supplementary Table 1 while additional annotation of

proteins measured including their summary statistics within the

study cohort is included in Supplementary Table 2.
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Covariate selection with AIC and standard
linear regression of proteins

From a total of 39 non-proteomic factors analyzed, the most

predictive covariates in univariate regression models were those

related to age (either at baseline or at the time of imaging visit)

with each explaining nearly one fifth of the variance (R2) of cIMT

(Supplementary Table 3). In contrast, the next strongest non-

modifiable predictor was sex which explained only between 2%

and 3% of R2. The most predictive modifiable covariate was

systolic blood pressure explaining about 6%–7% of R2. A total of

19 out of 39 potential covariates were selected using the AIC based

stepwise model selection algorithm and grouped into the five LM

(Supplementary Table 4). To benchmark the predictive ability of

these non-proteomic variables selected in the previous five multiple

LMs, we calculated the variance explained (R2) of each model in

the testing dataset. As more explanatory demographic, genetic, and

phenotypic variables were included, especially blood pressure and

anthropometric measures, the R2 increased from 0.211 (95%C.I.

0.178, 0.244) in LM 1 to 0.256 (95%C.I. 0.223, 0.290) in the fully

adjusted LM 5 (Supplementary Figure 1).

Next, we screened all proteins to identify the subset of proteins

marginally associated with cIMT with progressive adjustment of

our non-proteomic covariates identified. When LM 1 through 5

were applied in multivariable model with each protein, we

identified 374, 289, 310, 11, and 4 proteins at FDR < 0.05. The 11

proteins in LM 4 that were significant included Secretogranin-1

(CHGB), Cystatin-M (CST6), formin-like protein 1 (FMNL1),

interleukin-17D (IL17D), leptin (LEP), matrix extracellular

phosphoglycoprotein (MEPE), phosphoprotein associated with

glycosphingolipid-enriched microdomains 1 (PAG1), platelet-

activating factor acetylhydrolase (PLA2G7), phospholipid transfer

protein (PLTP), prolargin (PRELP), and signaling threshold-
FIGURE 2

Variance explained (R2) of the LASSO regression models aperformed in th
imaging visit, center of imaging visit, and ethnicity groups. Models with se
predictors. Since a full rank parameterization was used in LASSO, differen
separately toward the number of total variables. LASSO, least absolute s
minimum; N, number.
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regulating transmembrane adapter 1 (SIT1) while the four

proteins that remained significant in LM 5 where CHGB, CST6,

LEP, and PRELP (Supplementary Table 5).
LASSO regression models

Using LASSO regression, we noted the following trends

(Figure 2; Supplementary Table 6). In models that allowed for the

selection of proteins, a range of 94–151 proteins were selected

while in models with non-proteomic covariates, a range of 12–16

non-proteomic covariates were selected. A model restricted to non-

proteomic measures explained the least variance (R2 = 0.254). A

model including the five non-modifiable covariates in addition to

proteins increased the variance explained (R2 = 0.283) to a degree

that was comparable to models built from a combination of non-

proteomic and proteomic predictors. A LASSO model combining

97 proteins with 12 non-proteomic factors performed the best in

the testing set (R2 = 0.308). Lastly, we observed significant overlap

of the 95% confidence intervals of all models that included at least

some non-proteomic covariates. The cross-validation mean

squared error plots of all six LASSO models for the study

population are shown in Supplementary Figure 2. A summary of

all proteomic and non-proteomic predictors selected by the linear

regression or LASSO models is shown in Supplementary Tables 7, 8.
Sensitivity analysis LASSO regression
models

A total of 175 out of 1,461 proteins had more than 25% of their

measures below LOD, while 244 proteins had more than 10% and

472 proteins had more than 3% below LOD. When excluding these
e test dataset. aSelected covariates include sex, age at baseline, age at
lected covariates were forced to incorporate all selected covariates as
t levels of categorical variables (except the reference group) counted
hrinkage and selection operator; RMSE, root mean square error; min,
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proteins, the variance explained was largely unchanged compared

to that observed in the main analyses (Supplementary Table 9).
Gene set enrichment analysis

In GSEA, while no gene set was significant at FDR-q <0.05, we

found 9 upregulated canonical pathways, 3 downregulated

canonical pathways, and 3 Hallmark gene sets reached FDR

<0.25 (Supplementary Table 10 and Supplementary Figures 3, 4).
Discussion

We leveraged the large-scale profiling of nearly 1,500 proteins

in the plasma of >6,000 participants of the UK Biobank study who

also underwent ultrasound imaging of their carotids to provide

an initial estimate of the relative importance of proteomic and

non-proteomic measures in predicting a cIMT measurement

and in understanding the pathophysiologic link behind an

increased rate of thickening and the future risk of atherosclerosis

related complications in both proximal and more distant arterial

trees (23, 24).

With respect to prediction of cIMT, we document several

interesting trends. First, as has been shown by others in the same

cohort (25), age was by far the single strongest predictor of

cIMT explaining three times more R2 than the next best non-

proteomic predictor, systolic blood pressure, and about two

thirds the maximal R2 explained by our best LASSO model.

Second, approximately one quarter of all proteins measured were

marginally associated with cIMT in the setting of our minimally

adjusted model. Third, a model restricted to approximately 150

proteins performed as well as the best predictive model using

clinical variables explaining a little over a quarter of the R2 of

cIMT. Lastly, the addition of approximately 100 proteins through

a LASSO model notably increased the absolute R2 explained

from ∼25% to ∼30%, or a ∼20% relative increase. While the

added predictive value of proteomic profiling was not dramatic,

our findings open the door to the future development of a

simple, blood-based, proteomic or multi-omics signature that

may either enhance or serve as a good proxy to cardiovascular

risk assessment with a cIMT measurement (26, 27).

We highlight several modifiable factors that were significant

in our multivariate linear regression models and were also

consistently selected by LASSO including blood pressure,

smoking, apolipoprotein B, and trunk fat-free mass index.

Despite the very high correlation of the same mass indices

between different body parts, the fat-free mass indices were

repeatedly selected over fat mass indices by several models. These

findings confirm prior studies demonstrating the importance of

traditional risk factors of atherosclerosis in determining cIMT

(28–30), as well as more recent studies exploring the relative

contributions of correlated measures of body composition (29,

31–33). A robust signature of modifiable risk factors within

circulating plasma proteins is also evident in our progressive

multivariate linear regression models given the number of
Frontiers in Cardiovascular Medicine 06
marginally associated proteins dropped dramatically with the

progressive addition of more non-proteomic measures.

Four proteins remained significantly associated with cIMT after

a comprehensive adjustment with non-proteomic variables that

included non-modifiable factors, PRS, health behaviors, physical

measures, biomarkers and medical history. The first was CHGB

or Chromogranin B (also known as Secretogranin-1) (34, 35).

CHGB is a member of the granin family of neuroendocrine

secretory proteins, commonly found in the secretory vesicles of

neurons and endocrine cells and plays a significant role in

the regulation of neuroendocrine secretions (34, 35). While a

related protein, Chromogranin A, serves as a precursor to

Catestatin, a modulator of the neuroendocrine system that has

antihypertensive properties through the inhibition of the release

of catecholamines, such a relationship does not exist between

Chromogranin B and blood pressure (34, 35).

CST6 (also known as Cystatin M/E or Cystatin E/M), is a

secreted protein that is part of the type 2 cystatin subfamily.

Its primary role is to act as an inhibitor of lysosomal cysteine

proteases including cathepsins and legumain by forming high-

affinity reversible complexes (36, 37). CST6 is known to

contribute to the homeostatis of the skin, but also been

implicated in cancer biology, as it is often found to be

downregulated, and sometimes completely silenced, in various

cancer types such as breast cancer, melanoma, and lung cancer

(36, 37). When CST6 isn’t functioning properly, it can lead to

changes in the proteolysis of tissue structures, which could

potentially speed up the spread of cancer cells. These

extracellular effects on the tumor microenvironment may also be

reflected some effects on the extracellular matrix within the

carotid media. Of note, a prior study found Cystatin N/E protein

expressions to be positively correlated with symptoms among

patients with carotid artery disease (38).

The third protein, the adipocyte derived hormone leptin (LEP),

has more obvious connections to cIMT through established effects

on blood pressure (39). These effects are facilitated by the

enhancement of the sympathetic nervous system, initiated by

the stimulation of pro-opiomelanocortin (POMC) neurons in the

hypothalamic arcuate nucleus. These neurons project to

the periventricular nucleus, leading to the release of the

α-melanocortin stimulating hormone, which subsequently activates

melanocortin receptors on presympathetic neurons. Separately,

leptin causes sodium retention through a direct action on the renal

tubules as well as the renin–angiotensin–aldosterone system via

stimulation of aldosterone release in the adrenal cortex (39).

The final protein, PRELP, is a secreted protein found in the

aortic extracellular environment (ECM)associated with pre-

atherosclerotic lesions (40, 41). PRELP also binds the basement

membrane protein heparan sulfate proteoglycan perlecan

(HSPG2), which regulates lipid deposition (42). In our analysis,

HSPG2 was also shown to be positively associated with cIMT.

Lastly, the highest bulk tissue gene expression for PRELP is

found in vascular tissues (aorta, coronary artery, and tibial

artery) and principle single cell sources of this protein include

the fibroblast, endothelial cells, pericytes, and smooth muscle

cells (43, 44). Together, these findings suggest possible
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contributory role of PRELP in maintaining the structural integrity

and remodeling of the ECM within the cardiovascular system

including the carotid-intima media region.

We compared our findings to a recently published association

analysis between cIMT measurements and the levels of 1,095

proteins measured in blood using the SOMAscan Platform in a

subset of 893 participants of the KORA F4 population-based

cohort study (45). The researchers found four proteins to be

associated with cIMT in a basic age-sex adjusted model,

cytoplasmic protein NCK1 (NCK1), insulin-like growth factor-

binding protein 2 (IGFBP2), growth hormone receptor (GHR),

and GDNF family receptor alpha-1 (GFRA1), with only NCK1

remaining significant in their fully adjusted model (45). In our

study, neither NCK1 and GHR were measured using Olink, but

both GFRA1 and IGFB2 were significant in our models 1, 2, and

3. A look-up of our top findings in KORA F4 revealed results for

only two out of our four top proteins, LEP and CST6 with LEP

showing nominally significance in both models (45). This degree

of replication between studies is not unexpected given differences

in design (cross-sectional vs. longitudinal), power (893 vs. 6,183

subjects), analytic approach to declaring significance (Bonferroni

vs. FDR) and measurement platform used (SOMA scan vs.

OLINK). We note that multiple studies have shown a bimodal

distribution of correlations between the two platforms for

proteins measured in both platforms (46–49). While the

correlations for LEP have been on the high end, the correlations

for CST6 have been on the low end.

The main strengths of our study are the standardized protocols

for cIMT, the large sample size, and the comprehensive proteomic

profiling using a high-throughput platform known to maintain a

high specificity. Limitations are several as well. First, the long

time between the time of the proteomic and the cIMT

measurements may have limited our ability to correlate more

strongly with cIMT. Nevertheless, the significant proteins

identified in our study may serve as candidate biomarkers for

early prediction of cIMT, conditional on age and other

cardiovascular risk factors. Secondly, since no atherosclerotic

plaque was measured in the UKBB, the association between

proteins and plaque will require additional studies to confirm or

refute their linkage to atherosclerosis related health traits.

Thirdly, the healthy volunteer bias and the predominantly white

population (12) may limit the generalizability of our findings

and mandate future studies that are both more ancestrally

and socioeconomically diverse. Lastly, we acknowledge two

significant challenges to conducting our GSEA. First, many gene

sets were only partially represented by protein measures in

plasma given only ∼1,500 protein measures were available.

Second, additional substantial additional statistical noise is likely

introduced by moving out of cell and representing genes

through their plasma levels of proteins derived from potentially

all tissues in the body rather than their expression levels

intracellularly or by genetic variation affecting their expression

levels. Thus, we suspect our analyses are substantially

underpowered. Nevertheless, we provide some insights on

potentially relevant biology represented by our highest ranked

genes sets in the supplementary appendix.
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In summary, we found proteomic profiles in plasma achieve

notable incremental prediction over non-proteomic factors of

cIMT. This incremental prediction is achieved despite the

separation of the two sets of measures (plasma proteins and

cIMT) by nearly a decade. Our findings suggest proteomic

signatures, possibly combined with other -omic measurements in

blood, may one day enhance or serve as a reliable cross-sectional

surrogate of a direct measurement of cIMT. Among our most

robustly associated proteins, we note proteins involved in the

modification of core mechanisms determining cIMT such as

blood pressure, but also evidence of the role of multiple cell

types active in the vascular wall. Future studies are needed to

provide a clearer understanding of these associations, and the

relevant mechanisms involved.
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