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Background: Gout is a type of chronic inflammatory disease linked to the
accumulation of monosodium urate crystals, leading to arthritis. Studies have
shown that patients with gout are more likely to develop atherosclerosis, but
the specific mechanisms involved remain unknown. The purpose of the
research was to explore the key molecules and potential mechanisms
between gout and atherosclerosis.
Methods: Gene expression profiles for gout as well as atherosclerosis were
obtained from the Gene Expression Omnibus (GEO) database, then differential
analysis was utilized to identify common differentially expressed genes (DEGs)
between the two diseases. The analysis of functional enrichment was
conducted to investigate the biological processes that the DEGs might be
involved in. The Cytoscape software was utilized to develop a protein–protein
interaction (PPI) network as well as identify hub genes, while LASSO analysis
was employed to select key genes. The TRRUST database was utilized to
forecast transcription factors (TFs), and the miRTarBase database was utilized
to forecast miRNAs.
Results: Four key genes, CCL3, TNF, CCR2, and CCR5, were identified. The
receiver operating characteristic (ROC) curves showed that the areas under
ROC curve (AUC) for these four key genes in both gout and atherosclerosis
were greater than 0.9. The analysis of functional enrichment revealed that the
DEGs were primarily involved in “regulation of T-cell activation”, “chemokine
signaling pathway”, and other biological processes. The TRRUST prediction
results indicated that RELA and NFKB1 are common regulatory transcription
factors for CCR2, CCR5, CCL3, and TNF. The miRTarBase prediction
results showed that hsa-miR-203a-3p is a common regulatory miRNA for TNF
and CCR5.
Conclusion: This study preliminarily explored the potential key molecules and
mechanisms between gout and atherosclerosis. These findings provide new
insights for further research into identifying potential biomarkers and clinical
treatment strategies for these two diseases.
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Introduction

Gout is a metabolic illness caused by a disorder in purine

metabolism, leading to elevated blood uric acid levels as well as

the formation and accumulation of monosodium urate crystals

within joints as well as other tissues (1). Its hallmark symptom is

acute arthritis, a type of inflammatory response that not only

causes severe pain but can also lead to long-term joint damage

and dysfunction, significantly affecting patients’ quality of life. In

recent years, with changes in lifestyle, the incidence of gout has

been on the rise, becoming one of the global public health issues

(2). Research shows that approximately 41.2 million adults

worldwide suffer from gout, more than twice the number of

those with rheumatoid arthritis (3, 4). In the United States alone,

the number of adults with gout is as high as 9.2 million,

accounting for about 3.9% of the total adult population (5).

In recent decades, a substantial amount of research has

indicated a close association between gout or hyperuricemia and

cardiovascular diseases (6–8). Notably, the incidence of

cardiovascular diseases in gout patients is significantly higher

compared to the general population, suggesting the potential

existence of common pathophysiological mechanisms between

the two conditions. Atherosclerosis is a type of chronic

cardiovascular disease caused by the buildup of lipids as well as

fibrous components in the arterial walls, leading to reduced

elasticity, narrowing of the vessel lumen, and potentially resulting

in heart and cerebrovascular diseases, as well as disabling

peripheral artery disease (9). Hyperuricemia increases the risk of

cardiovascular disease via regulating inflammatory responses,

oxidative stress, and endothelial dysfunction (10). Uric acid can

activate endothelial cells, promoting the release of inflammatory

factors as well as increasing oxidative stress, thereby damaging

endothelial function and accelerating the process of

atherosclerosis (11). A study found that compared with healthy

participants, gout patients have shorter telomeres, and the

telomere length is associated with the frequency of gout attacks

as well as cardiovascular diseases (12). This could be a major

factor for the increased risk of atherosclerosis in gout patients.

Although numerous studies support the association between

gout and atherosclerosis, the specific molecular mechanisms

between them remain unclear. This gap in understanding limits

our ability to prevent and treat cardiovascular diseases related to

gout and hyperuricemia. In particular, a lack of deep

understanding of the common molecular pathways and key

regulatory factors between the two diseases is crucial for

developing new therapeutic methods and intervention strategies.

Therefore, exploring the connection between gout and

atherosclerosis and clarifying their common molecular

mechanisms are not only significant for understanding the

intrinsic link between these two diseases but also provide new

ideas for developing targeted treatment strategies.

Thus, this study is dedicated to thoroughly analyzing the

relationship between gout and atherosclerosis, with a focus on

revealing the common molecular mechanisms of the two

diseases. By comprehensively applying various bioinformatics

techniques, this study successfully identified the key molecules
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and their signaling pathways commonly related to both gout and

atherosclerosis. Moreover, the study constructed the regulatory

networks of these key molecules involving transcription factors

and miRNAs. The findings not only enrich our understanding of

the relationship between gout and atherosclerosis but also offer a

new theoretical basis and research direction for future

exploration of the interaction mechanisms between these two

diseases. The simplified analysis workflow of this study is

illustrated in Figure 1.
Materials and methods

Source of original data

RNA-seq datasets for gout as well as atherosclerosis were

retrieved and obtained from the Gene Expression Omnibus

(GEO) database. The gout dataset (GSE160170) consisted of

samples from 6 patients with primary gout as well as 6 healthy

control participants. The atherosclerosis dataset (GSE100927) was

composed of samples from 69 patients with peripheral artery

atherosclerosis and 35 control tissues.
Selection of differentially expressed genes

Differential expression analysis between samples from gout and

atherosclerosis and their respective control groups was conducted

utilizing the “limma” package in R (13). The criteria for selection

were |Log2FC|>1 as well as p.adj <0.05, in order to identify

significantly differentially expressed genes (DEGs). Volcano plots

were then constructed utilizing the “ggplot2” package in R in

order to visualize the DEGs (Supplementary Table S1). The

“VennDiagram” package in R was applied to identify common

DEGs among gout and atherosclerosis (Supplementary Table S2).

Finally, a heatmap of the DEGs was visualized utilizing the

“ComplexHeatmap” package in R (14).
Functional enrichment analysis and
construction of the PPI network

The common DEGs among gout and atherosclerosis were

assessed to Gene Ontology (GO) as well as Kyoto Encyclopedia

of Genes and Genomes (KEGG) analyses utilizing the

“clusterProfiler” R package (15) (Supplementary Table S3). The

STRING (https://cn.string-db.org/) database was utilized to

obtain protein information and protein-protein interaction (PPI)

network information (Supplementary Table S4), which was then

displayed via Cytoscape software.
Identification of key genes

The common DEGs were further analyzed utilizing the

CytoHubba plugin in Cytoscape software, employing the Degree
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FIGURE 1

The simplified analysis workflow of this study.

Qing and Yuan 10.3389/fcvm.2024.1471633
approach to identify the top ten hub genes (Supplementary

Table S5). To further identify key genes in gout and

atherosclerosis, these ten hub genes were performed to LASSO

analysis utilizing the “glmnet” package in R (Supplementary

Table S6). The ROC curves for the key genes were then shown

utilizing the “pROC” package in R (Supplementary Table S7).
Immune cell infiltration analysis

In order to evaluate the infiltration of immune cells within

atherosclerosis tissue samples, the signature matrix gene

expression profiles for 22 categories of immune cells provided by

the CIBERSORTx website (https://cibersortx.stanford.edu/) were

employed (Supplementary Table S8). Based on the core

algorithm provided in the “CIBERSORT” R package, the

infiltration level of immune cells in each sample was

calculated (16, 17).
Construction of the molecular regulatory
network

The TRRUST database (https://www.grnpedia.org/trrust/) was

utilized to predict transcription factors (TFs) that have regulatory

relationships with target genes. The miRTarBase database

(https://mirtarbase.cuhk.edu.cn/) was utilized to predict miRNAs
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that have regulatory relationships with target genes. Finally,

Cytoscape software was utilized to construct the TF-mRNA and

miRNA-mRNA regulatory networks (Supplementary Table S9).
Statistical methods

The present research’s statistical analysis was performed

utilizing R software (version 4.2.1). For continuous variables,

the t-test (for two groups) either one-way ANOVA (for

multiple groups) was applied if the data followed a normal

distribution. For categorical variables and continuous variables

not following a normal distribution, the Wilcoxon test was

used. All statistical analyses were considered statistically

significant with a P-value <0.05.
Results

Identification of common DEGs between
gout and atherosclerosis

Based on the criteria for differentially expressed genes

(|Log2FC|>1 as well as p.adj <0.05), 854 differentially expressed

genes (DEGs) were identified in the gout samples (Figure 2A), as

well as 501 DEGs were identified in the atherosclerosis samples

(Figure 2B), both presented in the form of volcano plots.
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FIGURE 2

Identification of common DEGs between gout and atherosclerosis. (A) Volcano plot of DEGs in gout; (B) Volcanic plot of DEGs in atherosclerosis;
(C) Venn diagram of DEGs in gout and atherosclerosis.

FIGURE 3

The 41 common DEGs between gout and atherosclerosis. (A) Heatmap of common DEGs in gout; (B) heatmap of common DEGs in atherosclerosis.
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Subsequently, an intersection of the DEGs among gout and

atherosclerosis yielded 41 common DEGs, displayed in a Venn

diagram (Figure 2C). Lastly, the expression patterns of these 41

common DEGs in samples from both gout and atherosclerosis

were showcased in heatmaps (Figures 3A,B).
Functional enrichment analysis

In order to investigate the biological roles of the 41 common

DEGs between gout and atherosclerosis, GO as well as KEGG

enrichment analyses were performed. The findings revealed that

the common DEGs were primarily involved in “regulation of T
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cell activation”, “chemokine-mediated signaling pathway”,

“cytokine-mediated signaling pathway”, as well as “cytokine

receptor binding” (Figure 4A). The KEGG analysis revealed that

these genes were significantly involved in pathways like

“cytokine-cytokine receptor interaction”, “chemokine signaling

pathway”, and “interaction between viral proteins and cytokines

and cytokine receptors” (Figure 4B).
PPI network and key gene selection

The STRING database was applied to collect PPI network

information among the common DEGs among gout and
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FIGURE 4

Functional enrichment analysis. (A) GO enrichment analysis; (B) KEGG enrichment analysis.

FIGURE 5

PPI network and top 10 hub genes. (A) The PPI network of 41 common DEGs; (B) identification of 10 hub genes.
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atherosclerosis, which was visualized using Cytoscape software

(Figure 5A). Subsequently, the top 10 hub genes, including

CCL3, CCL18, IL1B, CXCL1, TNF, CCR7, IL7R, CCR2, CCR5,

and FCGR3A, were identified using the Degree method in the

CytoHubba plugin of Cytoscape software (Figure 5B). Further

selection of key genes through LASSO analysis method yielded

four key genes: CCR2, CCR5, CCL3, and TNF (Figures 6A,B).

The λ values in LASSO analysis were detailed in Supplementary

Table S6. The ROC curves were utilized to assess the diagnostic

value of these key genes in gout and atherosclerosis, with all four

key genes showing the areas under the curve greater than 0.9,
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indicating their significant diagnostic value in both

diseases (Figures 7A,B).
Construction of miRNA-mRNA and
TF-mRNA regulatory networks

The miRTarBase database was employed to forecast

miRNAs that regulate the target genes, and the miRNA-

mRNA regulatory network was created via Cytoscape software.

The results indicated that hsa-miR-203a-3p is a common
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FIGURE 6

Identification of key genes. (A) Lasso cross validation diagram; (B) Lasso coefficient analysis diagram.

FIGURE 7

The ROC curves were utilized to assess the diagnostic value of these key genes in gout (A) and atherosclerosis (B).
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regulatory miRNA for the key genes TNF and CCR5

(Figure 8A). The predicted transcription factors for the four

key genes were obtained from the TRRUST database, and the

TF-mRNA network was created via Cytoscape software,

showing RELA and NFKB1 as common regulatory

transcription factors for CCR2, CCR5, CCL3, and TNF, while

E2F1 was identified as a common regulatory transcription

factor for CCL3 and TNF (Figure 8B).
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Immune cell infiltration analysis

To assess the infiltration level of immune cells in gout and

atherosclerotic tissue samples, the “CIBERSORT” R package’s

core algorithm was used to calculate the infiltration level of

various immune cells in each sample. The results demonstrated

significant differences in the infiltration level of T cell gamma

delta, NK cell resting, and monocytes between gout tissue
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FIGURE 8

Construction of miRNA-mRNA and TF-mRNA regulatory networks. (A) miRNA-mRNA regulatory network; (B) TF-mRNA regulatory network.
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samples and control samples (Figure 9A). Similarly, there were

significant differences in the infiltration level of various immune

cells between atherosclerosis tissue samples and control samples,

including B cells memory, T cells gamma delta, Monocells M0

and Mast cells activated (Figure 9B).
Discussion

This study aimed to delve into the potential connection

between gout and atherosclerosis, particularly from a molecular

mechanism perspective. Gout is an inflammatory disease

associated with uric acid metabolism abnormality, caused by the

accumulation of monosodium urate crystals within joints as well

as soft tissues, leading to recurrent episodes of acute arthritis.

Atherosclerosis, on the other hand, is a chronic cardiovascular

illness caused by the build-up of lipids as well as fibrous tissues

in the wall of arteries, resulting in reduced vascular elasticity and

lumen narrowing. Although the link between the two has been

somewhat confirmed by related studies, the specific molecular

mechanisms and biological processes involved remain unclear.

By employing bioinformatics methods, we conducted a

comprehensive analysis of gene expression profiles of gout as

well as atherosclerosis through public databases and successfully

identified 41 common DEGs, mainly enriched in key biological

processes such as chemokine signaling pathways and regulation

of T-cell activation. Through LASSO analysis, we ultimately

identified CCL3, TNF, CCR2, and CCR5 as key genes, which

showed high diagnostic value in gout and atherosclerosis through

ROC curve analysis. Additionally, we constructed miRNA-mRNA
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and TF-mRNA regulatory networks, finding that factors such as

hsa-miR-203a-3p, RELA, and NFKB1 play significant roles in

regulating these key genes. Immune cell infiltration analysis

further revealed changes in specific immune cell types in tissues

of gout and atherosclerosis.

The identification of 41 common DEGS in this study suggests

potential molecular regulation and signaling pathways shared

between gout and atherosclerosis. These genes were primarily

enriched in “regulation of T-cell activation”, “chemokine

signaling pathway”, as well as “cytokine-mediated signaling

pathway”, which are significant for understanding the molecular

link between gout and atherosclerosis. “Regulation of T-cell

activation” is a core process in the immune system, involving the

initiation and regulation of immune responses. In gout, abnormal

activation of T-cells may lead to an excessive response to urate

crystals, triggering inflammation (18, 19). Similarly, the

development of atherosclerosis is also associated with T-cell

mediated inflammatory responses, especially in the damage to

arterial endothelium and plaque formation processes (20). Thus,

the role of these common differentially expressed genes in

regulating T-cell activation may be a key link connecting gout

and atherosclerosis. The “chemokine signaling pathway” is

essential to regulate the migration as well as localization of

immune cells. During a gout attack, the release of chemokines

promotes the migration of immune cells to the inflammation site

to participate in the inflammatory response (21). Likewise, in

the progression of atherosclerosis, chemokines also involve the

accumulation of immune cells, particularly macrophages, in the

vascular wall, which is crucial for plaque formation (22, 23).

Therefore, the role of common DEGs in the chemokine signaling
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FIGURE 9

Analysis of immune cell infiltration in gout (A) and atherosclerotic (B) tissue samples.
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pathway emphasizes the common mechanism of immune cells in

both diseases. The “cytokine-mediated signaling pathway” is

another key pathway regulating intercellular communication. In

the pathological processes of both gout and atherosclerosis,

cytokines, such as tumor necrosis factor alpha (TNF-α) as well as

interleukins (ILs), play central roles in inflammation and

immune regulation (24–27). The enrichment of common DEGs

in this process may reflect a common pathway by which

cytokines regulate the pathological states of both diseases.

In this study, through comprehensive analysis methods, four

key genes—CCL3, TNF, CCR2, and CCR5—were identified,

having significant impacts on the pathophysiological mechanisms

of gout and atherosclerosis. These genes not only exhibit

significant differential expression in both diseases but also

demonstrate high diagnostic value through ROC curve analysis,

suggesting their core roles in disease progression. CCL3, a

chemokine, attracts immune cells such as monocytes and T cells

to inflammation sites, with CCR5 acting as its receptor involved

in the migration and activation of immune cells (28–30). This

process plays a key role in the inflammatory response during

gout attacks and may also contribute to the formation and

development of atherosclerotic plaques by promoting immune

cell accumulation in the vascular wall. TNF, a critical
Frontiers in Cardiovascular Medicine 08
inflammatory factor, was proven to possess significant functions

in the biological mechanisms of both gout and atherosclerosis

(31–33). TNF can promote the production of inflammatory

cytokines, exacerbate inflammatory responses, and participate in

regulating the function to vascular endothelial cells, affecting the

progression of atherosclerosis (34). Thus, TNF may be an

important link connecting the pathophysiological mechanisms of

gout and atherosclerosis. CCR2, another crucial chemokine

receptor, primarily regulates the migration of monocytes (35, 36).

In atherosclerosis, the activation of CCR2 promotes monocyte

migration to the vascular wall and their transformation into

macrophages, participating in plaque formation (37). Similarly,

CCR2 may also play an important role in the inflammatory

response of gout via regulating the migration and activation of

immune cells. The identification of these key genes not only

deepens our understanding about the pathophysiological

mechanisms of gout and atherosclerosis but also identifies new

potential targets for future therapeutic strategies.

By constructing miRNA-mRNA and TF-mRNA regulatory

networks, we further explored the upstream regulatory

mechanisms of key genes in the processes of gout and

atherosclerosis. The discovery of factors such as hsa-miR-203a-

3p, RELA, and NFKB1 provides new insights into the molecular
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mechanisms and therapeutic potential of these illnesses. miRNAs, a

category of non-coding RNAs, regulate gene expression through

attachment to the 3′ untranslated region (3′UTR) of their target
mRNAs (38). In this study, hsa-miR-203a-3p was predicted to

regulate TNF and CCR5, suggesting that miRNAs might affect

the progression of gout as well as atherosclerosis by modulating

the expression of these key inflammatory and immune-related

genes. Transcription factors, proteins within cells responsible for

initiating or inhibiting gene transcription, thus controlling gene

expression. In our study, RELA and NFKB1, as transcription

factors, were discovered to be associated with the expression

regulation of key genes such as CCR2, CCR5, CCL3, and TNF.

The NF-κB signaling pathway, regulated by RELA and NFKB1, is

one of the core pathways modulating inflammatory responses

and immune reactions (39, 40). Its activation plays an important

role in both the acute attacks of gout and the formation of

atherosclerotic plaques, revealing it as a potential molecular

mechanism linking the two diseases. The discovery of these

regulatory networks not only enhances our understanding of the

comorbidity mechanisms between gout and atherosclerosis but

also provides new directions for future therapeutic research.

Therapeutic strategies targeting specific miRNAs or transcription

factors, such as using miRNA mimics or inhibitors, as well as

developing small molecule inhibitors against the NF-κB signaling

pathway, could emerge as new approaches for treating gout with

concurrent atherosclerosis.

Immune cell infiltration analysis has shown significant changes

in various immune cells in tissue samples from gout and

atherosclerosis, which is of great importance for understanding

the pathophysiological mechanisms of these two diseases. Gout is

a chronic inflammatory disease triggered by the deposition of

urate crystals, while atherosclerosis is characterized by lipid

deposition and inflammatory responses within the blood vessels

(41, 42). In the progression of both diseases, the infiltration and

activation status of immune cells play a crucial role. In gout, the

immune response to urate crystals initiates inflammation,

resulting in joint pain and swelling. Notably, activated

macrophages contribute to this process by releasing multiple

inflammatory mediators, such as tumor necrosis factor-alpha

(TNF-α) and interleukin-1 beta (IL-1β), which exacerbate the

local inflammatory response (43, 44). These mediators not only

increase the number of leukocytes at the affected joint but also

trigger a more widespread systemic inflammatory response,

potentially correlating with the risk and prognosis of

cardiovascular diseases. Meanwhile, the formation of

atherosclerosis is inextricably linked to immune cell infiltration.

Research indicates that various immune cells, including T cells

and macrophages, play key roles in the formation and

progression of atherosclerotic plaques (45, 46). T cells infiltrating

and activating in the arterial wall promote localized

inflammation and increase the secretion of inflammatory

mediators, further driving plaque formation and instability (47).

Additionally, macrophages not only are crucial in the

inflammatory response but also participate in lipid uptake and

metabolism. When macrophages engulf excessive lipids, they may

transform into foam cells, which promote the progression of
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atherosclerosis (48). Furthermore, the pathological process of

atherosclerosis also involves the participation of other immune

cells such as B cells and mast cells, which are important in

regulating adaptive immune responses and maintaining the

stability of the inflammatory microenvironment (49, 50). These

immune cells interact through various mechanisms, collectively

facilitating the occurrence and development of atherosclerosis. In

this process, the degree of immune cell infiltration and activation

status provides important clues for understanding the common

pathological mechanisms of gout and atherosclerosis. Combining

current research findings, the characteristics of immune cell

infiltration in gout and atherosclerosis suggest that these two

diseases may have interrelated pathogenic mechanisms. The

enhancement of inflammatory responses may not only be a

product of local joint damage but could also impact

cardiovascular health through systemic effects. Therefore,

identifying methods to regulate immune cell infiltration carries

significant clinical importance.

Despite the valuable insights into the molecular foundations of

gout as well as atherosclerosis provided by this study, there are

certain limitations. First of all, this work relies on gene

expression data through public databases, which may have

limited sample sizes and come from specific populations or

geographic locations, potentially limiting the generalizability of

the results. Larger-scale, diverse populations, and multicenter

sample collections could help enhance the representativeness and

reliability of the findings. Second, although bioinformatics tools

and methods can help identify potential biomarkers and disease-

related pathways, these analyses depend on existing algorithms

and databases, so new, unstudied mechanisms might be

overlooked, and the importance of known pathways might be

overstated. Lastly, this study primarily relies on bioinformatics

analysis and lacks experimental data to validate key findings,

such as the functions of key genes, the regulatory roles of

miRNAs, and transcription factors. Experimental validation is an

important step to confirm the biological significance of these

bioinformatics predictions.
Conclusion

This study investigated the molecular link between gout as well

as atherosclerosis. Via the analysis of gene expression profiles of

patients with gout and atherosclerosis, we successfully identified 41

DEGs, primarily involved in crucial processes in biology like

“regulation of T-cell activation” and “chemokine signaling

pathways”, suggesting that gout and atherosclerosis may be

connected through these common molecular pathways. Further

bioinformatics analysis highlighted the significant roles of CCL3,

TNF, CCR2, and CCR5 in both diseases. Moreover, our study

constructed miRNA-mRNA and TF-mRNA regulatory networks,

finding that regulators such as hsa-miR-203a-3p, RELA, and

NFKB1 play core roles in this network, further supporting the

complex molecular interactions between gout and atherosclerosis.

The results of immune cell infiltration analysis revealed significant

changes in specific types of immune cells in these diseases,
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emphasizing the importance of immune regulation in disease

progression. In conclusion, the results of the present study provide

a novel theoretical basis for the comorbidity mechanism of gout as

well as atherosclerosis, pointing the way for future basic and

clinical research. By further revealing the specific mechanisms of

these key genes and regulators, we seek to develop novel strategies

for preventing, diagnosing, as well as treating these illnesses,

thereby improving patients’ health and quality of life.
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