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Drivers of cardiovascular disease
in metabolic dysfunction-
associated steatotic liver disease:
the threats of oxidative stress
Erika T. Minetti, Naomi M. Hamburg and Reiko Matsui*

Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian
School of Medicine, Boston, MA, United States
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated
steatotic liver disease (MASLD), is the most common liver disease worldwide,
with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is
the number one cause of mortality rather than liver disease. Liver
abnormalities per se due to MASLD contribute to risk factors such as
dyslipidemia and obesity and increase CVD incidents. In this review we discuss
hepatic pathophysiological changes the liver of MASLD leading to
cardiovascular risks, including liver sinusoidal endothelial cells, insulin
resistance, and oxidative stress with a focus on glutathione metabolism and
function. In an era where there is an increasingly robust recognition of what
causes CVD, such as the factors included by the American Heart Association
in the recently developed PREVENT equation, the inclusion of liver disease
may open doors to how we approach treatment for MASLD patients who are
at risk of CVD.
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Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease

in the United States and its incidence is associated with obesity and diabetes (1). In 2023,

there has been a change in nomenclature, from NAFLD to MASLD (Metabolic

dysfunction-Associated Steatotic Liver Disease) following a multi-society Delphi

decision to use a more descriptive and less stigmatizing disease name (2). Following

this change, we will be using the most updated nomenclature in our review paper.
Abbreviations

ALT, alanine transaminase; apo B100, apolipoprotein B100; AST, aspartate transaminase; BMI, body mass
index; ChREBP, carbohydrate regulatory element-binding protein; CRP, C reactive protein; CVD,
cardiovascular disease; eNOS, endothelial nitric oxide synthase; FIB-4, fibrosis 4 index; Gcl, glutamate-
cysteine ligase; GGT, gamma-glutamyl transferase; Glrx, glutaredoxin 1; GSH, glutathione; HSC, hepatic
stellate cell; LDL, low density lipoprotein; LSEC, liver sinusoidal endothelial cell; MASH, metabolic
dysfunction-associated steatohepatitis; MASLD, metabolic dysfunction-associated steatotic liver disease;
MTTP, microsomal triglyceride transfer protein; NAFLD, non-alcoholic fatty liver disease; NASH, non-
alcoholic steatohepatitis; NFS, NAFLD fibrosis score; PNPLA3, patatin-like phospholipase domain-
containing protein 3; R-SSG, S-glutathionylation; ROS, reactive oxygen species; SNP, single nucleotide
polymorphism; SREBP1c, sterol regulatory element-binding protein 1c; T2DM, type 2 diabetes; THR,
thyroid hormone receptor; TM6SF2, transmembrane 2 superfamily member 2; VLDL, very low density
lipoprotein.
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FIGURE 1

New nomenclature and criteria. Transition from the old NAFLD nomenclature to the new MASLD terminology, highlighting key differences in
diagnostic criteria. The old NAFLD criteria focused primarily on hepatic steatosis whereas the new MASLD criteria take into account a broader
range of metabolic risk factors.
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However, the new nomenclature is accompanied also by a change

in criteria. (Figure 1) In spite of the difference of criteria,

discrepancy in population between NAFLD and MASLD is

minimal. Our knowledge of NAFLD can be still valid in the

context of MASLD (3). As such, in this paper we will use the

term MASLD/MASH (Metabolic Dysfunction-Associated

Steatohepatitis) while discussing findings from papers that

studied NAFLD and/or NASH.

Fatty liver or steatosis alone is not necessarily harmful but may

progress to metabolic dysfunction associated steatohepatitis

(MASH) with inflammation and fibrosis. People with MASH

have a higher risk of developing liver cirrhosis and hepatocellular

carcinoma. The presence of fibrosis increases severity of the

disease and extrahepatic complications. MASLD with

steatohepatitis is designated as MASH (2).

Recently, MASLD has been recognized as an independent risk

factor of cardiovascular diseases (CVD) (4, 5). Clinical studies

reported that the death of MASLD patients was caused by CVD

more than by liver-related disease (1, 6, 7). MASLD was also

associated with a higher risk of atherosclerosis (8, 9),

hypertension (10, 11), valvular heart disease, cardiomyopathy,

and arrhythmias (12, 13). It may not be surprising to find the

link because MASLD is associated with common metabolic risk

factors including obesity, hyperlipidemia, and diabetes, which

have cardiovascular implications. Extensive reviews regarding

MASLD and its cardiovascular or extrahepatic complications are

available elsewhere (4, 6, 14, 15). In this review, we discuss the

mechanistic connection between MASLD and CVD besides

epidemiological associations, with a focus on oxidative stress

(oxidants) and insulin resistance. Oxidants contribute to MASLD
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progression and are known to exacerbate CVD. However, simple

antioxidant therapies do not result in significant effects either on

MASLD or CVD. Elucidation on the connection between MASLD

and CVD may aid to prevent CVD in people with MASLD.
Epidemiology

The global prevalence of MASLD in 2016 was estimated to be

37.8%, with numbers higher in men (39.7%) than women

(25.6%) (16, 17) approximately a quarter of adults in the U.S.

have MASLD (17).

A retrospective study of MASLD patients found that CVD was

the number one cause of mortality, accounting for almost half the

reported deaths, followed by malignancies (18%) and liver-related

disease (18). MASLD is associated with high incidence of

myocardial infarctions, atrial fibrillation, and cardiomyopathy,

linked to peripheral arterial disease, with also some controversial

evidence on the association with strokes (19–26). Fibrosis, in

particular, is a predictor of CV disease and severity as it is

associated with atrial fibrillation, myocardial infarctions and

strokes (12, 24, 27, 28).

MASLD is defined as steatotic liver disease with at least one of

five conditions including impaired lipid, glucose metabolism, and

hypertension (Figure 1). It is well known that MASLD has

shared risk factors such as obesity and diabetes with CVD.

Obesity is a characterizing factor in the development of

MASLD, as body mass index (BMI), waist circumference, and

body fat mass are all significantly correlated with elevated risk

for MASLD (29). Steatosis was found correlating to degree of
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obesity (30). However, a meta-analysis reports that 25% of people

with MASLD are lean, and cardiovascular cause of death was

similar in lean MASLD compared with obese MASLD (31).

Therefore, obesity is associated with MASLD but may not

directly cause CVD in MASLD patients.

T2DM is also a significant risk factor for MASLD, as two

thirds of T2DM patients have MASLD, with about one third

having liver fibrosis (32). Diabetic patients with MASLD have

higher risk of CVD than those without MASLD, suggesting

synergic effects of diabetes and MASLD. Anti-diabetic drugs have

been beneficial effects on MASLD/MASH in diabetic patients.

Glucose-lowering drugs improve hepatic function and steatosis,

but the effects on liver fibrosis is questionable. It is still under

investigation if anti-diabetic drugs work on MASLD without

diabetes (33–35).
Hepatic pathology in MASLD

Liver sinusoidal endothelial cells in MASLD

The hallmark of MASLD is hepatic fat accumulation, and the

underlying mechanisms of this process have been shown to drive

CVD. The liver acquires lipids by uptake of fatty acids and via de

novo lipogenesis, while it disposes lipids by fatty acid oxidation

and by exporting as very low-density lipoprotein (VLDL). When

hepatic lipid acquisition exceeds disposal, it results in

accumulation of hepatic fats (36).

At cellular level in the liver, lipotoxicity due to excess lipids

triggers hepatocyte death, Kupffer cells and immune cells

activation, and increased inflammatory molecules. The liver has

unique liver sinusoidal endothelial cells (LSEC) that cover

hepatic sinusoids between blood and hepatocytes to facilitate the

exchange of macromolecules through distinct fenestrae. LSECs

play a critical role in filtration, vascular tone, immune response,

and endocytosis among other functions (37, 38). Lipotoxicity and

inflammation may cause capillarization (differentiation) of

LSECs, a process whereby LSECs lose the normal structure of

their fenestrae, leading to molecular transport dysfunction.

A study in mice showed that LSEC capillarization occurs in

early stages in MASLD and precedes the activation of Kupffer

cells and Hepatic stellate cells (HSCs). Researchers detected

morphological changes in size and number of LSEC fenestrae,

and increased expression of CD31 and CD34, both indicators of

capillarization (39).

In a mouse model where LSEC fenestrae formation is impaired

due to plasmalemma vesicle-associated protein deficiency, the mice

developed multiple hallmarks of MASLD such as steatosis,

hepatocyte ballooning, infiltration of macrophages, and collagen

production by HSCs (40). Impaired fenestrae in LSEC in this

mouse also causes higher plasma levels of LDL, cholesterol,

triglycerides, and lower HDL level, showing the impact on LSEC

capillarization on CV health (40).

LSEC capillarization leads to atherosclerotic cardiovascular

disease in particular by changes in the dynamics of lipid

transport. Loss of LSEC fenestrae disrupts the uptake of lipids
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such as triglyceride-rich chylomicron remnants from blood into

the space of Disse and then by hepatocytes. The reduced hepatic

ability to remove the triglyceride-rich chylomicron remnants

from blood causes hyperlipidemia, and an independent risk

factor of atherosclerotic CVD (41). Loss of fenestrae also disrupts

lipid transport within the liver by trapping VLDL and driving

steatosis (42, 43) (Figure 2).

In addition, the liver uptakes majority of gut microbiota-

derived lipopolysaccharides (LPS) through LSEC fenestrae.

Therefore, it is hypothesized that serum lipopolysaccharides

(LPS) levels may be increased in MASLD because hepatic LPS

clearance is impaired (44). Low-level increase in circulatory LPS

aggravates plaques formation (45), promoting atherosclerosis.

Patients with MASLD have vascular endothelial dysfunction as

assessed by flow-mediated dilation (46). LSECs also show

impairments in NO-mediated relaxation, a hallmark of

endothelial dysfunction, causing impaired microcirculation in the

liver (47). In addition, VEGF-induced fenestration of LSECs

requires NO (48). The diminished production of NO in the

dysfunctional LSEC could thus be affecting the VEGF-dependent

maintenance of LSEC fenestrae, leading to capillarization.
Insulin resistance in MASLD

To understand how insulin resistance contributes to the

development of CVD in the context of MASLD, it is important

to understand which tissues progressively become more resistant

to insulin and how they contribute to the manifestations of

MASLD. Insulin resistance in skeletal muscle decreases glycogen

synthesis in the muscle, and increases hepatic de novo lipogenesis

and triglyceride synthesis, resulting in atherosclerotic

dyslipidemia in lean insulin resistant people (49). Consequently,

the liver uptakes and accumulates lipids, affects insulin signaling,

and causes hepatic insulin resistance (50).

Elevated de novo lipogenesis causes an accumulation of

diacylglycerols in the liver, which are an intermediate in the

biosynthesis of triacylglycerols. An increase in diacylglycerols

causes protein kinase-Cϵ (PKCϵ) to be transported to the plasma

membrane where it binds to the kinase portion of the insulin

receptor, and inhibits phosphorylation of insulin receptor

substrate 2 (IRS2), resulting in a diminished response to insulin.

Insulin resistance results in elevated plasma glucose and insulin

levels. Insulin activates enzymes that are involved in fatty acid

synthesis. Thus, increased plasma insulin promotes hepatic de

novo lipogenesis and triglycerides synthesis, unsuppresses

gluconeogenesis in the liver, as well as impairs glycogen synthesis

(51–53) (Figure 3).

Triglycerides are normally exported from the liver in VLDL

particles, which contain apolipoprotein B100 (apo B100), and

this apolipoprotein formation is facilitated by the enzyme

microsomal triglyceride transfer protein (MTTP). Normally,

insulin inhibits MTTP synthesis and promotes apo B100

degradation. In MASLD, however, insulin does not prevent

formation of VLDL particles, even in post-prandial states when

de novo lipogenesis is occurring. VLDL size increases in MASLD
frontiersin.org
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FIGURE 2

Liver sinusoidal endothelial cells (LSECs) in MASLD. Normal LSEC has a unique fenestrae by which macromolecules may transfer between the
bloodstream and space of Disse (space between hepatocytes and sinusoid). LSEC reduces fenestrae and differentiates or capillarizes in the liver of
MASLD. In the presence of normal LSEC, triglyceride-rich chylomicron remnants are removed from the bloodstream (vascular lumen → fenestrae
→ space of Disse). Similarly, VLDL enters the bloodstream via LSEC fenestrae. With the loss of fenestrae, both of these processes are impaired,
driving atherosclerosis and hepatic steatosis respectively.
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and prevents them from exiting the liver through endothelial

sinusoids, resulting in hepatic fat accumulation (37).

One major implication of hepatic insulin resistance is its

connection with vascular insulin resistance. A mouse model of

liver-specific insulin receptor knockout subsequently developed

insulin resistance in aorta and heart and endothelial dysfunction

and inflammation (54). On the other hand, endothelial-specific

insulin receptor deficiency did not affect systemic insulin
FIGURE 3

Insulin resistance in MASLD. One major consequence of steatosis is
hepatic insulin resistance. In one of the mechanism, this can occur
via PKCϵ mediated inhibition of IRS2 phosphorylation, thus
dampening the effects of insulin. This impairment drives
hyperglycemia and hyperinsulinemia, which in turn stimulate de
novo lipogenesis, exacerbate fat accumulation in the liver and
perpetuate a detrimental cycle affecting systemic metabolism.
DNL, de novo lipogenesis; PKC, protein kinase C; DAG,
diacylglycerol; IRS, insulin receptor substrate.
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sensitivity and plasma lipids, but accelerated atherosclerosis

associated with endothelial NO synthase (eNOS) inactivation (55).

At a more molecular level, insulin resistance is driven by

insulin-activated transcription factors such as sterol regulatory

element-binding protein 1c (SREBP1c) and carbohydrate

regulatory element-binding protein (ChREBP), which control

expression of proteins involved in metabolic pathways such as

fatty acid synthesis, glycolysis, and lipogenesis. Mechanistically,

glucose has been shown to induce SREBP1c expression of

lipogenic genes specifically (56) A study in rats demonstrated

that diet-induced MASLD causes an increase in SREBP1c

expression, which may be involved in inhibiting IRS2 expression

and causing resistance to insulin (57) ChREBP also regulates

genes involved in lipogenesis such as liver pyruvate kinase, fatty

acid synthase, acetyl co-A carboxylase and hyperactivation of

these pathways leads to enhanced production of fatty acids and

triglycerides (58) Both SREBP1c and ChREBP are activated in

MASLD (59, 60). As such, an enhanced overexpression and

activation of these transcriptional regulators promotes the

conversion of glucose into fatty acids, which drives steatosis and

hepatic insulin resistance in a cyclic fashion that has systemic

implications as aforementioned. Also, oxidative stress is an

activator of SREBP1c in HepG2 cells and causes hepatic fat

accumulation, which in turn causes an increase in ROS,

indicating a detrimental cycle where hepatic fat accumulation

and SREBP1c overexpression progressively cause lipotoxicity and

worsen MASLD (61, 62).
Oxidative stress in MASLD

It is known that oxidants are involved in the pathology of

MASLD. Mitochondrial dysfunction and increased oxidants

generation have been detected in liver tissues from patients with
frontiersin.org
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MASLD. Mitochondria regulate fat oxidation and energy

production, and also generate oxidants through the electron

transport chain. Obese insulin-resistant individuals showed

upregulated hepatic mitochondrial respiration in the early stage,

but this adaptive response disappeared in progression of MASLD

to MASH. Obese patients with MASH displayed elevated hepatic

oxidative stress (H2O2) due to lower mitochondrial respiration,

causing disturbed insulin receptor signaling, oxidative DNA

damage, and systemic inflammation such as increased serum

IL-6 (63). Thus, increased oxidants lead to insulin resistance

(64). Also, GSH/GSSG is significant lower in type 2 diabetic

patients and insulin increased GSH/GSSG (65), suggesting insulin

can reduce oxidative stress by controlling GSH redox status.

Oxidative stress arises from imbalances between oxidant-

generation and antioxidant systems. Patients and animal models

with MASLD/MASH show increased oxidative markers (66).

Plasma antioxidants capacity and antioxidant enzymes such as

superoxide dismutase and catalase were lower in the liver of

MASLD patients (66).

Nicotinamide adenine dinucleotide phosphate oxidases

(NADPH oxidase, NOXs) are also involved development of

MASLD. Hepatic NOX1 expression is enriched in liver sinusoidal

endothelial cells (LSEC) and NOX1 deletion attenuates liver

injury and apoptosis in high-fat fed mice (67) NOX2 (gp91phox)

contributes to the generation of oxidants by Kupffer cells and

infiltration of macrophages in the liver. NOX2 deficiency

protected mice from high-fat induced steatosis and insulin

resistance (68). Hepatocyte-specific NOX4 deletion decreased

liver injury, apoptosis, oxidative stress, and fibrosis in mice with

diet-induced MASH (69). However, a recent report shows that

NOX4 is essential for the adaptive response to prevent

progression to MASH. Human hepatic NOX4 gene expression is

upregulated with steatosis but decreased in advanced MASH.

Hepatic NOX4 overexpression attenuates MASH and fibrosis in

high-fat diet fed mice (70), indicating a protective role of NOX4-

derived oxidants in the MASH model.

Oxidants and metabolic stress activate nuclear factor erythroid

2-related factor 2 (Nrf2). Nrf2 induces genes involved in

glutathione synthesis, thioredoxin, iron homeostasis, thus, Nrf2

activation ameliorates oxidative stress. Nrf2 is downregulated in

MASH and pharmacological activation of Nrf2 increased

glutathione (GSH) levels and attenuates MASLD and fibrosis (71, 72).

The antioxidant glutathione (GSH) is a tripeptide, produced

from glutamic acid, cysteine, and glycine in a two-step process

catalyzed by glutamate-cysteine ligase (Gcl) and glutathione

synthetase. The liver highly expresses the rate-limiting enzyme

Gcl (73). Therefore, a main GSH production occurs in the liver

although any cell can produce GSH. GSH levels are lower in the

liver of MASLD patients and further decreased with the

association of insulin resistance (74, 75). Hepatic GSH is

decreased also in high-fat fed rats and diet-induced MASH mice

(66, 71, 76). Data obtained from MASH patients and animal

models indicate an association between the depletion of hepatic

GSH and development of MASH.

Since the liver is a major source of GSH production, it plays a

role in the inter-organ homeostasis of GSH and cysteine (77–79)
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Therefore, lower GSH levels in the liver may affect the redox

status in the heart or other organs. A clinical study shows

plasma GSH level is significantly decreased in MASLD or MASH

patients compared to healthy age-, sex-matched control (80).

Lower plasma GSH is associated with cardiovascular risks (81).

Dietary supplements which potentially increase plasma GSH

improve cardiometabolic health in diabetic patients (82). Taken

together, decreased hepatic GSH synthesis in MASLD may cause

systemic depravation of GSH and increased oxidative stress,

which is a major risk factor of CVD. (Figure 4)

Also, circulating GSH can be recycled. Gamma-glutamyl

transferase (GGT) is an enzyme which recycles cysteine from

extracellular GSH to promote replenishment of intracellular

GSH. Elevated serum GGT is a reflection of oxidative stress and

correlates with higher incidence of metabolic disease and CVD as

shown in a Framingham Heart Study (83).
Inflammation in MASLD

Immune cells activation in the liver contributes to MASLD

progression (84–86). Inflammatory cytokines increase from adipose

tissue in the context of MASLD. Among circulating cytokines, a

meta-analysis indicates that CRP, IL-1β, IL-6, and TNF levels are

associated with increased risk of MASLD (87). Uptake of lipids via

macrophage scavenger receptor 1 induces a JNK-mediated pro-

inflammatory response, increasing production of cytokines such as

IL-6 and TNF (88). These are pro-inflammatory and pro-

atherogenic cytokines causing CVD risk. A clinical study has

shown that inhibiting IL-1β significantly reduces cardiovascular

events (89). IL-6 deletion attenuates left ventricular hypertrophy

and dysfunction induced by pressure overload, indicating IL-6

signaling is essential cardiac myocytes hypertrophy (90).

Circulating levels of both IL-6 and high-sensitive C-reactive protein

(hsCRP) are independently associated with risk of CVD (91, 92).

Tumor necrosis factor (TNFα) is associated with insulin resistance

and induces inflammatory cytokines. Thus, inflammation in the

liver may cause systemic factors to connect MASLD and CVD.

Multiple populations of macrophages are in the liver and are

thought to have pro-inflammatory roles. However, a specific

population of human resident liver immune cells may express

antioxidant activity and protect metabolic impairment in obesity

by reducing oxidative stress (93).

Also, low-grade inflammation associated with MASLD comes

from gut microbiota imbalance. High fat high sugar diet alters

gut microbiota and increases bacteria and other organisms which

produce LPS, pathogen-associated molecular pattern, and

harmful metabolites, resulting in the activation of inflammatory

pathways (94–96). Gut microbiota alteration (dysbiosis) was one

of the risk factors relating to severity of MASLD and associated

with inflammation, ballooning, and fibrosis in MASLD patients

(97). Gut microbiota imbalance causes oxidative stress, systemic

inflammation, and significant impacts on CVD (98). For example,

LPS promotes pro-inflammatory status in atherosclerotic artery,

leading plaque instability and thrombus formation (45). A gut

bacteria-derived metabolite, trimethylamine N-oxide (TMAO),
frontiersin.org
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FIGURE 4

GSH metabolism and function. This illustrates GSH synthesis and recycles in the cells and its molecular functions. Oxidized GSH (GSSG) may cause
oxidative stress, but other roles are protective from oxidative stress and help to maintain redox homeostasis. GSH, glutathione; GSSG, oxidized
glutathione; Cys, cysteine; Glu, glutamic acid; Gly, glycine; GCL, glutamate-cysteine ligase; GS, glutathione synthetase; GGT, gamma-glutamyl
transferase; DP, dipeptidases; GPx, glutathione peroxidase; GSH-R, glutathione reductase; Glrx, glutaredoxin; P-SSG, glutathionylated protein;
H2O2, hydrogen peroxide; ROS, reactive oxygen species.
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promotes form cell formation and atherosclerosis (99). Elevated

circulating TMAO levels relate to CVD risk and mortality in

multiple cohort studies as well as severity of MASLD (98, 100).

Thus, gut microbiota influence pathology of CVD and MASLD.

A meta-analysis has shown that microbiota intervention with

probiotics and prebiotics improves inflammation, insulin

resistance, dyslipidemia, obesity, liver injury in MASLD patients

(101) and probiotics can suppress steatosis in high-cholesterol fed

rabbits (102). Presumably, this treatment may reduce the

incidence of CVD in MASLD patients.

In addition, secretion of microRNA (miRNA) is changed with

MAFLD. The steatotic liver increased secretion of miRNA-

containing small extracellular vesicles which promote form cell

formation and atherosclerosis by inhibiting ABC1-mediated

cholesterol efflux (43) or cause endothelial inflammation by

activating NF-kB activity (103).
Liver fibrosis and cirrhosis

During the chronic progression of MASLD, immune cells

activation induces HSC activation and differentiation into

myofibroblast-type cells, which produce extracellular matrix

leading collagen accumulation. Liver fibrosis precedes cirrhosis
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with its associated complications such as liver failure and

hepatocellular carcinoma (104–106).

Liver fibrosis in the setting of MASLD is the strongest predictor of

prognosis and mortality. Fibrosis severity has been linked to adverse

metabolic outcomes, cardiovascular disease, mortality, and liver-

related morbidity (107–110). For example, A Korean population

study showed MASLD patients with advanced liver fibrosis

measured via the BARD score had higher incidents of heart failure

and cardiovascular mortality when they compared MASLD patients

without severe fibrosis (111). Similarly, fibrosis scoring systems NFS

(NAFLD Fibrosis Score) and FIB-4 (Fibrosis 4 Index) were found

to correlate with CVD mortality (112) Therefore, it is important to

reverse liver fibrosis or block the fibrotic process in MASLD to

reduce mortality and comorbidity of CVD.

One mechanistic target that has been identified for treating

MASLD is fibroblast growth factor 21 (FGF-21), which is

involved in ferroptosis, a process that in the liver has recently

gained attention due to its implications in metabolic disease

(113). Ferroptosis is an iron-dependent mechanism of

programmed cell death, which is achieved via oxidative stress,

and has significant implications in the development of hepatic

fibrosis (114, 115). While FGF-21 overexpression protects

hepatocytes from being damaged in mitochondria-driven

oxidative processes, the lack of FGF-21 induces iron-overloaded

ferroptosis, driving hepatic fibrosis (116). A clinical trial assessing
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the efficacy of Pegozafermin, an FGF-21 analogue, has shown

improvements in fibrosis, opening the door to the possibility of

attenuating CVD in the context of advanced MASLD (117).

When liver fibrosis further progresses, and chronic MASLD

leads to liver cirrhosis, one consequence that manifests is portal

hypertension, or hypertension of the portal vein, which has

systemic implications and can affect the heart (118). Specifically,

cirrhosis and portal hypertension can affect heart function,

leading to a condition known as cirrhotic cardiomyopathy. The

structural changes of cirrhotic liver and low endothelial NO

production cause portal hypertension. The physiological response

to elevated pressures in the portal vein is systemic vasodilation,

which is followed by an activation of the renin-angiotensin-

aldosterone system and sympathetic nervous system to maintain

normal blood pressures, and concomitant increase in blood

volume, all of which drive cirrhotic cardiomyopathy (25, 119).

Cirrhotic cardiomyopathy is a complex pathology combined

systolic dysfunction (low ejection fraction) and diastolic

dysfunction (impaired ventricle relaxation) according to cirrhotic

cardiomyopathy consortium criteria (2019) (120) and can be

explained by morphological changes in the heart, including

dilation of left ventricle and thickening of the septum, among

other examples of cardiac remodeling, which are features of

cardiomyopathy (26, 121).

NO from endothelial NO synthase (eNOS, NOS3) is normally

cardioprotective. However, in the decompensated liver cirrhosis,

increased inflammatory cytokines (e.g., TNF, IL-1) stimulate

inducible NO synthase (iNOS, NOS2) which can worsen cardiac

function. In a cirrhotic cardiomyopathy animal model, iNOS

expression, not eNOS, was upregulated and the NOS inhibitor

improved cardiac muscle contractility (122). Notably, iNOS may

produce harmful superoxide and peroxynitrite under certain

conditions (123). Therefore, activated iNOS causes dysfunction of

cardiac proteins (124).

As such, the dysregulation of portal vein blood pressures,

inflammation, and oxidative stress are factors where the hepato-

cardiac axis is impacted in the context of advanced MASLD,

driving cardiovascular disease.

Evidence of liver fibrosis and abnormalities using MRI-derived

iron-corrected T1 mapping (cT1) imaging technique is associated

to CVD, in particular atrial fibrillation and heart failure,

independently of other cardiovascular risk factors (125). This

type of new imaging techniques open the door to non-invasive

screening techniques to detect MASLD-related cardiovascular

risks in early stages, leading to more widespread screening and

timely diagnosis, potentially steering patients away from CVD.

Accumulation of hepatic fat with its broad consequences are

also dictated by genetic polymorphisms, notably of patatin-like

phospholipase domain-containing protein 3 (PNPLA3) and

transmembrane 2 superfamily member 2 (TM6SF2) genes. In

mice, abundance of the PNPLA3 I148M variant accumulates in

lipid droplets in the liver, resulting in a fat accumulation. The

subsequent knockdown of this gene diminished TG levels in the

liver, showing its potent and isolated effect (126). The same

rs738409 (I148M) polymorphism of the PNPLA3 gene is

associated with the metabolic syndrome and insulin resistance in
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those who have MASLD (127). In the patients with diabetes who

have an intermediate FIB-4 score for MASLD, this SNP has been

linked to a high risk of cirrhosis, comparable to those with a

higher FIB-4 score (126, 128). As such, genetic polymorphisms

could be used to stratify MASLD patients more accurately,

potentially preventing the cardiovascular consequences associated

with progression of steatosis to cirrhosis. TM6SF2 also has

implications in MASLD; studies have shown that it is required

for hepatic VLDL secretion, whereas knocking it out in mice

prevents hepatic TG from being packaged and exported as

apolipoproteins, resulting in a 3-fold increase in the liver TG

level (129). The same concept was elucidated ex vivo with

human liver samples (130). Integrating genetic variability as a

factor for diagnosis and treatment of MASLD may provide

valuable information on how prone an individual may develop

steatosis. Taken together, using genetic information to aid the

classification of MASLD stages may be helpful to prevent

cardiovascular complications before their development.
Discussion

We reviewed how the hepatic pathological changes lead to

increased CVD in MASLD patients. Metabolic changes lead to

elevated levels of circulating lipids, glucose, and insulin, which

contribute to atherosclerosis and increase the risk of CVD. In

individuals with MASLD, the liver releases systemic factors such

as inflammatory cytokines, LPS, and extracellular vesicles. These

factors cause endothelial dysfunction and atherosclerosis, and

further increase CVD risk. Additionally, decreased levels of GSH

in the liver can exacerbate systemic oxidative stress, adding

another layer of risk for cardiovascular incidents. Figure 5 is a

summary of these processes. Furthermore, we discuss therapy

and future directions.
Antioxidants therapy and beyond

Excess oxidants or oxidative stress are involved in progression

of MASLD as well as CVD. However, clinical trials of antioxidant

vitamins (ascorbic acid, α-tocopherol, β-carotine) did not prove

efficacy to treat or prevent CVD (131, 132). Interestingly, a

clinical study of dietary intake of antioxidants by food

demonstrated that vitamin E (α-tocopherol) was effective to

reduce incidence of CVD (133). Also, cliniacal trials show

vitamin E improved hepatic function in MASH patients without

diabetes, but failed to improve in pediatric MASLD (134–136).

Currently, vitamin E is approved to treat only non-diabetic adult

patients with biopsy-proven MASH for short term treatment. The

safety of high dose vitamin E is a concern (137). In addition, Nrf2

activator may enhance antioxidant response, and polyphenols,

flavonoid, and metformin can improve mitochondrial dysfunction

to reduce oxidative stress (138, 139). However, clinical studies and

trials have not approved any antioxidant therapy for either

MASLD or CVD.
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FIGURE 5

Summary: connection from MASLD to CVD. Lipid accumulation causes morphological and physiological changes at cellular levels in the liver, leading
systemic effects which are CVD risk factors. Summary of the review is shown.
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Reactive oxidant species (ROS) generate oxidized

phospholipids. Oxidized phospholipids further accumulate ROS

and induce mitochondrial dysfunction in hepatocytes. It is shown

that neutralizing antibody to oxidized phospholipids improved a

mouse model of MASH, reducing steatosis, inflammation, and

fibrosis (140). Therefore, targeting oxidized phospholipids, not

ROS itself, can be therapeutic.

As mentioned above, there is an association between the

depletion of hepatic GSH and development of NASH. Increased

GSH by antioxidant compound such as N-acetylcysteine can

reduce oxidative stress and inflammation in animal models of

MASLD (141). A few clinical studies indicate that direct GSH

administration by oral or intravenous injection improved liver

enzymes in patients with MASLD (79). Sublingual form of GSH

was more effective to increase total GSH and plasma vitamin E

level compared to oral GSH or N-acetylcysteine (142).

The common notion is that antioxidants scavenge oxidants and are

beneficial to our health, but ROS are essential to mediate cellular

signaling by generating oxidative modification of proteins. Therefore,

excess antioxidant to eliminate oxidants may disturb physiological

responses that require reactive oxygen species (ROS) and, in turn, be

harmful (143, 144). This must be one of the reasons antioxidants do

not necessarily improve pathological conditions.

In addition, GSH serves as scavenger of oxidants but exists in

different forms inside cells. Excess oxidants and glutathione

peroxide generate oxidized glutathione (GSSG, oxidized form),
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whereas glutathione reductase reverses it to GSH (reduced form).

In diet-induced MASLD, hepatic GSH decreases, whereas GSSG

is elevated, and GSSG sensitizes hepatocytes to TNF-induced

cytotoxicity (145). GSSG accumulation or a higher ratio of

GSSG/GSH causes oxidative modification on protein thiols or

cysteine (Cys), a mechanism called S-glutathionylation (R-SSG).

This oxidative modification may alter cellular signaling; for

instance, it inhibits SirT1 and NFkB pathways, and induces

apoptosis (143, 146–149). Also, phosphatase and tensin homolog

(PTEN) is activated by S-glutathionylation in the liver of diet-

induced NAFLD (150). PTEN is a negative regulator of insulin

signaling and its activation may promote insulin resistance (151).

Furthermore, the small enzyme glutaredoxin-1 (Glrx) catalyzes

the reversal of R-SSG. Thus, S-glutathionylation is reversible, and

Glrx can activate SirT1 and inhibit apoptosis (152). In MASLD/

MASH livers, Glrx expression decreases and the amount of R-

SSG (glutathionylated proteins) increases (145, 153). When this

redox cycle is disturbed by lower Glrx activity, oxidized proteins

can become irreversibly-oxidized proteins which turn to be

dysfunctional or degraded. Therefore, Glrx prevents protein

thiols from permanent oxidation and maintains protein function

under the presence of oxidants. (Figure 6) Proteomics analysis of

plasma proteins from young adults indicates thiol oxidation is

progressive with cardiovascular risks. Irreversible oxidation

increased and Glrx expression decreased in patients with

reported cardiovascular event (154).
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FIGURE 6

Redox signaling. (1) Protein thiol oxidation, leading to sulfenylation (P-SOH) or nitrosylation (P-SNO). (2) React with abundant cellular GSH to form
protein S-glutathionylation (P-SSG, protein-bound GSH). (3) S-glutathionylaton can be reduced by glutaredoxin-1 (Glrx). This cycle generates
reversible protein function and causes cellular signaling, preventing irreversible damage of the protein. (4) Strong oxidative stress causes
irreversible oxidation (e.g., sulfonylation; P-SO3H), resulting in protein dysfunction or degradation (left side).
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Mice lacking Glrx develop MASLD (fatty liver, obesity,

dyslipidemia) with a regular diet, while adenoviral Glrx gene

transfer activates SirT1 and reverses steatosis (147). Pre-clinical

studies using an adeno-associated viral vector demonstrated that

administration of Glrx specifically targeting hepatocytes

attenuates fibrosis and inflammation in the liver of diet-induced

MASH mice (153). Importantly, Glrx enzyme activity requires

GSH and glutathione reductase. Therefore, GSH is not only an

antioxidant itself but also an essential cofactor for the reducing

enzyme. Glycine-based treatment increases GSH synthesis, fatty

acid oxidation, and attenuates diet-induced MAFLD, suggesting

that enhancing hepatic GSH synthesis is therapeutic for the

patients with MASLD (155). Glrx is also protective in the heart

mainly by inhibiting apoptosis (156, 157), highlighting its

importance in alleviating the cardiovascular consequences that

may occur in MASLD/MASH (158).
Therapy for MASLD and future direction

There are different pharmacological approaches to improve

MASLD and multiple clinical trials have been conducted. There

are summary of major current drugs under clinical trials or pre-

clinical studies in Table 1. The therapy for MAFLD is reviewed

more in details elsewhere (173, 174).

Anti-diabetic drugs have been used for metabolic impairment.

Metformin improves glucose metabolism and reduce body weight,

and likely reduce CV risk in diabetic patients. However, clinical

trials have not shown significant effects on steatosis, MASH, and
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fibrosis (175). Pioglitazone, peroxisome proliferator-activated

receptors (PPAR)-gamma agonist, improves insulin resistance

and hepatic steatosis, but its effect on liver fibrosis is unclear.

Pioglitazone may be considered for use in patients with T2DM

and with biopsy-proven MASH. Its effects on CVD are also

unclear although some trials show a protective effect (175).

Glucagon-like peptide 1 (GLP-1) agonist (e.g., Semaglutide)

decreases steatosis, obesity, insulin sensitivity, and CV risks.

Sodium glucose cotransporter 2 (SGLT-2) inhibitor is also ant-

diabetic drug. SGLT-2 inhibitor suppresses oxidative stress, ER

stress, and inflammation, and reduces steatosis and fibrosis in

animal studies, but improvement of fibrosis was not consistent in

human clinical studies (47).

The preventive effects on hepatic fibrosis would be beneficial to

reduce CVD associated MASLD. PPARα/Δ agonist (Elafibranor)

could suppress fibrosis and CVD risk factors. Farnesoid X

receptor against (Obeicholic acid) also reduces fibrosis in MASH

(110). Statin, which inhibits cholesterol synthesis via HMG-CoA

reductase, inhibit hepatic fibrosis and progression of MASLD

independent on diabetes (176). As we mentioned before, a FGF-

21 analogue (Pegozafermin) shows significant effects on liver

fibrosis in biopsy-proven MASH patients in a clinical trial (117).

Recently, FDA approved the first drug specifically intended to

treat patients with MASLD. Clinical trials showed the efficacy of

Resmetirom, a thyroid hormone receptor (THR) β agonist, for

MASH with fibrosis (164). Thyroid hormone reduces steatosis by

stimulating autophagy, mitochondrial biogenesis, fatty acid

oxidation, and controls cholesterol synthesis (177), and

attenuates oxidative stress and inflammation as shown in diet-
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TABLE 1 Overview of preclinical and clinical therapies for MASLD. The table includes treatments currently in use and experimental therapies under
investigation.

Drug therapy Study type Target mechanism Key findings
Clinical
trials

Acarbose Clinical (Phase IV) Alpha-glucosidase inhibitor In patients with CAD and impaired glucose tolerance significantly
reduced incident diabetes and facilitated regression to
normoglycemia (159)

Elafibranor Clinical (phase III) PPAR-α/δ agonist Lessened hepatic fibrosis, and improved cardiometabolic risk factors such
as better glycemic control and lower LDL cholesterol, (160)

Obeticholic Acid (OCA) Clinical (phase III) Farnesoid X receptor agonist Reduces liver fibrosis but transiently increases LDL cholesterol
levels (161)

Nicotinamide Riboside +
Pterostilbene (NRPT)

Clinical (phase II) Anti-inflammatory and
antioxidant

Reduced markers of hepatic inflammation in MASLD. Decreased ALT,
GGT, and ceramide 14:0 (162)

GLP-1 RA + GIP RA Clinical (phase II) GLP-1 and GIP receptor
agonists

In patients with T2DM lowered body weight and imoroved glycemic
control (163)

Resmetirom Clinical (phase III) Thyroid hormone receptor
beta (TRβ) agonists

Decreases hepatic fibrosis and LDL cholesterol levels. First FDA approved
drug for MASLD (164)

GLP-1 RA + GCG RA Clinical (phase II) GLP-1 and glucagon
receptor agonists

In patients with MASLD decreased hepatic fat and inflammation, and
body weight. (165)

SGLT2 Inhibitors (e.g.,
Empagliflozin)

Clinical (phase II) SGLT2 inhibition Hepatic fat decreases in relation to decreases in body weight and
improvement in insulin sensitivity (166)

Semaglutide Clinical (phase II & III) GLP-1 receptor agonist Did not resolve hepatic fibrosis or MASH, but is known to lower weight
and improve cardiovascular risk factors (167, 168)

G-protein-coupled receptor
40 agonist

Clinical (phase I) G-protein-coupled receptor
40 activation

Improves glucose metabolism in patients with T2DM by facilitating
secretion of hormones such as insulin, glucagon, GLP-1, GIP, PYY (169)

Dasatinib + Quercetin Clinical (phase I & II) Senolytic approach Reverses age-related scenescence and ameliorates inflammation in
adipose. Currently in trial to examine effects on liver fibrosis in
MASLD (170)

Preclinical Metformin + Resveratrol +
Rapamycin

Preclinical Nutritional reprogramming Combined therapy dampened the response of liver proteome and
mitochondria to intake of energy and macronutrients in mice (171)

N-Acetylcysteine (NAC) Preclinical Antioxidant Prevented maternal weight gain with HFD during pregnancy, and
reduced hepatic DAG and TG levels, and led to favorable metabolic
outcomes in offspring as well (172)

Glutaredoxin-1 (Glrx) Preclinical Thiol transferase (reducing
oxidative modification)

AAV-mediated administration into hepatocytes suppressed fibrosis and
inflamation in diet-induced MASH mice (153)

Antibody (E06) to oxidized
phospholipids (OxPLs)

Preclinical Neutralize oxidized
phospholipids

Neutrzlizing antibody (E06-scFv) overexpressing mice attenuated
steatosis, inflammation, fibrosis, progression to hepatocellular caricinoma
in MASH model (140)
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induced MASH mice (178). Its effect of lowering hyperlipidemia

might have an impact on atherosclerotic complications. Despite

the potential to attenuate CVD in patients with MASLD, thyroid

hormone may show adverse effects in the heart such as

tachycardia and arrhythmia. The heart mainly expresses THRα

isoform and the liver expresses THRβ, therefore, it was critical to

generate a THRβ specific agonist (179) Clinical studies in future

will reveal how the drug can prevent CVD associated with MASLD.

There are more lines of pre-clinical and clinical studies.

Glutaminase-1 (GLS1) which involved in glutamine metabolism

is overexpressed in the liver of MASH patients. GLS1 inhibitor in

pre-clinical models reduces steatosis and oxidative stress (180).

Nicotinamide riboside and pterostilbene, known as a supplement

Basis, reduce markers of hepatic inflammation in MASLD (162).

The combination therapies of these drugs are recommended to

hit several targets or pathways to treat MASH (181).

CVD risks arise from multiple factors. Recently, the American

Heart Association updated the risk prediction equation PREVENT

(AHA Predicting Risk of CVD Events) including kidney function

(182). Given the prevalence MASLD and the direct effect of

hepatic pathophysiological mechanisms to cardiovascular health,

the liver-cardiovascular axis can be considered in future

equations. Hepatic factors relating to MASLD such as plasma
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levels of ALT, AST, GSH, CRP, and hepatic CT can be included

to improve the long-term risk prediction of CVD.
Conclusion

MASLD starts with accumulation of excess lipids in the liver.

Fatty acid intake and de novo lipogenesis exceed disposal of

lipids from the liver, and lipotoxicity triggers hepatocyte injury,

immune cell activation, mitochondrial dysfunction, leading to

increased oxidants generation and production of inflammatory

cytokines. LSECs lose unique fenestra leading to impairments in

the hepatic transport of macromolecules. HSCs are activated to

produce collagens. Impaired insulin signaling in the liver leads to

hyperglycemia and hyperinsulinemia, and upregulated insulin

further activates de novo lipogenesis pathway. Excess oxidants

generation lowers antioxidant capacity and decreases GSH level

in the liver.

These pathological changes in the liver result in dyslipidemia,

hyperglycemia, increased circulating inflammatory molecules, gut

microbiota imbalance, and decreased plasma GSH. All the

systemic effects promote atherosclerosis and CVD incidents.

Thus, MASLD is a risk factor of CVD.
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We emphasize that oxidative stress is a key connection between

progress of MASLD and CVD. Oxidants are not only harmful to

cells, but also alter protein function by post-translational thiol

oxidation. Therefore, for example, administration of reducing

enzyme Glrx can be helpful to battle with oxidative stress and

prevent irreversible oxidation of proteins in case of advanced

MASLD or CVD. Anti-oxidant therapy is not merely eliminating

radicals. It is important keep the homeostasis of redox signaling.
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