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Predicting major adverse
cardiovascular events in angina
patients using radiomic features
of pericoronary adipose tissue
based on CCTA
Weisheng Zhan1, Yanfang Luo1, Hui Luo2, Zheng Zhou1,
Nianpei Yin1, Yixin Li1, Xinyi Feng1 and Ying Yang1*
1Department of Cardiology, The Affiliated Hospital of North Sichuan Medical College, Nanchong,
Sichuan, China, 2Department of Thoracic Surgery, Nan Chong Center Hospital, Nanchong, China
Objective: This study aims to evaluate whether radiomic features of pericoronary
adipose tissue (PCAT) derived from coronary computed tomography
angiography (CCTA) can better predict major adverse cardiovascular events
(MACE) in patients with angina pectoris.
Methods: A single-center retrospective study included 239 patients with angina
pectoris who underwent coronary CT examinations. Participants were divided into
MACE (n=46) and non-MACE (n= 193) groups based on the occurrence of MACE
during follow-up, and further allocated into a training cohort (n= 167) and a
validation cohort (n= 72) at a 7:3 ratio. Automatic segmentation of PCAT
surrounding the proximal segments of the left anterior descending artery (LAD),
left circumflex coronary artery (LCX), and right coronary artery (RCA) was
performed for all patients. Radiomic features of the coronary arteries were
extracted, screened, and integrated while quantifying the fat attenuation index (FAI)
for the three vessels. Univariate and multivariate logistic regression analyses were
utilized to select clinical predictors of adverse cardiovascular events. Subsequently,
machine learning techniques were employed to construct models based on FAI,
clinical features, and radiomic characteristics. The predictive performance of each
model was assessed and compared using receiver operating characteristic (ROC)
curves, calibration plots, and decision curve analysis for clinical utility.
Results: The radiomics model demonstrated superior performance in predicting
MACE in patients with angina pectoris within both the training and validation
cohorts, yielding areas under the curve (AUC) of 0.83 and 0.71, respectively,
which significantly outperformed the FAI model (AUC=0.71, 0.54) and the
clinical model (AUC=0.81, 0.67), with statistically significant differences in AUC
(p < 0.05). Calibration curves for all three predictive models exhibited good fit (all
p > 0.05). Decision curve analysis indicated that the radiomics model provided
higher clinical benefit than the traditional clinical and FAI models.
Conclusion: The CCTA-based PCAT radiomics model is an effective tool for
predicting MACE in patients with angina pectoris, assisting clinicians in
optimizing risk stratification for individual patients. The CCTA-based radiomics
model significantly surpasses traditional FAI and clinical models in predicting
major adverse cardiovascular events in patients with angina pectoris.
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1 Introduction

As public health awareness increases, the incidence of coronary

artery disease (CAD) has seen a decline. However, it continues to

pose a threat to human safety globally (1). According to recent

statistics, half of the patients diagnosed with CAD suffer from

angina pectoris (2). Angina is defined as chest pain, pressure, or

discomfort located behind the sternum, which is often

exacerbated by exertion and/or anxiety or other emotional or

psychological stresses (3, 4). It is a highly prevalent condition

that seriously endangers individuals’ health. With advancing age,

the prevalence of angina increases, and concurrently, the risk of

cardiovascular and cerebrovascular accidents such as congestive

heart failure, myocardial infarction, and malignant arrhythmias

also rises (5, 6). Therefore, identifying high-risk angina patients

is crucial for effective risk stratification, patient management, and

rational allocation of public health resources. Currently, the

monitoring and assessment of the progression of angina

primarily rely on traditional clinical factors such as age, risk

factors, and medication history (7, 8). For patients with

worsening chest pain symptoms or increased frequency of

episodes, coronary CTA, a preferred non-invasive imaging

method in clinical practice, is used for further examination.

Based on the results of vascular stenosis, we then assess and

predict the likelihood of patients experiencing major adverse

cardiovascular events (9, 10). Recent research indicates that the

formation and rupture of atherosclerotic plaques are inseparably

linked to inflammation within the vessel (11). When vascular

inflammation occurs, pro-inflammatory factors released diffuse

into the PCAT via paracrine signaling, inhibiting preadipocyte

differentiation and lipid accumulation (12–14). Researchers have

discovered a new sensitive biomarker of coronary artery

inflammation—the fat attenuation index (FAI)—which captures

the CT attenuation gradient of PCAT, thereby revealing changes

in the composition of PCAT induced by vascular inflammation

(10). However, the pathophysiology of coronary vascular lesions

is complex, and relying solely on FAI provides only a planar

calculation of changes, failing to reflect the complexity of spatial

variations (15). With the application of artificial intelligence in

clinical radiology, advanced radiomics technology is playing an

increasingly pivotal role in the medical field. Radiomics is a

technique for fine phenotypic analysis of extracted tomographic

images. In essence, this technology converts images into data

(12, 13). It has been widely applied in the clinical diagnosis,

prognosis, and postoperative monitoring of tumors (14, 16).

Recently, the utility of radiomics combined with coronary CT in

the cardiovascular domain has gained increasing attention.

Numerous studies have also verified the superiority of radiomic

features of pericoronary adipose tissue in diagnosing myocardial

infarction and differentiating coronary heart disease (17, 18).

However, the role of radiomics of pericoronary adipose tissue

based on CCTA in predicting major clinical events has not yet

been further investigated. Therefore, our study aims to explore

the role of radiomic features based on CCTA in predicting major

adverse cardiovascular events in patients with angina pectoris.
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In addition, we aim to compare it with traditional imaging

techniques and clinical methods to determine whether it can

improve and optimize the predictive performance for MACE in

patients with angina pectoris.
2 Materials and methods

2.1 Study population

A retrospective collection was conducted on 239 patients with

angina pectoris who underwent CCTA examinations at the Cardiac

Center of the Affiliated Hospital of North Sichuan Medical College

from February 2019 to December 2023. The diagnosis of angina

pectoris was made by groups led independently by two

cardiologists from our institution, based on medical history,

physical examination, laboratory tests, and imaging studies.

Exclusion criteria included a history of myocardial infarction or

revascularization, poor CCTA image quality, and incomplete

medical records. A detailed flowchart outlining the patient

selection process and study design is provided in Figure 1. This

study was approved by the Medical Ethics Committee of the

Affiliated Hospital of North Sichuan Medical College (approval

number: 2023ER218-1).
2.2 General data collection and clinical
endpoints

Relevant clinical history data were collected for all patients,

including demographic characteristics (gender, age, and body

mass index), cardiovascular risk factors (smoking, hypertension,

diabetes, hyperlipidemia, and medication history), Renal

Function Measurement [Estimated glomerular filtration rate

(eGFR), Serum creatinine (Scr) levels and blood urea nitrogen

(BUN)] as well as laboratory and echocardiographic parameters.

The clinical endpoint was the occurrence of MACEs, defined as

a composite of death, malignant arrhythmias, new-onset congestive

heart failure, acute myocardial infarction, and cerebral infarction

within one year.

Anti-Anginal TherapyAdjustments: During the follow-upperiod,

modifications in anti-anginal therapy were documented for all

patients. Adjustments included changes in the dosage or addition of

medications such as beta-blockers, calcium channel blockers, and

nitrates, based on patients’ symptoms and clinical assessments.

These modifications were tracked and analyzed as part of the study.
2.3 CCTA acquisition

All recruited subjects underwent scanning with a 2*96-detector

row CT scanner (Stellar Infinity detector, SOMATOM Force,

Siemens Healthineers, Germany). The scanner operated with

prospective ECG gating and tube voltage ranging from 70 to

150 kV, a rotation speed of 0.25 s, and a temporal resolution of
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FIGURE 1

A flowchart of patient recruitment and study design. CCTA, coronary computed tomography angiography; MACE,Major adverse cardiovascular event;
MI, myocardial infarction.

Zhan et al. 10.3389/fcvm.2024.1462451
66 ms per segment, enabling free heart rate coronary CT. It also

utilized Edge and UHR technology with a holographic photon

detector that reduces electronic crosstalk between adjacent

detectors, allowing the reconstruction of thin slices from a

0.6 mm acquisition layer thickness to 0.4 mm. Due to the

frequent and substantial gas exchange during respiration, which

can impair the field of view, patients were instructed to hold

their breath as much as possible during the coronary CT scan.

Additionally, patients were positioned supine, with as much of
Frontiers in Cardiovascular Medicine 03
the anterior chest exposed as possible. The instrument scanned

from the head downwards, capturing images from 1 cm below

the tracheal bifurcation to the apex of the heart.
2.4 Quantification measurement of FAI

PCAT has become a new significant target for the detection of

coronary artery disease, located at a radial distance from the vessel
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wall, approximately equivalent to the diameter of the vessel. FAI is

determined by calculating the average attenuation value of the

perivascular adipose tissue (i.e., the average CT value of PCAT),

and to exclude non-adipose tissues, the CT value range is generally

set between −190 and −30 HU in studies. In previous research, the

FAI of the surrounding tissue near the proximal RCA has been

found to be more representative of inflammation compared to

other coronary artery fat attenuation tissues and is considered a

good indicator of systemic inflammation (19, 20). Therefore, we will

use software to automatically define and measure the proximal area

of the RCA (10–50 mm from the RCA ostium), ensuring high

standardization and repeatability. FAI for all included patients

was measured using CoronaryDoc software version 6.21 (Shukun

Technology Co., Ltd, Beijing, China).
2.5 PCAT segmentation and radiomic
feature extraction

Recent studies have suggested that pericoronary adipose tissue

(PCAT) surrounding coronary artery plaques may serve as a

sensitive imaging biomarker for plaque vulnerability (17). To

reflect the changes in coronary arteries during inflammation as

comprehensively as possible, we included all three main

epicardial vessels for segmentation. Based on the method by

Oikonomou (20) et al., we utilized Shukun Technology software

[Shukun Technology Co., Ltd, Beijing, China, Version: 6.21] to

automatically track a 40 mm segment of interest around the

proximal segments of the left anterior descending artery, left

circumflex coronary artery, and right coronary artery. For LAD

and LCX, a 40 mm segment following the left main bifurcation

was analyzed. For the RCA, to avoid the influence of the aortic

wall, we excluded the proximal 10 mm and focused on

the segment from 10 mm downstream of the aortic root to

50 mm proximal to the RCA. Additionally, while segmenting the

plaques in the corresponding coronary regions, we set the cross-

sectional area of segmentation to be three times the diameter of

the vessel lumen, further ensuring the comprehensiveness of the

data. A total of 94 radiomic features were extracted from

the PCAT surrounding each coronary artery plaque, including

morphological features, first-order histogram features, and

higher-order texture features, resulting in a total of 94*3

radiomic features per patient.
2.6 Feature selection and prediction model
building

This study attempted to develop three models to determine the

prediction of MACE in patients with angina pectoris; the building

process for each is detailed below.

2.6.1 Radiomics model
First, the acquired raw imaging data underwent z-score

normalization to exclude variables with zero variance and to

center the feature values at zero. The normalized radiomic
Frontiers in Cardiovascular Medicine 04
features were then subjected to Mann-Whitney U-tests and

selection. Only radiomic features with p-values < 0.05 were

retained. Second, we calculated the correlation between features

using Spearman’s rank correlation coefficient and excluded

radiomic features with a correlation coefficient >0.9. Third, the

remaining radiomic features underwent final selection using

the Least Absolute Shrinkage and Selection Operator (LASSO)

algorithm, setting irrelevant feature coefficients precisely to zero

while retaining non-zero coefficient features for model fitting

(21). After this series of selections, we input the final radiomic

features into machine learning (random forest) to construct a

predictive risk model.
2.6.2 Clinical model
Independent clinical predictors, including cardiovascular risk

factors, laboratory, and echocardiographic parameters, etc., were

initially screened using univariate Logistic regression. Variables with

P < 0.05 in the univariate analysis were used for subsequent

multivariate Logistic analysis to determine the features most

correlated with MACE. Clinical features were also input into machine

learning (random forest) to develop a clinical prediction model.
2.6.3 FAI model
The construction of the FAI model was nearly identical to the

previous two methods. The extracted FAI values around the

proximal RCA were used to establish the prediction model, using

the same machine learning model. To avoid overfitting and

balance the limited sample size, all three ML models were

calibrated using a 10-fold cross-validation method (22).
2.7 Statistical analysis

Statistical analyses in this study were performed using R Studio

(version 4.0.3) and Python (version 0.13.2) software packages.

Continuous variables were assessed using the Mann-Whitney

U-test or Student’s t-test. Categorical variables were compared

using the chi-square test or Fisher’s exact test. For continuous

(quantitative) data, the Shapiro-Wilk normality test was used to

determine the normality of sample data. If the data followed a

normal distribution, it was presented as mean ± standard

deviation (X ± S), and comparisons between two groups were

made using independent sample t-tests; if not normally

distributed, data were presented as median (25th percentile, 75th

percentile), and comparisons between two groups were made

using the Wilcoxon test. A two-sided p-value < 0.05 was

considered statistically significant. Receiver operating

characteristic curves were used to evaluate the efficacy of the

three types of models in predicting the occurrence of MACE in

patients with angina pectoris. Calibration curves were plotted to

assess the consistency between the predicted probabilities by the

models and the actual probabilities. Clinical utility was evaluated

through decision curve analysis (DCA), which quantifies net

benefit across different threshold probabilities for the three

predictive models.
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TABLE 1 Baseline characteristics of the study population.

Characteristics Total
(n= 239)

No MACEs group
(n = 192)

MACEs group
(n = 47)

P-value

Clinical characteristics
Age

63.95 ± 10.78 62.96 ± 10.01 67.96 ± 12.82 0.008

Smoking 0.37 ± 0.48 0.35 ± 0.48 0.47 ± 0.50 0.142

BMI 25.23 ± 2.68 25.37 ± 2.63 24.69 ± 2.85 0.060

Male gender 130 (54.39) 103 (53.65) 27 (57.45) 0.760

Hypertension 137 (57.32) 105 (54.69) 32 (68.09) 0.134

Diabetes 45 (18.83) 34 (17.71) 11 (23.40) 0.492

Baseline medications
Antiplatelet

44 (18.41) 33 (17.19) 11 (23.40) 0.438

Beta−blocker 16 (6.69) 11 (5.73) 5 (10.64) 0.378

ACEI/ARB 26 (10.88) 19 (9.90) 7 (14.89) 0.468

Statin 0.17 ± 0.38 0.17 ± 0.37 0.19 ± 0.40 0.741

Lipids, mmol/L
Triglycerides

1.70 ± 1.00 1.68 ± 0.96 1.78 ± 1.14 0.838

Total−cholesterol 4.57 ± 1.20 4.63 ± 1.19 4.35 ± 1.22 0.152

LDL 3.16 ± 1.39 3.24 ± 1.43 2.83 ± 1.18 0.082

HDL 1.16 ± 0.47 1.17 ± 0.49 1.12 ± 0.40 0.670

Inflammatory markers
White cell count, × 109/L

6.83 ± 1.70 6.78 ± 1.72 7.05 ± 1.61 0.222

CCTA acquisition parameters
Radiation dose, DLP

411.58 ± 276.55 394.55 ± 228.22 481.14 ± 416.28 0.490

Tube voltage 70kv 134 (56.07) 105 (54.69) 29 (61.70) 0.481

80kv 89 (37.24) 76 (39.58) 13 (27.66) 0.178

90kv 10 (4.18) 7 (3.65) 3 (6.38) 0.665

110kv 7 (2.93) 5 (2.60) 2 (4.26) 0.905

Heart rate 74.10 ± 10.73 73.93 ± 10.17 74.77 ± 12.85 0.700

Systolic_pressure 133.71 ± 23.65 133.48 ± 24.08 134.64 ± 22.02 0.619

Diastolic_pressure 76.53 ± 10.38 76.48 ± 10.26 76.72 ± 10.97 0.888

Ultrasonic cardiogram
LVDD

46.17 ± 4.64 45.73 ± 4.01 47.96 ± 6.35 0.025

LAD 35.08 ± 5.24 34.57 ± 3.81 37.17 ± 8.74 0.276

RAD 46.17 ± 4.64 45.73 ± 4.01 47.96 ± 6.35 0.025

RVDD 21.69 ± 2.33 21.52 ± 1.95 22.39 ± 3.41 0.118

EF 0.63 ± 0.07 0.64 ± 0.06 0.60 ± 0.09 <0.001

FS 0.50 ± 1.85 0.38 ± 0.07 0.95 ± 4.18 <0.001

EDV 110.74 ± 31.01 107.41 ± 26.50 124.32 ± 42.72 0.082

MVE 0.72 ± 0.18 0.71 ± 0.16 0.75 ± 0.22 0.548

MVA 0.89 ± 0.18 0.89 ± 0.17 0.90 ± 0.22 0.987

eGFR 108.14 ± 6.39 110.19 ± 4.63 99.77 ± 5.72 <0.001

Serum Creatinine 1.05 ± 0.24 0.99 ± 0.21 1.28 ± 0.21 <0.001

BUN 15.93 ± 2.93 15.50 ± 2.78 17.72 ± 3.02 <0.001

p-values were derived from the univariable association analysis between different variables; data are means with a statistical difference. p value reflected the differences between the MACE

cohort and no MACE cohort. MACE, major adverse cardiac events; LDL, low-density lipoprotein; HDL, high-density lipoprotein; CCTA, coronary computed tomography angiography;

DLP, dose-length product; BP blood pressure; BMI, body mass indexI; ACEI, angiotensin converting enzyme inhibitor; ARB, vasopressin II receptor blocker; LVDD, left atrium end
diastolic diameter; LAD, left atrium diameter; RAD, right atrium diameter; RVDD, right ventricular end diastolic diameter; EF, ejection fraction; FS, fraction shorting; EDV, end-diastolic

volume; MVE, mitral valve echogram; MVA, mitral valve area.
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3 Results

3.1 General baseline information

Table 1 summarizes the clinical baseline characteristics of

the 239 patients in both the training and validation sets.

Among the included patients with angina pectoris, 47 (19.7%)

experienced MACEs during the follow-up period: 9 (3.8%) had

a new acute ischemic stroke, 10 (4.2%) developed congestive

heart failure, 8 (3.3%) suffered malignant arrhythmias, and

20 (8.4%) had a new acute myocardial infarction. Statistical

testing showed that clinical features were well-matched between
Frontiers in Cardiovascular Medicine 05
the MACE and non-MACE groups in both the training and

validation datasets.
3.2 Feature selection and prediction model
building

Radiomic features were extracted from regions of interest

(ROIs) corresponding to the three main coronary arteries of

patients, including morphological features (24), first-order

histogram features (18), and higher-order texture features (51).

Following standardization and redundancy reduction via

Spearman correlation analysis, 11 radiomic features remained.
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FIGURE 2

A flow chart of prediction model development process. CCTA, coronary computed tomography angiography; PCAT, pericoronary adipose tissue; FAI,
fat attenuation index.
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After final selection through LASSO regression, the four most

relevant features were chosen for the construction of the

radiomic feature model. Figure 2 depicts the selection process of

the radiomic features in this study. All independent clinical

predictors underwent univariate logistic regression analysis, and

variables with p < 0.05 were included in subsequent analyses. A

stepwise elimination approach was then used to construct a

multivariate logistic regression analysis, ultimately identifying age

as an independent predictor of major cardiovascular adverse

events in patients with angina pectoris (P < 0.05). Based on this

result, a clinical model was constructed using machine learning

methods, with detailed results presented in Table 2. Lastly, the

same methodology was applied to build the FAI model using the

extracted fat attenuation index values.
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3.3 Efficacy evaluation

ROC curves for the three models were plotted in both the

training and validation sets to illustrate their predictive

performances (see Figure 3). The radiomics model showed

superior efficacy with AUCs of 0.83 [95% CI: 0.750–0.913] and

0.71 [95% CI: 0.539–0.871], compared to the clinical feature

model (AUC = 0.81 [95%CI: 0.728–0.882], AUC = 0.67 [95%CI:

0.526–0.812]) and the FAI model (AUC = 0.71 [95%CI: 0.614–

0.809], AUC = 0.54 [95%CI: 0.348–0.733]). The predictive

abilities of the three models were quantified by measuring

accuracy, specificity, sensitivity, positive predictive value, and

negative predictive value (Table 3). Decision curves demonstrated

the clinical utility of the three predictive models by comparing
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TABLE 2 Logical regression analysis of the independent predictors.

Variables Univariate regression analysis Multivariate regression analysis

OR 95%CI P OR 95%CI P
Age 1.009 1.004,1.013 0.003 1.009 1.004,1.013 0.002

Gender 1.019 0.918,1.131 –0.772 – – –

Body mass index 0.981 0.963,1.000 0.094 – – –

Hypertension 1.089 0.980,1.209 0.181 – – –

Diabetes 1.112 0.977,1.266 0.177 – – –

Smoking 1.072 0.963,1.194 0.288 – – –

Triglycerides 1.024 0.975,1.075 0.425 – – –

Total cholesterol 0.972 0.931,1.014 0.269 – – –

LDL cholesterol 0.978 0.939,1.018 0.356 – – –

HDL cholesterol 0.930 0.830,1.041 0.290 – – –

Antiplatelet 1.072 0.935,1.229 0.399 – – –

Statin 1.061 0.928,1.214 0.465 – – –

Beta-blocker 1.044 0.853,1.279 0.723 – – –

ACE-I or ARB 1.127 0.957,1.328 0.229 – – –

White cell count 1.022 0.989,1.057 0.280 - – –

Systolic BP 1.001 0.999,1.003 0.366 – – –

Diastolic BP 1.002 0.996,1.007 0.642 – – –

Heart rate 1.002 0.997,1.006 0.609 – – –

LVDD 1.019 1.008,1.030 0.006 0.995 0.979,1.011 0.581

LAD 1.019 1.010,1.028 0.001 1.006 0.995,1.018 0.354

RAD 1.021 1.009,1.031 0.002 1.008 0.994,1.022 0.346

RVDD 1.030 1.009,1.051 0.021 1.008 0.982,1.035 0.61

EF 0.171 0.086,0.343 0.000 0.382 0.143,1.019 0.107

FS 0.299 0.146,0.611 0.006 0.753 0.326,1.744 0.578

EDV 1.003 1.002,1.005 0.001 1.002 1.000,1.004 0.061

MVE 1.178 0.875,1.582 0.363 – – –

MVA 1.233 0.933,1.629 0.216 – – –

LDL, low-density lipoprotein; HDL, high-density lipoprotein; CCTA, coronary computed tomography angiography; BP, blood pressure; BMI, body mass indexI; ACEI, angiotensin converting

enzyme inhibitor; ARB, vasopressin II receptor blocker; LVDD, left atrium end diastolic diameter; LAD, left atrium diameter; RAD, right atrium diameter; RVDD, right ventricular end diastolic

diameter; EF, ejection fraction; FS, fraction shorting; EDV, end-diastolic volume; MVE, mitral valve echogram; MVA, mitral valve area.

FIGURE 3

Comparison of receiver operating characteristic (ROC) curves for the FAI model (red lines), clinical model (blue dotted lines) and radiomics model (blue
solid lines).
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TABLE 3 Predictive ability of all models.

Model Training cohort Validation cohort

AUC (95% CI) SPE SEN ACC PPV NPV AUC (95% CI) SPE SEN ACC PPV NPV
FAI 0.71 (0.61–0.81) 0.77 0.51 0.71 0.37 0.86 0.54 (0.35–0.73) 0.83 0.25 0.74 0.23 0.85

Clinical 0.81 (0.73–0.88) 0.70 0.74 0.71 0.39 0.91 0.67 (0.53–0.81) 0.62 0.67 0.63 0.26 0.90

Radiomics 0.83 (0.75–0.91) 0.86 0.63 0.81 0.54 0.90 0.71 (0.54–0.87) 0.87 0.42 0.79 0.39 0.88

FAI, fat attenuation index; AUC, area under curve; 95% CI, 95% confidence interval; SPE, specificity; SEN, sensitivity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive valve.

FIGURE 4

Decision curve analysis and calibration curves of the FAI model (blue line), clinical model(orange line) and radiomics model(green line).

Zhan et al. 10.3389/fcvm.2024.1462451
net benefits at different threshold probabilities in the dataset, with

results indicating that the net benefit of predicting MACE in angina

pectoris was greater with the radiomics model than with the other

models (see Figure 4). Calibration curves for the three predictive

models showed good agreement between predicted and observed

probabilities of adverse events in angina pectoris (see Figure 4).
4 Discussion

With the deepening research on coronary artery disease, a

variety of effective consensus treatment methods have emerged.

Conservative treatment remains a baseline strategy aimed at

symptom management, preventing the progression of disease,

and averting adverse events, particularly myocardial infarction.

Invasive treatments such as percutaneous coronary intervention

(PCI) or coronary artery bypass grafting (CABG) can

complement conservative measures (1, 23). In our study, patients

with angina were initially managed with conservative treatments,

including anti-anginal therapy, aimed at symptom relief and

prevention of disease progression. Modifications to anti-anginal

therapy were made on a case-by-case basis during the follow-up

period, depending on changes in symptomatology, although
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detailed tracking of therapy modifications was not a primary

focus of this study. Invasive treatments, such as PCI or CABG,

were performed for a subset of patients based on baseline CCTA

findings. These procedures were undertaken when significant

coronary stenosis or high-risk plaque features were identified,

necessitating further intervention to mitigate the risk of MACE.

During the follow-up period, 15% of patients underwent PCI

and 5% underwent CABG. The general discussion of treatment

strategies in this manuscript is based on established literature

on coronary artery disease management. Our study reflects

real-world clinical decision-making, where a combination of

conservative and invasive strategies was employed depending on

the individual patient’s risk profile and clinical presentation.

However, numerous patients still suffer serious cardiovascular

adverse events, and the specific risk factors and likelihood of

occurrence are not entirely clear. Therefore, researchers are

constructing predictive models by exploring the factors related to

major cardiovascular adverse events in ST-elevation myocardial

infarction to further assess risks and guide treatment (24). An

increasing number of patients presenting with angina pectoris for

consultation and treatment also frequently experience severe and

irreversible cerebrovascular accidents during the progression of

their disease (2, 3). However, current research into the major
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adverse cardiovascular events associated with angina pectoris is not

in-depth, and early identification of high-risk factors for MACE

events in patients with angina pectoris, constructing evaluation

systems suitable for specific populations, and managing

individuals are crucial. Consequently, this study attempts to

optimize individualized risk prediction through the establishment

of a radiomics model, offering a novel spatial perspective.

Clinically, CCTA serves as a frontline diagnostic tool for

assessing coronary artery disease patients and is an excellent

means to determine arterial plaque burden and disease

progression. PCAT is directly adjacent to the coronary vessels

and interacts with the formation and progression of

atherosclerotic plaques in a bidirectional manner. PCAT can

sensitively respond to vascular inflammation, causing changes in

the size, shape, and distribution of adipocytes in pericoronary

adipose tissue (13), and FAI can quantify these PCAT changes.

Therefore, observers use CCTA to quantitatively assess coronary

lumen stenosis, coronary plaques, and high-risk plaque

characteristics, while also qualitatively evaluating low-attenuation

plaques, napkin-ring signs, and spotty calcifications (20). CCTA’s

recognition of features such as high-risk plaques is applicable to

plaques forming later in the disease process, while early

inflammation, plaque structure, and luminal microenvironment

analysis require the introduction of plaque radiomic

characterization for assessment (13, 25). Thus, the FAI model in

this study indeed exhibited a certain gap in predictive capability

compared to the emerging radiomics model. Age is recognized as

a primary risk factor for the development of atherosclerotic

cardiovascular diseases and coronary heart disease. Studies have

shown that age correlates more strongly with the risk of

cardiovascular disease events in men than any other factor,

and in women, it is second only to hypertension (26, 27). To

further analyze the factor of age, scholars have found that

patients under the age of 65 have a higher incidence of chest

pain, while those over 65 experience a reduction in chest pain

(28). However, mortality rates also increase with age. This

leads patients to often overlook the high risk associated with

age due to the alleviation of chest pain symptoms. When

investigating the underlying reasons, the telomere hypothesis

has been proposed. Telomere shortening is considered a

marker of the aging process and can lead to arterial

atherosclerosis, thereby causing cardiovascular disease (29). As

age increases, telomeres become progressively shorter, but it

appears that patients with coronary heart disease who have a

more balanced nutritional diet may have elongated telomeres

(29). Through the analysis and selection of clinical factor

correlations, this study also confirmed that age has the closest

relationship with the occurrence of adverse cardiovascular

events in patients with angina pectoris, and the clinical model

established as such also exhibited good predictive capacity.

Radiomics is a rapidly developing new technology that extracts

and analyzes imaging features by segmenting images of the

ROI, considering the complex spatial relationships between

voxels (12, 13). It can also reflect more persistent changes in

the perivascular space caused by vascular inflammation, such

as fibrosis and neovascularization (15). In this study, images
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from the region of interest in coronary CT were segmented

and extracted. After analyzing and filtering the PCAT from the

proximal parts of the three main coronary arteries, four most

robust radiomic features were obtained. These features were

used to construct the radiomics model, demonstrating its good

efficacy in predicting major adverse cardiovascular events in

patients with angina pectoris. Although we did not directly

link radiomic features with histopathological analysis,

precluding determination of their specific correlation with

histopathological changes, radiomic features are big data

parameters derived from pixel distribution, serving as an

interpretation of the structure underlying the images. They are

also an important supplement to data providing information

about the imaging phenotype, potentially including a wealth of

information (30, 31).

Our study also has some limitations. On one hand, the sample

size included in the study is relatively limited, with a

correspondingly low incidence rate of events. The presence of a

low prevalence binary predictive variable (MACEs negative or

positive) may lead to issues of complete or quasi-complete

separation in logistic regression (32). Therefore, larger populations

and external validations are needed for future studies. On the other

hand, all patients’ imaging pictures were taken from the same CT

scanner and settings. Since image acquisition, reconstruction, and

analysis can affect the reproducibility of imaging features, no

studies have explored how these settings may affect radiomic

parameters, and our model will need to be validated in different

CT scanners in the future (33–35). Renal function, as measured by

eGFR, serum creatinine, and BUN, was found to differ between the

MACE and non-MACE groups. Patients in the MACE group

exhibited lower eGFR and higher serum creatinine and BUN levels,

consistent with the known association between impaired renal

function and increased cardiovascular risk. However, despite these

differences, the inclusion of renal function parameters in our

predictive model did not significantly enhance its performance in

predicting MACE. This may be due to the relatively preserved

renal function in the majority of our cohort, or the small sample

size. Nevertheless, renal impairment remains an important risk

factor for cardiovascular events, and future studies with larger

populations may explore this relationship in greater detail.
5 Conclusion

In summary, the PCAT radiomics model based on coronary

CT can effectively predict the occurrence of major adverse

cardiovascular events in patients with angina pectoris. This user-

friendly tool can help clinicians optimize risk stratification and

management of individual patients.
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