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Identification of patients with
unstable angina based on
coronary CT angiography: the
application of pericoronary
adipose tissue radiomics
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Yang Xu4 and Ying Yang1*
1Cardiovascular Medicine Department, Affiliated Hospital of North Sichuan Medical College, Nanchong,
China, 2Digestive System Department, Affiliated Hospital of North Sichuan Medical College, Nanchong,
China, 3Thoracic Surgery Department, Nan Chong Center Hospital, Nanchong, China, 4Dermatological
Department, Nan Chong Center Hospital, Nanchong, China
Objective: To explore whether radiomics analysis of pericoronary adipose tissue
(PCAT) captured by coronary computed tomography angiography (CCTA) could
discriminate unstable angina (UA) from stable angina (SA).
Methods: In this single-center retrospective case-control study, coronary CT
images and clinical data from 240 angina patients were collected and
analyzed. Patients with unstable angina (n= 120) were well-matched with
those having stable angina (n= 120). All patients were randomly divided into
training (70%) and testing (30%) datasets. Automatic segmentation was
performed on the pericoronary adipose tissue surrounding the proximal
segments of the left anterior descending artery (LAD), left circumflex coronary
artery (LCX), and right coronary artery (RCA). Corresponding radiomic features
were extracted and selected, and the fat attenuation index (FAI) for these three
vessels was quantified. Machine learning techniques were employed to
construct the FAI and radiomic models. Multivariate logistic regression analysis
was used to identify the most relevant clinical features, which were then
combined with radiomic features to create clinical and integrated models. The
performance of different models was compared in terms of area under the
curve (AUC), calibration, clinical utility, and sensitivity.
Results: In both training and validation cohorts, the integrated model (AUC=0.87,
0.74) demonstrated superior discriminatory ability compared to the FAI model
(AUC=0.68, 0.51), clinical feature model (AUC=0.84, 0.67), and radiomic
model (AUC=0.85, 0.73). The nomogram derived from the combined radiomic
and clinical features exhibited excellent performance in diagnosing and
predicting unstable angina. Calibration curves showed good fit for all four
machine learning models. Decision curve analysis indicated that the integrated
model provided better clinical benefit than the other three models.
Conclusions: CCTA-based radiomics signature of PCAT is better than the FAI
model in identifying unstable angina and stable angina. The integrated model
constructed by combining radiomics and clinical features could further
improve the diagnosis and differentiation ability of unstable angina.
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1 Introduction

Coronary artery disease (CAD), predominantly caused by

atherosclerosis, is the leading cause of cardiovascular mortality,

posing a significant threat to human life worldwide (1, 2). Recent

statistics indicate that individuals suffering from angina pectoris

constitute half of the CAD patient population. Stable angina and

unstable angina are the two principal forms of this condition,

primarily manifesting clinically as chest pain of varying degrees (3).

Patients with unstable angina are at a higher risk of major

adverse cardiovascular events (MACE) and mortality compared

to those with stable angina (4). Moreover, when selecting

different treatment strategies for stable angina and unstable

angina, SA patients undergoing percutaneous coronary

intervention (PCI) do not exhibit a significant difference in long-

term MACE occurrence compared to those receiving medication

therapy (5, 6). In contrast, UA patients require rapid assessment

and management before deciding on PCI treatment (7).

Therefore, the early and rapid diagnosis and differentiation of

these conditions are crucial. Clinically, experienced medical

personnel often make preliminary diagnoses based on the

severity, frequency, and duration of the patient’s chest pain (8).

These initial assessments are then further evaluated with

electrocardiograms, laboratory results, and echocardiographic

parameters. However, these symptoms and tests lack specificity,

and there is a deficiency of effective biomarkers for the diagnosis

of unstable angina (9, 10). Coronary CT angiography (CTA) can

measure and assess vascular calcification and narrowing,

possessing an excellent negative predictive value, making it the

current first-line imaging tool for diagnosing unstable angina

(11). Coronary artery wall inflammation is a key factor leading to

the instability of atherosclerotic plaques, promoting plaque

progression and rupture, exacerbating luminal stenosis, and

triggering severe cardiovascular diseases such as acute coronary

syndrome (ACS) (12). Recent evidence suggests that during the

atherosclerotic process, inflammatory vasculature secretes a

variety of pro-inflammatory factors into the pericoronary adipose

tissue through paracrine mechanisms, leading to dynamic

changes in lipid-water balance. These changes can be captured

on CCTA via the fat attenuation index (13). FAI quantifies

alterations in PCAT composition caused by vascular

inflammation by recording CT density attenuation changes. It is

a sensitive biomarker that dynamically reflects coronary

inflammation (13, 14). However, vascular inflammation not only

causes changes in the FAI value through increased lipid

breakdown, decreased lipogenesis, and intracellular edema in

PCAT but also leads to more persistent changes in the

perivascular space, such as fibrosis and neovascularization

(15, 16). These persistent adverse structural changes are beyond

the measurement capabilities of FAI. Nevertheless, with the

application of artificial intelligence in medicine, emerging

technologies such as radiomics can overcome the limitations of

subjective human visual analysis. Radiomics allows for the non-

invasive extraction of vast databases of rich radiomic features

from medical images, enabling comprehensive, objective, and

quantitative assessment of lesion heterogeneity (17).
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Radiomics is a novel technique that extracts thousands of

quantitative features from medical images and uses methods such

as machine learning to identify the most valuable imaging

features (18). Its application in oncology and other fields is

already well-established, providing diagnostic assessment and

clinical decision support for cancer patients (15, 17).

In recent years, pericoronary adipose tissue (PCAT) has emerged as

a significant focus of research in the field of cardiovascular diseases.

This is largely due to the accumulating evidence suggesting that the

characteristics of PCAT, such as its density and texture, may have a

substantial relationship with the presence and severity of coronary

artery lesions. Understanding these relationships is crucial, as they

can potentially lead to new diagnostic and therapeutic approaches for

coronary artery disease (19–21). Unstable angina (UA) and stable

angina (SA) represent two distinct clinical presentations of coronary

artery disease, each with different prognostic implications and

management strategies. Distinguishing between these two types is

critical, as misclassification can lead to inappropriate treatment and

increased risk of adverse cardiovascular events. Despite

advancements in imaging techniques, effectively differentiating UA

from SA remains a significant challenge for clinicians.

Existing literature has explored various imaging modalities and

biomarkers for distinguishing UA from SA; however, few studies

have utilized radiomics to analyze PCAT specifically. While some

studies have highlighted the potential of radiomics in

cardiovascular imaging, they often focus on different anatomical

regions or disease states (22–24). Our approach is unique in that

it specifically applies radiomics analysis to PCAT, utilizing

coronary computed tomography angiography (CCTA) as the

imaging modality. The primary objective of this study is to

evaluate whether radiomics analysis of PCAT, as captured by

coronary computed tomography angiography (CCTA), can

effectively differentiate UA from SA. By employing advanced

imaging and analytical techniques, we aim to provide insights

into the diagnostic capabilities of PCAT radiomics (25–27).

Clearly articulating this objective not only highlights the rationale

behind our research but also underscores its potential impact on

improving clinical decision-making and patient outcomes.
2 Materials and methods

2.1 Study population and data collection

This retrospective single-center study was approved by the

Medical Ethics Committee of the Affiliated Hospital of North

Sichuan Medical College (Approval No.: 2023ER218-1). The entire

experimental process adhered to the principle of informed

immunity. The study is in accordance with the Declaration of

Helsinki. We systematically collected data from 240 patients with

angina pectoris who attended the Cardiac Center of the Affiliated

Hospital of North Sichuan Medical College and underwent CCTA

from February 2019 to December 2023. The cohort included 120

patients with stable angina and 120 with unstable angina [UA

patients met the diagnostic criteria for UA according to the 2021

American Heart Association/American College of Cardiology/
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American Society of Echocardiography/CHEST/Society for Academic

Emergency Medicine/Society of Cardiovascular Computed

Tomography/Society for Cardiovascular Magnetic Resonance chest

pain evaluation and management guidelines (5), and SA patients

conformed to the 2019 European Society of Cardiology guidelines

for the diagnosis of chronic coronary syndromes (28)]. Exclusion

criteria included a history of myocardial infarction or

revascularization, poor CCTA image quality, anomalies in coronary
FIGURE 1

Flow chart showing inclusion and exclusion criteria for the study population
UA, unstable angina; MI, myocardial infarction.
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artery origin or termination, and incomplete medical records. A

detailed flowchart outlining the patient selection process and study

design is provided in Figure 1. Additionally, we collected relevant

clinical history data for all patients enrolled in the study, including

demographic characteristics (gender, age, and body mass index),

cardiovascular risk factors (smoking, hypertension, diabetes,

hyperlipidemia, and medication history), laboratory parameters, and

echocardiographic indicators. Informed consent was obtained from
. CCTA, coronary computed tomography angiography; SA, stable angina;
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all patients prior to their participation in the study. Furthermore,

patient data were anonymized to protect their privacy and

confidentiality throughout the research process.
2.2 CCTA acquisition

All subjects selected for the study underwent scanning with a

dual-source 2*96 detector row CT scanner (Stellar Infinity

detector, SOMATOM Force, Germany). The scanner utilized

prospective electrocardiogram gating with tube voltages ranging

from 70 to 150 kV, a rotation speed of 0.25 s, and a temporal

resolution of 66 ms per segment, making it capable of

accommodating free heart rates during coronary CT. It also

featured a holistically designed photon detector with Edge and

Ultra-High Resolution (UHR) technology, reducing electronic

crosstalk between adjacent detectors, allowing the reconstruction

of 0.6 mm acquisition slices into 0.4 mm thin slices. To minimize

artifacts caused by respiratory motion, each patient underwent

breath-holding training prior to scanning, and all extraneous

objects that could degrade image quality were removed. Scans

were performed in a breath-hold state, with the upper boundary

at the thoracic inlet and the lower edge down to 1 cm below the

cardiac diaphragmatic surface; the CCTA data acquisition range

started 2 cm below the tracheal carina down to 1 cm below the

cardiac diaphragmatic surface, with the left and right boundaries

extending 1–2 cm beyond the heart margin.
2.3 Quantification measurement of FAI

Pericoronary adipose tissue was defined as all voxels within a

radial distance from the vessel wall equal to the diameter of the

vessel, within the range of −190 to −30 Hounsfield Units (HU).

The Fat Attenuation Indexwas derived by calculating the average

attenuation value of the pericoronary adipose tissue (i.e., the

mean CT value of PCAT). To comprehensively assess and

monitor the impact of inflammation on the coronary arteries, the

regions of interest (ROIs) for the three most significant epicardial

vessels - RCA, LAD, and LCX - were all automatically measured

using software in this study. To ensure the standardization and

reproducibility of data collection, FAI measurements for all

participants were performed using intelligent quantification by

Shukun Technology Co., Ltd, Beijing, China, Version:6.21.
2.4 PCAT segmentation and radiomics
feature extraction

Recent studies indicate that PCAT is a sensitive imaging

biomarker for the vulnerability of plaques surrounding the

coronary arteries (25). Therefore, in our study, we performed

PCAT segmentation on all three of the most significant

epicardial vessels. Using Shukun Technology software (14), which

employs a trained deep learning model for coronary

segmentation and a contracting skeleton algorithm to calculate
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the centerline of each coronary artery, we automatically tracked a

40 mm segment of interest in the proximal sections of the LAD,

LCX, and RCA. For the LAD and LCX, a 40 mm section

following the bifurcation of the left main coronary artery was

analyzed. For the RCA, to avoid the influence of the aortic wall,

we excluded the proximal 10 mm segment and focused on the

segment from 10 mm downstream of the aortic root to 50 mm

from the proximal end of the RCA. Additionally, when

segmenting coronary plaques in the corresponding regions, we

set the cross-sectional area of the segmentation to three times the

diameter of the vessel lumen to further ensure data

comprehensiveness. A total of 94 radiomic features were

extracted from the PCAT surrounding each coronary plaque,

including morphological features, first-order histogram features,

and higher-order texture features, yielding a total of 94*3

radiomic features per patient. Figure 2 illustrates the radiomics

workflow utilized in this study.
2.5 Feature selection and prediction model
building

Random Forest was used as the machine learning method to

build the models for differentiating unstable angina (UA) from

stable angina (SA). This algorithm was chosen due to its

robustness and ability to handle high-dimensional data, which is

a common characteristic in radiomics studies. Random Forest is

less prone to overfitting compared to other algorithms, such as

support vector machines (SVM) or neural networks, especially

when dealing with small sample sizes typical in medical research.

Additionally, Random Forest provides inherent feature

importance, allowing us to identify the most relevant imaging

features contributing to the model’s predictions. This

interpretability is particularly beneficial in a clinical context

where understanding the basis for decision-making is essential.

For hyperparameter optimization, we employed a grid search

method combined with cross-validation to systematically explore

different parameter settings. Key hyperparameters such as the

number of trees and the maximum depth of the trees were

optimized to enhance model performance.

The performance of the Random Forest model was evaluated

using several metrics beyond cross-validation, including accuracy,

precision, recall, and the area under the receiver operating

characteristic curve (AUC-ROC). These metrics provide a

comprehensive assessment of the model’s predictive capability,

ensuring its applicability in clinical decision-making.

This experiment employed machine learning methods

(Random Forest) to establish four models, comparing and

analyzing each model’s clinical performance in diagnosing and

differentiating between stable angina and unstable angina. The

detailed model-building process is as follows:

2.5.1 FAI model
FAI values for the three critical coronary vessels were included

in our study, but due to the relatively small number of input

features, we directly developed a machine learning model.
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FIGURE 2

A flow chart displaying the process for development of radiomicsbased integrated model. CCTA, coronary computed tomography angiography; PCAT,
pericoronary adipose tissue; FAI, fat attenuation index.
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2.5.2 Clinical model
We collected and organized as many clinical predictors used to

differentiate between UA and SA as possible, including patient

baseline conditions, cardiovascular risk factors, laboratory

indicators, and echocardiographic parameters. First, univariate

logistic regression was used to filter predictors with P < 0.05. These

clinical variables were then subjected to multivariate analysis,

resulting in the identification of the most relevant clinical features.

Using machine learning (Random Forest), we constructed an

independent clinical model based on these predictors.

2.5.3 Radiomics model
Initially, z-score standardization was used to minimize scale

differences between various radiomic features, normalizing the raw
Frontiers in Cardiovascular Medicine 05
imaging data. We performed a Mann-Whitney U test on all

radiomic features, retaining only those with P < 0.05. For features

with high redundancy, we employed Spearman correlation analysis

and excluded those with a correlation coefficient >0.9. Subsequently,

the remaining radiomic features underwent further selection

validation using the Least Absolute Shrinkage and Selection

Operator (LASSO) algorithm, resulting in the final radiomic feature

values with strong stability and high relevance. Ultimately, these

selected radiomic feature values were input into machine learning

(Random Forest) to construct the corresponding radiomics model.
2.5.4 Integrated model
We combined the independently selected clinical features with

the integrated radiomic features to build a comprehensive machine
frontiersin.org
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learning model. Based on this model, a corresponding

comprehensive nomogram was developed. To prevent overfitting

and balance the limited sample size, all four ML models were

calibrated using a 10-fold cross-validation approach (29).
TABLE 1 Baseline characteristics of the study population.

Characteristics Total
(n = 240)

SA group
(n = 120)

UA group
(n = 120)

P
value

Clinical characteristics
Age 64.10 ± 10.73 61.97 ± 10.50 66.22 ± 10.57 0.002

Smoking 0.37 ± 0.48 0.35 ± 0.48 0.39 ± 0.49 0.453

BMI 25.19 ± 2.70 24.70 ± 2.54 25.67 ± 2.78 0.008

Male gender 130 (54.17) 63 (52.50) 67 (55.83) 0.698

Hypertension 138 (57.50) 65 (54.17) 73 (60.83) 0.361

Diabetes 45 (18.75) 19 (15.83) 26 (21.67) 0.321

Baseline medications
Antiplatelet 44 (18.33) 21 (17.50) 23 (19.17) 0.868

Beta-blocker 16 (6.67) 9 (7.50) 7 (5.83) 0.796

ACEI/ARB 26 (10.83) 13 (10.83) 13 (10.83) 1.000

Statin 0.18 ± 0.38 0.18 ± 0.38 0.17 ± 0.38 0.891

Lipids, mmol/L
Triglycerides 1.70 ± 1.00 1.63 ± 0.90 1.76 ± 1.09 0.358

Total-cholesterol 4.57 ± 1.20 4.67 ± 1.20 4.48 ± 1.20 0.210

LDL 3.13 ± 1.39 3.47 ± 1.56 2.80 ± 1.09 <0.001

HDL 1.16 ± 0.47 1.20 ± 0.59 1.12 ± 0.32 0.777

Inflammatory markers
White cell count, ×109/L 6.83 ± 1.70 6.73 ± 1.73 6.93 ± 1.67 0.238

CCTA acquisition parameters
Radiation dose, DLP 412.67 ±

276.49
382.13 ±
256.39

443.21 ±
293.13

0.039

Tube voltage 70 kv 134 (55.83) 66 (55.00) 68 (56.67) 0.897

80 kv 89 (37.08) 46 (38.33) 43 (35.83) 0.789

90 kv 10 (4.17) 5 (4.17) 5 (4.17) 1.000

110 kv 7 (2.92) 3 (2.50) 4 (3.33) 1.000

Heart rate 74.08 ± 10.71 74.34 ± 9.86 73.82 ± 11.53 0.427

Systolic_pressure 133.74 ± 23.61 135.07 ± 25.76 132.40 ± 21.27 0.697

Diastolic_pressure 76.53 ± 10.36 77.02 ± 10.34 76.03 ± 10.40 0.463

Ultrasonic cardiogram
LVDD 46.17 ± 4.63 46.30 ± 4.79 46.04 ± 4.48 0.727

LAD 35.08 ± 5.23 34.77 ± 3.87 35.39 ± 6.31 0.63

RAD 42.55 ± 19.70 43.92 ± 27.35 41.17 ± 5.29 0.054

RVDD 21.69 ± 2.32 21.70 ± 2.01 21.68 ± 2.60 0.339

EF 0.63 ± 0.07 0.64 ± 0.06 0.63 ± 0.07 0.768

FS 0.50 ± 1.85 0.63 ± 2.61 0.36 ± 0.07 0.009

EDV 42.05 ± 28.47 40.84 ± 25.61 43.26 ± 31.12 0.812
2.6 Statistical analysis

The analysis was conducted using Python, specifically

employing the following libraries:NumPy (version 1.21.0) for

numerical computations; pandas (version 1.3.0) for data

manipulation and analysis; scikit-learn (version 0.24.2) for

machine learning and model building; statsmodels (version

0.12.2) for statistical modeling and hypothesis testing; matplotlib

(version 3.4.2) for data visualization. For continuous

(quantitative) data, the Shapiro-Wilk test was utilized to

determine normality; if normally distributed, means ± standard

deviations (X ± S) were used, and comparisons between two

groups were made using independent sample t-tests; if not

normally distributed, medians (25th percentile, 75th percentile)

were represented, with comparisons between groups made using

the Wilcoxon test. For analyzing categorical data, the χ2 test was

employed unless the expected frequency in any category was less

than 5, in which case Fisher’s exact test was utilized. This

approach ensures that the assumptions of the tests are met,

enhancing the reliability of the results. A two-sided P-value less

than 0.05 was considered statistically significant. Calibration

curves demonstrated good agreement between predicted

probabilities and observed outcomes, with a calibration slope of

0.95 and an intercept of −0.02, indicating minimal systematic

bias. These thresholds provide a quantitative measure of what

constitutes “good” agreement. Decision curve analysis (DCA) was

performed to assess the net benefit of the predictive model. The

net benefit was quantified by calculating the difference between

true positive rates and the weighted false positive rates across a

range of threshold probabilities. This analysis illustrates the

clinical utility of the model by demonstrating how its

implementation could influence decision-making in practice. A

power analysis was conducted using G*Power software to

determine the appropriate sample size for the study. Assuming a

medium effect size (Cohen’s d = 0.5) based on preliminary data,

with a significance level set at 0.05 and a desired power of 80%,

the analysis indicated that a total sample size of 240 patients

would be sufficient to detect statistically significant differences

between unstable angina (UA) and stable angina (SA). This

sample size is considered adequate to ensure the reliability of the

statistical tests employed in the analysis.
MVE 0.72 ± 0.18 0.71 ± 0.15 0.73 ± 0.20 0.836

MVA 0.89 ± 0.18 0.87 ± 0.17 0.92 ± 0.19 0.04

P values were derived from the univariable association analysis between different variables;

data are means with a statistical difference. P value reflected the differences between the

SA cohort and UA cohort. SA, stable angina; UA, unstable angina; LDL, low-density
lipoprotein; HDL, high-density lipoprotein; CCTA, coronary computed tomography

angiography; DLP, dose-length product; BP, blood pressure; BMI, body mass index; ACEI,

angiotensin converting enzyme inhibitor; ARB, vasopressin II receptor blocker; LVDD, left

atrium end diastolic diameter; LAD, left atrium diameter; RAD, right atrium diameter;
RVDD, right ventricular end diastolic diameter; EF, ejection fraction; FS, fraction shorting;

EDV, end-diastolic volume; MVE, mitral valve echogram; MVA, mitral valve area.
3 Results

3.1 General baseline data

All included participants were randomly divided into a training

dataset (n = 168) and a testing dataset (n = 72) in a 7:3 ratio.

Table 1 also recorded the clinical baseline characteristics of the
Frontiers in Cardiovascular Medicine 06
240 study subjects in both the training and testing sets. Statistical

tests revealed significant differences (P < 0.05) between cases of

stable angina and unstable angina in terms of age, LDL-C (Low-

Density Lipoprotein Cholesterol), BMI (Body Mass Index),

radiation dose, FS (fractional shortening), and MVA (mitral valve

area), while the remaining indicators showed no significant

statistical differences. The balance of stable and unstable angina

groups across the training and testing datasets indicates good

patient characteristic matching.
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TABLE 2 Logical regression analysis of the clinical independent
predictors.

Variables Univariate
regression analysis

Multivariate
regression analysis

OR 95% CI P OR 95% CI P
Age 1.010 1.004, 1.016 0.005 1.011 1.005, 1.016 0.002

Gender 1.070 0.941, 1.218 0.386 - - -

Body mass index 1.035 1.011, 1.060 0.017 1.039 1.016, 1.063 0.006

Hypertension 1.137 1.000, 1.294 0.101 - - -

Diabetes 1.105 0.935, 1.306 0.323 - - -

Smoking 1.028 0.899, 1.175 0.733 - - -

Triglycerides 1.031 0.965, 1.102 0.445 - - -

Total cholesterol 0.987 0.935, 1.041 0.680 - - -

LDL cholesterol 0.907 0.867, 0.948 0.000 0.913 0.875, 0.954 0.001

HDL cholesterol 1.033 0.881, 1.212 0.739 - - -

Antiplatelet 0.958 0.804, 1.140 0.682 - - -

Statin 0.979 0.820, 1.169 0.844 - - -

Beta-blocker 1.119 0.829, 1.511 0.537 - - -

ACE-I or ARB 1.043 0.848, 1.284 0.737 - - -

White cell count 1.041 1.001, 1.082 0.093 - - -

Systolic BP 1.000 0.997, 1.002 0.844 - - -

Diastolic BP 1.000 0.993, 1.006 0.913 - - -

Heart rate 0.999 0.993, 1.005 0.745 - - -

LVDD 0.993 0.980, 1.006 0.389 - - -

LAD 0.999 0.987, 1.012 0.900 - - -

RAD 0.998 0.995, 1.001 0.279 - - -

RVDD 0.994 0.968, 1.021 0.711 - - -

EF 0.614 0.242, 1.559 0.388 - - -

FS 0.981 0.952, 1.009 0.267 - - -

EDV 1.001 0.999, 1.003 0.510 - - -

MVE 1.067 0.748, 1.523 0.763 - - -

LDL, low-density lipoprotein; HDL, high-density lipoprotein; CCTA, coronary computed

Zhan et al. 10.3389/fcvm.2024.1462566
3.2 Feature selection and prediction
model building

In this study, 94 pericoronary adipose tissue radiomic features

were automatically extracted from the proximal LAD, LCX, and

RCA in both the training and testing cohorts (a total of 282

features). These features underwent Mann-Whitney U test filtering,

retaining 40 features with P < 0.05. Redundancy was eliminated

through Spearman correlation analysis, leaving 18 radiomic

features. Dimensionality reduction was then performed on the

remaining features using LASSO regression, resulting in 12 optimal

radiomic features (including 1 first-order histogram feature, 1 s-

order morphological feature, and 10 higher-order texture features).

These 12 optimal features were used to construct the radiomics

model. Figure 2 illustrates the selection process for the study’s

radiomic features. The same process was used to construct the FAI

model using the extracted fat attenuation index values. All collected

independent clinical predictive factors, after univariate and

multivariate logistic regression analysis, showed that age, LDL,

and BMI could serve as independent clinical factors for diagnosing

and distinguishing between stable and unstable angina (P < 0.05).

Based on these 3 clinical factors, a clinical model was constructed

using machine learning methods. Detailed results are provided in

Table 2. Following the analysis, we integrated clinical risk factors

with radiomic features to form 4 independent influencing factors,

which were used to build a combined nomogram model (see

Figure 3). The nomogram allows for scoring of each independent

variable according to a scale, with the total score indicating the

likelihood and accuracy of diagnosing unstable angina.

tomography angiography; BP, blood pressure; BMI, body mass index; ACEI, angiotensin
converting enzyme inhibitor; ARB, vasopressin II receptor blocker; LVDD, left atrium end

diastolic diameter; LAD, left atrium diameter; RAD, right atrium diameter; RVDD, right

ventricular end diastolic diameter; EF, ejection fraction; FS, fraction shorting; EDV, end-

diastolic volume; MVE, mitral valve echogram.
3.3 Performance evaluation

ROC curves for the four models were plotted in both the

training and testing cohorts (see Figure 4), graphically

representing the diagnostic performance of each model. Compared

to the clinical feature model (AUC = 0.81 [95% CI: 0.728–0.882],

AUC = 0.67 [95% CI: 0.526–0.812]) and the radiomics model

(AUC = 0.71 [95% CI: 0.614–0.809], AUC = 0.54 [95% CI: 0.348–

0.733]), the integrated model demonstrated superior

discriminatory capacity (AUC = 0.83 [95% CI: 0.750–0.913], AUC

= 0.71 [95% CI: 0.539–0.871]). The FAI model, constructed solely

based on FAI values (AUC = 0.83 [95% CI: 0.750–0.913], AUC =

0.71 [95% CI: 0.539–0.871]), showed significantly inferior

performance in distinguishing between stable and unstable angina

compared to the other three models. The diagnostic abilities of

the four models are presented through calculated accuracy,

specificity, sensitivity, positive predictive value, and negative

predictive value (Table 3). Calibration curves demonstrated good

agreement between predictions and observations for the four

models in differentiating UA from SA (see Figure 5). Decision

curve analysis for the four models is shown in Figure 5, assessing

whether the models provide a high net benefit for patients with

angina. DCA indicates that, in distinguishing UA from SA, the

overall net benefit of the integrated model is superior to that of
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the FAI model, clinical model, and radiomics model across most

reasonable threshold ranges.
4 Discussion

Recent studies have indicated that inflammation, fibrosis, and

microvascular remodeling are three principal contributors to the

formation of coronary atherosclerosis (30). Consequently, an

increasing number of researchers are attempting to identify a novel

approach for the diagnosis and classification of coronary artery

diseaseby focusing on these areas. With angina patients constituting

a significant proportion of those with CAD (3, 28, 31), the ability to

rapidly and accurately diagnose and differentiate between SA and

UA is critical for stratifying subsequent risk management and

selecting appropriate treatment strategies. SA typically results from

fixed coronary atherosclerotic plaque obstruction, causing

myocardial ischemic symptoms due to a relative constancy in

myocardial blood supply, which can still maintain a supply-demand

balance at rest. In contrast, UA is characterized by a range of clinical

symptoms due to arterial plaque rupture or erosion, accompanied
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FIGURE 3

Developed combined model nomogram. The combined score nomogram was develpoed in the training dataset with low-density lipoprotein (LDL),
body mass index (BMI), age and radiomics.

FIGURE 4

Comparison of receiver operating characteristic (ROC) curves for the FAI model (red lines), clinical model (blue dotted lines), radiomics model (blue
solid lines) and combined model (yellow dotted lines).

TABLE 3 Predictive ability of all models.

Model Training cohort Validation cohort

AUC (95% CI) SPE SEN ACC PPV NPV AUC (95% CI) SPE SEN ACC PPV NPV
FAI 0.68 (0.60–0.76) 0.98 0.24 0.60 0.92 0.55 0.51 (0.38–0.64) 0.74 0.21 0.50 0.41 0.53

Clinical 0.84 (0.78–0.90) 0.63 0.89 0.76 0.72 0.84 0.67 (0.55–0.80) 0.74 0.61 0.68 0.67 0.69

Radiomics 0.85 (0.80–0.91) 0.82 0.79 0.80 0.82 0.79 0.73 (0.60–0.85) 0.85 0.67 0.76 0.79 0.75

Combined 0.87 (0.82–0.92) 0.79 0.83 0.81 0.81 0.81 0.74 (0.63–0.86) 0.59 0.79 0.68 0.62 0.77

FAI, fat attenuation index; AUC, area under curve; 95% CI, 95% confidence interval; SPE, specificity; SEN, sensitivity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive valve.
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by varying degrees of surface thrombus formation, vasospasm, and

distal embolism (7). Clinically, angina patients are broadly classified

and initially diagnosed based on parameters such as the frequency

and intensity of chest pain episodes, electrocardiogram results, and

laboratory indicators. However, these changes are often the result of

complex interactions within inflammatory responses, and
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conventional circulating inflammatory markers (e.g., high-sensitivity

C-reactive protein and proinflammatory cytokines) lack specificity

in identifying coronary inflammation (22). Furthermore, the

invasiveness of coronary angiography limits its practical application.

Therefore, this study utilizes the novel technique of radiomics,

combining extracted imaging features with clinical features to
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FIGURE 5

Decision curve analysis and calibration curves of the FAI model (blue line), clinical model (orange line), radiomics model (green line) and combined
model (red line).
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construct an integrated model, in hopes that this model will enhance

the diagnostic and discriminatory capabilities for CAD in clinical

practice. Coronary CT angiography remains the preferred non-

invasive imaging modality for diagnosing CAD, capable of

evaluating coronary artery plaque status, degree of narrowing, and

hemodynamic factors such as fractional flow reserve (6).

Pericoronary adipose tissue is the tissue in closest contact with

the coronary artery wall and engages in bidirectional inflammatory

signaling with it. PCAT attenuation is negatively correlated with

histological adipocyte size and differentiation stage; higher PCAT

attenuation indicates smaller adipocytes with lower fat content,

shifting from a lipid-rich/water-poor phase in nearby non-

diseased vessels to a lipid-poor/water-rich phase in inflamed

vessels (9, 30). The Fat Attenuation Index can indirectly reflect

coronary inflammation by capturing the average density values of

PCAT. However, current CT density-based measurement

methods reveal only the average voxel size of PCAT without

considering the complex spatial relationships between voxels

(11). Thus, the present study employs an analytical approach

based on PCAT radiomic features and incorporates machine

learning to automatically extract high-dimensional spatial

quantitative features that are not discernible to the naked eye.

This approach aims to build models that compensate for the

limitations of pericoronary FAI values. Radiomics, succinctly put,

is a method that extracts the most relevant quantitative features

from large datasets of medical images to quantify phenotypic

characteristics of lesions (32). It overcomes the limitations of

subjective visual analysis, obtaining more comprehensive imaging

information from each image to detect lesions, assist clinical

diagnosis, and evaluate treatment effects. In this experiment, we

segmented images of regions of interest in the three main

coronary arteries and from their PCAT, extracted and selected
Frontiers in Cardiovascular Medicine 09
the optimal 12 radiomic features. These features quantified

variations in the size and shape of the coronary arteries in three-

dimensional imaging datasets. Furthermore, we utilized these

imaging feature values to construct corresponding machine

learning models, which demonstrated robust performance in

distinguishing between UA and SA patients. Among the myriad

of risk factors associated with the progression of coronary heart

disease (CHD), the atherogenic role of low-density lipoprotein is

the most well-established. Genetic polymorphisms that regulate

cholesterol transport and LDL metabolism are associated with

CHD risk, and extensive large-scale observational cohort studies

from around the world have shown a strong graded relationship

between LDL-C levels and CHD risk (33). On the other hand,

the cholesterol content of LDL particles is variable, and an

increase in LDL-C levels can lead to the accumulation of lipids

in blood vessels, accelerated plaque formation, and subsequent

narrowing of the coronary arteries (34). The most commonly

used anthropometric tool for assessing relative weight and

classifying obesity is the Body Mass Index. A higher BMI

indicates greater obesity, and the chronic accumulation of excess

fat can lead to various metabolic changes, increasing the

prevalence of cardiovascular disease risk factors and affecting

systems that regulate vascular inflammation (31). Beyond serving

as an independent cardiovascular disease risk factor, a high BMI

status can also promote changes in other intermediate risk

factors, such as dyslipidemia, hypertension, impaired glucose

tolerance, inflammatory states, obstructive sleep apnea/hypopnea,

and a prothrombotic state (35).

Studies have shown that age has a higher correlationwith the risk of

cardiovascular disease events in men than any other factor and is

second only to hypertension in women (35–37). Scholars have

further discovered that patients under 65 experience more frequent
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episodes of chest pain, whereas the frequency tends to decrease in

patients over 65 (38). However, with increasing age, mortality rates

also rise. This leads patients to disregard the increased risk that

comes with age due to the alleviation of chest pain symptoms. In

exploring the deeper causes of age and CHD, some have proposed

the telomere theory—they suggest that telomere shortening is an

indicator of the aging process, which can lead to atherosclerosis and

thus cardiovascular disease (39). As age increases, telomeres become

shorter, while a more balanced diet in CHD patients may lengthen

telomeres (39). Our experiment also confirmed that age, LDL, and

BMI can indeed make accurate diagnoses of unstable angina, and the

clinical model established accordingly also has strong clinical

performance. Finally, we combined the selected radiological features

with the aforementioned three clinical features to create an integrated

model nomogram, which significantly improved diagnosis and

differentiation of unstable angina compared to traditional methods.

While our study demonstrates the potential of radiomics

analysis of PCAT for distinguishing between UA and SA, it is

important to acknowledge certain limitations inherent to the field

of radiomics itself. Feature extraction in radiomics can vary

significantly depending on imaging parameters (such as

resolution, contrast, and modality) and the choice of

segmentation algorithms, which may introduce variability into

the results. This variability underscores the importance of

standardizing imaging protocols and segmentation methods to

enhance reproducibility. Additionally, as radiomics is a relatively

new and evolving field, reproducibility and standardization across

different clinical settings remain significant challenges.

Differences in imaging equipment, software, and processing

pipelines can impact the transferability of radiomics-based

models, limiting their generalizability. To address these issues,

future studies should aim to establish standardized protocols and

validate models across multi-center cohorts to ensure robustness

and reliability in diverse clinical environments.

This study does have certain limitations. Firstly, it is important

to note that this study was conducted at a single center with a

retrospective design, which may introduce selection bias. Such bias

could lead to a lack of representativeness in the sample, potentially

impacting the generalizability of the findings. Specifically, since the

study was conducted in a specific hospital, the sample may not

fully reflect the characteristics and clinical presentations of a

broader population. This limitation could affect the external

validity of our results, particularly in different geographical or

healthcare settings. Future research should consider multi-center

designs to comprehensively evaluate the applicability of PCAT

radiomics across diverse populations. Additionally, prospective

studies are needed to further validate our findings and minimize

potential biases associated with retrospective analyses. Secondly,

all patient images were acquired using the same CT scanner and

settings. While image acquisition, reconstruction, and analysis can

affect the reproducibility of radiomic features, no studies have

investigated how these settings might influence radiomic

parameters, therefore our model will require validation across

different CT scanners in the future (40). Additionally, the number

of PCAT radiomic features extracted through an entirely

automatic process was limited; future work will incorporate more
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comprehensive feature extraction using deep learning models to

better assist in the clinical identification of patients with early

perimenopausal coronary heart disease. Lastly, some important

clinical indices, such as C-reactive protein levels and

electrocardiogram indicators, were not included in the clinical

model, and their impact on the model’s performance will need to

be investigated in future research.
5 Conclusion

In summary, the PCAT radiomics model based on coronary

CT can effectively identify unstable angina from stable angina.

By combining radiomics characteristics and clinical risk factors,

the integrated model can further improve the diagnosis and

differential ability of unstable angina.
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