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Background: Atherosclerosis is a leading cause of cardiovascular disease
worldwide, while carotid atherosclerosis (CAS) is more likely to cause ischemic
cerebrovascular events. Emerging evidence suggests that cuproptosis may
be associated with an increased risk of atherosclerotic cardiovascular disease.
This study aims to explore the potential mechanisms linking cuproptosis and CAS.
Methods: The GSE100927 and GSE43292 datasets were merged to screen for
CAS differentially expressed genes (DEGs) and intersected with cuproptosis-
related genes to obtain CAS cuproptosis-related genes (CASCRGs). Unsupervised
cluster analysis was performed on CAS samples to identify cuproptosis molecular
clusters. Weighted gene co-expression network analysis was performed on all
samples and cuproptosis molecule clusters to identify common module genes.
CAS-specific DEGs were identified in the GSE100927 dataset and intersected with
common module genes to obtain candidate hub genes. Finally, 83 machine
learning models were constructed to screen hub genes and construct a
nomogram to predict the incidence of CAS.
Results: Four ASCRGs (NLRP3, SLC31A2, CDKN2A, and GLS) were identified as
regulators of the immune infiltration microenvironment in CAS. CAS samples were
identified with two cuproptosis-related molecular clusters with significant
biological function differences based on ASCRGs. 220 common module hub
genes and 1,518 CAS-specific DEGs were intersected to obtain 58 candidate hub
genes, and the machine learning model showed that the Lasso + XGBoost model
exhibited the best discriminative performance. Further external validation of single
gene differential analysis and nomogram identified SGCE, PCDH7, RAB23, and
RIMKLB as hub genes; SGCE and PCDH7 were also used as biomarkers to
characterize CAS plaque stability. Finally, a nomogram was developed to assess
the incidence of CAS and exhibited satisfactory predictive performance.
Conclusions: Cuproptosis alters the CAS immune infiltration microenvironment
and may regulate actin cytoskeleton formation.

KEYWORDS

atherosclerosis, cuproptosis, unsupervised clustering analysis, machine learning model,
nomogram
Abbreviations

AS, atherosclerosis; AUC, area under curve; CAS, carotid atherosclerosis; CASCRGs, CAS cuproptosis-
related genes; CVDs, cardiovascular diseases; DEGs, differentially expressed genes; GEO, gene expression
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absolute shrinkage and selection operator; ROC, receiver operating characteristic; WGCNA, weighted
gene co-expression network analysis; XGBoost, extreme gradient boosting.
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1 Introduction

Atherosclerosis (AS) is a chronic inflammatory pathological

change that occurs in the vascular wall and is characterized by

lipid deposition and immune cell infiltration. It serves as the

pathological basis for various cardiovascular diseases (CVDs),

including ischemic heart disease and stroke (1). AS commonly

manifests in the coronary, brain, and carotid arteries. Areas of

relatively slow blood flow, rapid dilation of vessel diameters,

and vertexing of blood flow at the carotid bifurcation are

favored for carotid atherosclerosis (CAS) (2). The global

prevalence of CAS in 2020 was as high as 27.6% in people

aged 30–90 years, CAS is more likely to cause ischemic

cerebrovascular events, which significantly increased the

incidence of CVDs (3).

Copper is an essential trace element in the human body and

functions as a cofactor for numerous enzymes involved in critical

cellular processes, such as transcriptional regulation, oxidoreductase

reactions, inflammation, immune function, mitochondrial electron

transport, and free radical scavenging (4). Intracellular copper ion

content is tightly regulated, and any imbalance can lead to

oxidative stress and abnormal cellular autophagy (5, 6). The

excessive accumulation of copper ions results in abnormal

aggregation of lipoylated proteins, interference with iron-sulfur

cluster proteins in the respiratory chain complex, and ultimately

induces a protein-toxic stress response leading to cell death. This

type of cell death, triggered by copper ion accumulation, is termed

“cuproptosis” and can contribute to the onset of various diseases

(7). Previous studies have shown that serum copper deficiency

promotes the development of AS through increased cholesterol

levels, elevated blood pressure, and impaired glucose tolerance

(8, 9). However, subsequent research has revealed that elevated

serum copper levels are associated with an increased risk of

atherosclerotic CVDs, which contradicts the previously reported

association between serum copper and CVDs outcomes (10, 11).

High serum copper levels accelerate atherosclerotic plaque

formation by affecting lipid metabolism, low density lipoprotein

oxidation, and inflammation, thereby increasing the risk of

atherosclerotic heart disease (12, 13).

Therefore, this study was based on bioinformatics to uncover

the underlying mechanisms and pivotal genes associated with

cuproptosis in CAS. Employing differential expression analysis to

identify CAS cuproptosis-related genes (CASCRGs) and immune

profiles in CAS by comparing control and CAS samples.

Subsequently, unsupervised cluster analysis on CAS samples,

utilizing CASCRGs, aimed to delineate cuproptosis-associated

clusters and evaluate the differences in gene expression,

immunity, and biological processes among these clusters. Further,

candidate hub genes were discerned through the application of

weighted gene co-expression network analysis (WGCNA).

Multiple prediction models were then developed based on

machine learning algorithms. The efficacy of these models was

rigorously tested using a nomogram, calibration curves, and

decision curve analysis. Additionally, the study incorporated a

gender-stratified approach and examined the stability of CAS
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plaques, thereby enriching the understanding of the disease’s

complexity and heterogeneity.
2 Materials & methods

2.1 Subjects and dataset acquisition

The entire study process is depicted in Figure 1. Five gene

expression profiles [GSE100927 (14), GSE43292 (15), GSE28829

(16), GSE163154 (17), and GSE41571 (18)] related to CAS were

retrieved from the Gene Expression Omnibus database (19)

(GEO, https://www.ncbi.nlm.nih.gov/geo/) under the keywords

“carotid atherosclerosis”. Among them, the GSE28829 dataset

was used for external validation, and the GSE163154 and

GSE41571 datasets were used to identify CAS stabilized and

unstabilized plaques.
2.2 Identification of differentially expressed
genes (DEGs)

The GSE100927 and GSE43292 datasets were merged and

standardized using the “Affy” R package, while batch effects were

removed with the “SVA” R package (20, 21). DEGs associated

with CAS were identified by comparing disease and control

groups using the “limma” R package, with the criteria set at

P < 0.05 and |logFC|>0.5 (1.4-fold differential expression) for

DEG selection (22). From the literature, 50 cuproptosis-related

genes (CRGs) were obtained and intersected them with the

DEGs of CAS to obtain CASCRGs (7, 23–25).
2.3 Unsupervised clustering analysis of CAS
samples

Unsupervised clustering analysis of CAS samples based on

CASCRGs expression profiles was performed using the

“ConsensusClusterPlus” R package (26). The CAS samples were

grouped by applying the k-means algorithm with 1,000 iterations,

k = 9, seed = 123,456, reps = 50, pItem = 0.8, pFeature = 1,

clusterAlg = km, distance = euclidean. The appropriate number of

clusters was determined based on the matrix heat map,

consistent cumulative distribution function curve, delta area plot,

cluster-consensus plot, and item-consensus plot.
2.4 Immune infiltration analysis and
correlation analysis

The degree of infiltration of 22 immune cells was quantified

using the CIBERSORT deconvolution algorithm based on gene

microarray data (27). Differences between the two groups (the

C1 cluster compared to the C2 cluster; the control sample

compared to the CAS sample) were compared using the Wilcox
frontiersin.org
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FIGURE 1

Flow chart of this study.
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test, and the results were visualized using the “vioplot” package

(28). Subsequently, Spearman correlation analysis was employed

to reveal the relationship between ASCRGs and immune cells.
2.5 Gene set variation analysis (GSVA)

The “GSVA” package was used to conduct a GSVA enrichment

analysis for different CRGs clusters, considering a significant

change if the |t value of the GSVA score| was greater than 2 (29).
2.6 WGCNA

WGCNA was employed to identify co-expression modules by

clustering the samples using the “WGCNA” R package. The

value of “CutHeight” was set to 60 to remove the outlier

samples, and a co-expression network for the gene expression

matrices of the remaining samples was constructed. The soft
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threshold corresponding to fit R2 = 0.8 was chosen for the

construction of gene modules, while the minimum number of

module genes (minSize) was specified to be 10, and the most

relevant module for the trait was selected (30).
2.7 Functional enrichment analysis

Imported the genes into the David database (https://david.abcc.

ncifcrf.gov/) (31) for functional enrichment analysis (32), set P < 0.

05 as the screening condition.
2.8 Gene set enrichment analysis (GSEA)

The “GSEA” R package was used to explore the related

pathways of candidate hub genes and to calculate the correlation

between candidate hub genes and other genes (33). All genes

were then sorted from highest to lowest according to their
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correlation, and these sorted genes were the set of genes to be

tested. The signaling pathway set was called a “predefined set” to

detect its enrichment in the gene set.
2.9 Construction of predictive model based
on multiple machine learning methods

The “randomForestSRC” “glmnet” “plsRglm” gbm “caret”

“mboost” “e1071” “BART “MASS” “snowfall” “xgboost” R

packages were used to establish 113 machine learning models

screening for the hub genes, including the least absolute

shrinkage and selection operator (LASSO) regression, random

forest model, support vector machine model, generalized

linear model and extreme gradient boosting (XGBoost),

gradient boosting machine, and so on (34). The merged

dataset of GSE100927 and GSE43292 was used as a training

set, and the GSE28829 dataset was used as a validation set.

The area under the receiver operating characteristic (ROC)

curve was visualized using the “pROC” R package (35). F1

scores were calculated based on precision and recall, and then

the best models were screened based on AUC values, F1

scores, and gene counts. The optimal machine learning model

was identified and externally validated using the Wilcoxon

rank-sum test for single gene difference analysis on the

GSE28829 dataset.
2.10 Construction and validation of a
nomogram model

A nomogram was established using the “rms” R package to

predict the probability of occurrence of CAS, and its predictive

power was estimated by using calibration curves and decision

curve analysis.
2.11 Statistical analysis

All statistical analyses were performed using R software, and

P < 0.05 was considered significant.
3 Results

3.1 Cuproptosis regulator modulates
the immune infiltration microenvironment
in CAS

The differential expression gene analysis of CAS identified

1,816 DEGs (Figures 2A–D), and 4 CASCRGs (NLRP3,

SLC31A2, CDKN2A, and GLS) were obtained by taking the

intersection with cuproptosis-related genes, of which NLRP3

(logFC = 0.81), SLC31A2 (logFC = 0.92), and CDKN2A (logFC =

0.71) were highly expressed in CAS samples, while GLS (logFC =

−0.51) was lowly expressed (P < 0.05 and |logFC|>0.5)
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(Figures 2E,F). Further investigating whether CASCRGs are

specific in CAS, GSE100927 was stratified into CAS, femoral AS

(FAS), and infrapopliteal AS (IPAS). The results showed that

SLC31A2, NLRP3, and CDKN2A had differential expression in

FAS (P < 0.05 and |logFC|>0.5); and NLRP3 and CDKN2A in

IPAS (P < 0.05 and |logFC|>0.5), which suggests that NLRP3 and

CDKN2A were differentially expressed in CAS, FAS and IPAS,

whereas GLS has reduced specific expression in CAS (Figures 2G,H).

Further correlation analyses demonstrated a strong synergistic effect

between SLC31A2, NLRP3, and CDKN2A, whereas GLS exhibited

antagonistic effects (Figure 2I).

The results of immune infiltration analysis revealed

significantly higher levels of memory B cells, activated memory

CD4T cells, follicular helper T cells, γ-δ T cells, M0 macrophages,

and activated mast cells in CAS (P < 0.05). Conversely, significantly

lower levels of naive B cells, CD8T cells, resting memory CD4T

cells, activated NK cells, monocytes, M2 macrophages, and

resting mast cells were observed in CAS (P < 0.05) (Figure 2J).

Furthermore, correlation analysis demonstrated that CASCRGs

were strongly associated with memory B cells, naive B cells,

activated dendritic cells, M0 macrophages, M2 macrophages,

activated mast cells, resting mast cells, monocytes, plasma cells,

resting memory CD4T cells, follicular helper T cells, and γ-δ T

cells (P < 0.05), suggesting that CASCRGs is expressed in various

immune cells of CAS and play a role in regulating the immune

infiltration environment in CAS (Figure 2K).

Comprehensive functional enrichment analysis revealed that

the common pathogenesis of CAS mainly involves various

cardiomyopathies, immune responses, cell migration, and

cytokine-mediated signaling pathways, including the JAK-STAT

signaling pathway (Figures 2L,M).
3.2 Identification of cuproptosis clusters
in CAS

Based on the matrix heatmap, it can be seen that the CAS

samples are clearly divided into 2 clusters with less clutter

around them (Figure 3A); the consensus cumulative distribution

function and the inflection point method of delta area seem to

suggest that k = 4 is better (Figures 3B,C). However, the cluster-

consensus plot shows the mean of the pairwise consensus values

of the members in that cluster, with a higher mean value

representing higher stability, and the results show that k = 2 has

the highest mean value, and there is not much difference

between the two clusters, which is stable (Figure 3D). In

addition, the vertical bar of the item-consensus plot represents

each sample, and the height of the bar represents the total item-

consensus values of the sample, and the purity of the sample can

also be seen, and the results show that, when k = 2, the total

item-consensus values of the sample are higher, and the purity is

good, while k = 3 and 4, the performance is not as satisfactory as

at k = 2. Therefore, k = 2 was used for the subsequent study

(Figure 3F). A consensus clustering algorithm was applied to

classify the 61 CAS samples based on the expression profiles of

the 4 CASCRGs, resulting in two distinct and stable groups: the
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FIGURE 2

Identification of CAS cuproptosis-related genes (CASCRGs). (A) The principal component analysis (PCA) of the two datasets and clinical characteristics;
(B) The PCA of the combined dataset and clinical characteristics. The horizontal axis represents the first principal component and the vertical axis
represents the second principal component. It is seen that the dataset before merging has some differences, and the normal and CAS groups
have some similarities. After merging and removing the batch effect, it is seen that the merged dataset has some similarity and the normal and
CAS groups have some differences. (C,D) The (C) heatmap and (D) volcano plot for CAS differentially expressed genes (DEG)s. The heatmap
demonstrates significantly differentially expressed DEGs in the normal and CAS groups, with red representing high expression and blue
representing low expression. The volcano plot demonstrates DEGs with P < 0.05 and |logFC|>0.5, where red represents DEGs down-regulated in
CAS, while blue represents DEGs up-regulated in CAS, and green represents genes not differentially expressed. (E) Venn diagram showing 4
CASCRGs; (F–H) The differential expression of CASCRGs in different arterial beds of (F) CAS, (G) femoral AS (FAS), and (H) inflapulite AS (IPAS);
(I) Correlation analysis between CASCRGs. There was a strong synergy between SLC31A2, NLRP3 and CDKN2A, whereas GLS showed antagonistic
effects. (J) Boxplot showing differences in immune infiltration between CAS and control groups; (K) Correlation analysis of the CORGs with
infiltrating immune cells; (L-M) The GSEA for control (L) and CAS (M) samples. *P < 0.05, **P < 0.01, ***P < 0.001.

Wu et al. 10.3389/fcvm.2024.1471153
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FIGURE 3

Identification of cuproptosis-related molecular clusters in CAS. (A) Consensus clustering matrix; (B–D) Representative (B) cumulative distribution
function (CDF) curves and (C) delta area curves, and the (D) score of consensus clustering; (E) The PCA showing subtype distribution. The
horizontal axis represents the first principal component and the vertical axis represents the second principal component. It can be seen that there
is some variability between the two clusters. (F) The item-consensus plot showing the total item-consensus values and sample purity for each
sample. (G–H) The (G) heatmap and (H) boxplot of expression levels of the 4 CASCRGs between the two cuproptosis clusters. The heatmap
demonstrates that SLC31A2, NLRP3 and CDKN2A are highly expressed in the C1cluster, while GLS is highly expressed in the C2 cluster.
(I) Comparison of immune cell infiltration between two clusters; (J) The GSVA analysis of the C1 and C2 clusters. *P < 0.05, **P < 0.01.

Wu et al. 10.3389/fcvm.2024.1471153
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C1 cluster (n = 43) and the C2 cluster (n = 18) (Figures 3A–F).

Among them, NLRP3, SLC31A2, and CDKN2A were highly

expressed in the C1 cluster, while GLS was highly expressed in

the C2 cluster (Figures 3G,H). Furthermore, immune infiltration

analyses of the two clusters revealed that the C1 cluster had a

significantly higher abundance of memory B cells, activated

memory CD4T cells, follicular helper T cells, γ-δ T cells, M0

macrophages, and activated mast cells (P < 0.05), while the C2

cluster had significantly higher levels of naive B cells, plasma

cells, resting memory CD4T cells, resting NK cells, monocytes,

M2 macrophages, activated dendritic cells, and resting mast cells

(P < 0.05) (Figure 3I). The GSVA results demonstrated that the

C1 cluster was mainly involved in immune diseases and

metabolism-related pathways, such as asthma, drug metabolism

other enzymes, glutathione metabolism, porphyrin and

chlorophyll metabolism, while the C2 clusters were primarily

enriched in cellular conduction-related pathways, such as

neurotrophic signaling, the insulin signaling pathway, the GNRH

signaling pathway, and ECM receptor interaction (Figure 3J).

These findings suggest that, based on the expression of

CASCRGs, CAS samples can be divided into two subgroups

with significantly different biological functions, especially

immune responses.
FIGURE 4

Co-expression network of CAS and cuproptosis-related molecular clusters
clusters after removing outlier samples; (C,D) The selection of soft thresho
16) and (D) molecular clusters (soft threshold = 15); (E,F) Correlation ana
(F) molecular clusters. The blue module was most correlated with CAS trai
correlated with the C2 clusters (correlation coefficient = 0.76, P= 3e-10). (G
the gene significance for (G) CAS and (H) molecular clusters.
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3.3 Identification of common module
hub genes

Co-expression networks and modules were constructed for

control and CAS samples using WGCNA (Figure 4A). Setting

the soft threshold to 16 resulted in four different colored

modules (Figure 4C), with the “blue” module showing the

highest correlation with CAS (Figure 4E). This module contained

653 hub genes and was positively correlated with other module

genes (Figure 4G). Additionally, WGCNA identified key gene

modules associated with CAS and cuproptosis (Figure 4B).

Setting the soft threshold to 15 resulted in three different colored

modules (Figure 4D). The “blue” modules showed strong

correlation with the cuproptosis cluster and were positively

correlated with other module genes (Figure 4F). This module

contained 253 hub genes and was positively correlated with other

module genes (Figure 4H). The intersection of module hub genes

from the two “blue” modules resulted in 220 common module

hub genes (Figure 5A). Functional enrichment analyses indicate

that cuproptosis is involved in the pathogenesis of CAS

associated with actin cytoskeleton organzition, cell migration,

leukocyte migration across the endothelium, fluid shear stress

and atherosclerosis, and platelet activation (Figures 5D,E).
. (A,B) The sample clustering plot of (A) all samples and (B) molecular
ld power corresponding to R2 = 0.8 of (C) all samples (soft threshold =
lysis between module eigengenes and clinical status of (E) CAS and
ts (correlation coefficient = 0.70, P= 1e-12); the blue module was most
,H) Scatter plot between module membership in the blue module and
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FIGURE 5

Enrichment analysis of common module hub genes and candidate hub genes. (A–C) Venn diagram showing the (A) 220 common module hub genes,
(B) 1,518 CAS-specific DEGs, and (C) 58 candidate hub genes; (D–F) The biological process, cellular component, molecular function, and pathway
analysis of (D,E) common module hub genes and (F) candidate hub genes.

Wu et al. 10.3389/fcvm.2024.1471153
To identify CAS-specific expressed genes, differential

expression analysis was performed of carotid, femoral, and

popliteal arteries stratified by GSE100927 and obtained 3,331,

2,125, and 1,845 DEGs, respectively, of which 1,518 DEGs were

specifically expressed in CAS (Figure 5B), and 58 candidate hub

genes were obtained by taking the intersections with 220

common module hub genes, which were CAS-specific expressed

differential genes (Figure 5C). Further functional enrichment

analysis emphasized the close correlation with biological

processes such as vascular smooth muscle contraction,

actomyosin structure organization, and cell migration, and are

closely related to various cancers, regulation of the actin

cytoskeleton, tight junctions, and the HIF-1 signaling

pathway (Figure 5F).
3.4 Construction and assessment of
machine learning models

To further screen for cuproptosis-related CAS-specific

expressed hub genes, 83 machine learning models were

developed for 58 candidate hub genes. Based on the mean AUC

value and mean F1 score considered GBM as the best model.

However, the GBM model contains 57 genes and too many

genes risk overfitting, so the LASSO regression + XGBoost model

was chosen (Train: accuracy = 0.905, precision = 0.902, recall =

0.932, F1 score = 0.458; GSE28829: accuracy = 0.897, precision =

1, recall = 0.842, F1 score = 0.457). The analysis revealed that the
Frontiers in Cardiovascular Medicine 08
combination of LASSO regression and XGBoost yielded

satisfactory diagnostic efficacy, with an area under curve (AUC)

value exceeding 0.9 for both the training and validation datasets,

and F1 scores of greater than 0.45 for both the training and

validation sets, which contained nine genes, namely, GEM

(logFC =−0.90), SGCE (logFC =−0.96), PCDH7 (logFC =−0.91),
IL6R (logFC = 0.86), GRIA1 (logFC =−1.02), ZNF532 (logFC =

−0.52), RAB23 (logFC =−1.07), RIMKLB (logFC =−0.80), and

ARHGEF25 (logFC =−0.71) (Figures 6A,B). The confusion

matrices further corroborated the high precision and minimal

error rates achieved by these models (Figure 6C). Subsequent

single-gene differential expression analysis underscored the

differential expression of SGCE, PCDH7, GRIA1, RAB23, and

RIMKLB in the validation set and also reduced the risk of

overfitting. These genes are down-regulated in CAS and are

considered as hub genes (Figure 6D).

To enhance the generalizability of the diagnostic efficacy of hub

genes and to delve into the potential gender-specific variations in

their expression profiles, a differential expression analysis was

conducted on carotid artery samples from GSE100927, stratified

by gender. The findings indicated that SGCE, PCDH7, GRIA1,

RAB23, and RIMKLB exhibited significant differences in

expression levels between male and female samples (P < 0.05 &

|logFC|>0.5), while no discernible expression disparity was

observed between genders within the CAS samples (P > 0.05).

Consequently, a predictive nomogram was constructed based on

hub genes to forecast the prevalence of CAS. However, GRIA1

did not perform well in the nomogram, leading to its exclusion.
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FIGURE 6

Construction and assessment of machine learning models. (A) Construction of 83 multiple machine learning models to screen for hub genes. The best
models were screened based on AUC values, F1 scores and gene counts. (B) ROC curves for training and validation sets; (C) Confusion matrix for training
and validation sets; (D) A single gene differential analysis was performed in the validation set to screen for hub genes; (E,F) Construction of a nomogram for
predicting the risk of CAS clusters based on the gene-based Lasso + XGBoost model; (G,H) Construction of a (G) calibration curve and (H) decision curve
analysis for assessing the predictive efficiency of the nomogram model; (I) ROC curves validate the diagnostic efficacy of the hub gene.

Wu et al. 10.3389/fcvm.2024.1471153
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Subsequently, a revised nomogram was created, incorporating the

genes SGCE, PCDH7, RAB23, and RIMKLB for enhanced

predictive capabilities (Figures 6E,F). The calibration curves,

decision curve analysis, and ROC curves demonstrated that the

predictive model of hub genes exhibited excellent diagnostic

performance, effectively distinguishing between normal and CAS

samples (Figures 6G–I).

The previous study identified four hub genes with

generalizability by gender stratification, which can effectively

distinguish CAS from normal samples. However, it is also

particularly important to distinguish the severity of CAS in the

clinic, and the GSE163154 and GSE41571 datasets were used to

characterize the expression of hub genes in stable and unstable

plaques. The results showed that, compared to stable plaques, the

expression of SGCE and PCDH7 was down-regulated in unstable

plaque patients (P < 0.05 & |logFC|>0.5), whereas there was no

difference in the expression of RAB23 and RIMKLB (P > 0.05),

which suggests that SGCE and PCDH7 may further serve as

biomarkers for distinguishing stable and unstable plaque patients.
4 Discussion

There is growing evidence that dysregulated copper

metabolism and copper excess or deficiency are associated with

AS, and extensive research has revealed a correlation between

elevated copper levels and cardiovascular disease (36). One study

found that copper bioavailability was negatively correlated with

carotid intima-media thickness and that CAS was a reliable

predictor of early AS in obese patients (37). In addition, Nadina

found increased copper levels in CAS plaques, and Nebojša
demonstrated that serum copper concentrations also varied in

patients with different types of CAS plaques, especially in

patients with hemorrhagic plaques of CAS, which were

significantly higher than in patients with calcified plaques (38).

These findings suggest that elevated copper levels may be

involved in the pathogenesis of CAS. Cuproptosis is an emerging

mode of cell death triggered by the accumulation of copper ions.

Recent research has revealed an association between cuproptosis

and the development of various cardiovascular diseases. To

investigate the potential mechanism connecting CAS and

cuproptosis, four CASCRGs (NLRP3, SLC31A2, CDKN2A, and

GLS) were first identified as highly expressed in CAS using

differential expression analysis.

There are also some bioinformatics analyses to study the

relationship between cuproptosis and CAS; however, because of

the differences in the datasets, the conclusions obtained are not

entirely consistent. Cui found that FDX1 and SLC3A1 were up-

regulated in AS plaques, while GLS was down-regulated, and

found that GLS was expressed in vascular smooth muscle cells

and SLC3A1 was expressed in macrophages (39). Chen found

that SLC31A1 and SLC31A2 were up-regulated in AS plaques,

while SOD1 was down-regulated (40). Wang found that ATP7B,

MTF1, NLRP3, AOC3, and MT1M were up-regulated in the

peripheral blood of AS patients (41). These findings suggest that

cuproptosis-related genes may affect AS by regulating copper ion
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metabolism, oxidative stress, and inflammation (13). However,

these studies are specific to systemic AS, and this study was more

refined to analyze CAS and showed that cuproptosis-related

genes affect CAS by regulating the immune microenvironment,

actin cytoskeleton, and cell migration.

Studies have indicated that excess copper ions promote the

formation of the NLRP3 inflammasome by inducing ROS

production and endoplasmic reticulum stress. The overactivation

of the NLRP3 inflammasome is implicated in the onset and

progression of AS by mediating inflammatory responses and

pyroptosis (25, 42). SLC31A2 is localized in late endosomes and

lysosomes, facilitating cellular copper uptake (43). Its high

expression in AS is consistent with findings from other studies

(40). However, the specific mechanism underlying its association

with AS remains poorly studied, warranting further experimental

verification. CDKN2A’s association with AS has been confirmed

in numerous studies, with high expression observed in AS

patients and diseased tissues, significantly correlating with disease

severity (44–48). As a recognized modulator locus of AS,

CDKN2A may influence the onset and progression of AS by

regulating platelet production and reactivity, monocyte and

macrophage cell proliferation, and apoptosis (49–51). GLS is an

enzyme essential for glutamine catabolism, which protects cells

from cuproptosis by promoting glutathione synthesis and

reducing ROS damage (52). Our study found that GLS was

specifically downregulated in CASCRGs, which may exacerbate

AS by affecting macrophage clearance of apoptotic cells, and

glutamine catabolism in impaired macrophages. Its expression

was significantly down-regulated in patients with CAS plaques,

which was also correlated with the severity of clinical adverse

events (53, 54).

Previous research has established that cuproptosis promotes

the development of AS and contributes to exacerbated oxidative

stress, inflammation, endothelial dysfunction, and dyslipidemia

(13, 36, 55). In this study, a functional enrichment analysis of

the module hub genes revealed that cuproptosis-associated CAS

pathogenesis is implicated in biological processes such as

vascular smooth muscle contraction, actin cytoskeleton

organization, and cell migration. It has been found that a

substantial migration of vascular smooth muscle cells into the

intima in AS lesions is known to have substantial pro-

atherosclerotic effects (56–58). The cytoskeleton, a fundamental

structural framework for cell migration, is primarily composed of

the actin fiber system (with actin as its subunit) and the

microtubule system (with tubulin as its subunit). Research has

demonstrated that alterations in the actin cytoskeleton in mouse

cells can mitigate AS development by inhibiting the migration of

smooth muscle cells (59). In addition, actin remodeling of

endothelial cells during leukocyte transepithelial migration is also

strongly associated with AS (60). Historically, it was discovered

in 1996 that exposure to copper ions can lead to profound

disruptions in cellular actin and fibronectin organization. This

results in the dissolution of filamentous actin, the disintegration

of the actin cortical meshwork, and cytoskeletal morphology

alterations (61). Collectively, these findings suggest that

cuproptosis might impact the cytoskeleton, thereby disrupting
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the migration of vascular smooth muscle cells. This disruption

could be mediated through the regulation of actin structure,

ultimately influencing the progression of AS.

The subsequent results from immune infiltration and

correlation analyses indicated that CASCRGs have regulatory

effects on multiple immune cells, suggesting that cuproptosis

alters the immune infiltration microenvironment in CAS.

Cuproptosis, a copper-dependent form of immunogenic cell

death, has an intricate relationship with immune responses,

which is not yet fully comprehended. Research indicates that

cuproptosis might contribute to immune responses through the

emission of various damage-associated molecular patterns and

tumor-associated antigens (62, 63). Furthermore, cuproptosis

can cause cell membrane damage, leading to the release of a

significant amount of damage-associated molecular patterns,

which effectively stimulate an immune reaction. This reaction

not only promotes substantial lymphocyte infiltration but also

triggers the secretion of inflammatory cytokines, thereby

potentially modifying the tumor microenvironment (64).

However, the specific mechanisms by which cuproptosis

influences cardiovascular diseases or CAS through immune

response modulation are still unclear. It has been demonstrated

that a Western diet can initiate NLRP3-dependent inflammatory

responses, induce the proliferation and reprogramming of

myeloid progenitor cells, and affect innate immune

reprogramming (65). Moreover, inhibiting NLRP3 activity has

been shown to reduce the M1/M2 macrophage ratio, prevent

macrophages from transitioning to the pro-inflammatory M1

phenotype, and decrease the levels of pro-inflammatory

cytokines such as IL-6, IL-1β, and TNF-α (66, 67). Additionally,

variations in CDKN2A expression have been linked to the

regulation of T cell phenotypes in AS and type 2 diabetes.

Lower CDKN2A expression levels have been associated with

higher levels of CDK4, and the use of a CDK4 inhibitor has

been shown to increase the levels of Treg cells and the

activation of the transcription factor phospho-STAT5 (reference

30176239). Decreased expression of CDKN2A/2B/2BAS in

leukocytes has also been correlated with an increase in

proatherogenic CD14++CD16 + monocytes (68). Lastly,

glutaminase-1-mediated glutaminolysis plays a crucial role in

facilitating macrophage clearance of apoptotic cells during

homeostasis in mice. Impaired macrophage glutaminolysis can

exacerbate atherosclerosis, and glutaminase-1 expression has

been strongly linked to atherosclerotic plaque necrosis in

patients with cardiovascular disease (53). The above studies

suggest that the cuproptosis-related genes NLRP3, CDKN2A,

and GLS regulate the transformation of T cell, macrophage, and

monocyte phenotypes and alter the immune microenvironment

to some extent.

In addition, the immune infiltration analysis revealed that CAS

had a lower abundance of monocytes, which is consistent with

other bioinformatics analysis studies on AS (69–71). AS is

considered a chronic inflammatory disease and monocytes are

considered pro-inflammatory cells, and studies have shown that

monocytes, once they enter the diseased blood vessel,
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differentiate to become macrophages and release more

inflammatory factors through the uptake of modifying

lipoproteins such as ox-LDL, forming foam cells, which may

account for the lower abundance of monocytes in CAS tissue (72).

Subsequently, the application of 83 machine learning

algorithms was employed to identify hub genes for cuproptosis-

related CAS. The Lasso regression combined with the XGBoost

model emerged as the most effective, demonstrating the highest

AUC values. Further external independent validation through

single-gene differential analysis revealed SGCE, PCDH7, RAB23,

and RIMKLB as hub genes. These genes modulate alternative

splicing by influencing cytoskeleton composition and cell

adhesion and are found to be downregulated in CAS. Further

validation of the generalizability of the hub genes was conducted

by stratifying the GSE100927 dataset across both genders. To

investigate whether these genes could differentiate the severity of

CAS, validation was extended to two additional datasets, which

demonstrated that the SGCE and PCDH7 genes were down-

regulated in unstable CAS plaque patients compared with stable

CAS plaque patients, suggesting their potential as biomarkers for

distinguishing stable from unstable plaques in CAS.

SGCE is a component of the sarcoglycan complex that forms a

link between the F-actin cytoskeleton and the extracellular matrix,

and defects in its components have been shown to be associated

with myoclonus-dystonia syndrome and cardiomyopathy (73,

74). It was found that patients with sarcoglycan deficiency may

have a molecular basis for differential smooth muscle

dysfunction that induces coronary vasospasm, affecting AS by

influencing endothelial dysfunction and arterial remodeling

(75–77). In addition, SGCE affects carotid biomechanical

characteristics; SGCE-deficient mouse carotid arteries had

decreased distensibilities in pressure-diameter tests and generated

elevated axial loads and stresses in axial force-length tests (78).

PCDH7 is a crucial integral membrane component of the

calreticulin superfamily, which is instrumental in modulating the

dynamics of intercellular adhesion and the structural integrity of

the contractile actin cytoskeleton (79). Recent investigations have

revealed that PCDH7 expression is significantly diminished in

atherosclerotic lesions of the monkey iliac artery, as well as in

atherosclerotic plaques (80). Intriguingly, it has been established

that the preservation of intercellular adhesion serves to curb the

proliferation of vascular smooth muscle cells, a pivotal process in

the progression of AS (81).

RAB23 encodes a small GTPase, which functions as a negative

regulator of the Sonic hedgehog signaling pathway. It plays a

crucial role in transporting transmembrane receptors related to

Sonic hedgehog signaling to the cilia (82, 83). The vesicular

trafficking of RAB23 is vital for the formation and composition

of cilia, which are sensitive to shear forces. Primary cilia have

been shown to inhibit the progression of AS by triggering

calcium influx, activating endothelial nitric oxide synthase, and

promoting nitric oxide production, thereby reducing vascular

calcification and protecting endothelial function from blood flow

disturbances (84). In addition, statins are commonly used as

drugs for the treatment of CAS, and pravastatin was found to
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significantly down-regulate the level of RAB23 in patients, which

may improve lipid metabolism and inhibit cholesterol

biosynthesis by regulating the Sonic hedgehog pathway, thus

treating AS (85–87).

RIMKLB facilitates the production of β-citrullinyl-L-glutamate

and N-acetyl-L-aspartyl-L-glutamate, both of which play pivotal

roles in amino acid metabolism. Recent studies have identified

the role of RIMKLB in maintaining the balance of zinc and

copper ions within the epicardial adipose tissue during heart

failure (88). However, the connection between RIMKLB and the

development of AS remains to be fully elucidated.

In this study, a comprehensive bioinformatics analysis was

conducted to explore the relationship between CAS and

cuproptosis. Four CASCRGs (NLRP3, SLC31A2, CDKN2A, and

GLS) were identified, revealing that cuproptosis is intimately

linked to immune responses and can significantly alter the

immune infiltration microenvironment within CAS. Two distinct

clusters of cuproptosis-related molecules were discerned within

CAS samples, exhibiting notable variances in immune responses.

Multiple models were developed based on machine learning

techniques, with the Lasso regression combined with the

XGBoost model showing satisfactory diagnostic efficacy.

Furthermore, four hub genes (SGCE, PCDH7, RAB23, and

RIMKLB) were identified and used to construct a predictive

nomogram for the incidence of CAS. Additionally, the genes

SGCE and PCDH7 were found to be effective in assessing the

stability of CAS plaques.

However, this study has some limitations. Firstly, the datasets

used in this study were sourced from different countries, such as

France and New Zealand, which may introduce bias and make the

findings of this study more applicable to Western countries.

Additionally, the datasets from various platforms may have omitted

some potential DEGs after merging. Secondly, due to database

limitations, it was not possible to obtain more CAS samples for the

study. The relatively small sample size hindered the effectiveness of

unsupervised cluster analysis in subtyping group CAS, potentially

leading to unstable groupings or the omission of certain subtypes.

Finally, this study did not perform experimental validation of

CASCRG in CAS models, neither in vivo nor in vitro, and the

mechanism by which cuproptosis influences CAS through immune

response modulation remains unclear.
Conclusions

Cuproptosis alters theCAS immune infiltrationmicroenvironment

and may regulate actin cytoskeleton formation.
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