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AI-powered contrast-free
cardiovascular magnetic
resonance imaging for
myocardial infarction
Vedat Cicek* and Ulas Bagci

Machine & Hybrid Intelligence Lab, Department of Radiology, Northwestern University, Chicago, IL,
United States
Cardiovascular magnetic (CMR) resonance is a versatile tool for diagnosing
cardiovascular diseases. While gadolinium-based contrast agents are the gold
standard for identifying myocardial infarction (MI), their use is limited in
patients with allergies or impaired kidney function, affecting a significant
portion of the MI population. This has led to a growing interest in developing
artificial intelligence (AI)-powered CMR techniques for MI detection without
contrast agents. This mini-review focuses on recent advancements in
AI-powered contrast-free CMR for MI detection. We explore various AI models
employed in the literature and delve into their strengths and limitations, paving
the way for a comprehensive understanding of this evolving field.
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1 Introduction

Cardiovascular diseases (CVDs), particularly ischemic heart disease (IHD), are the

leading cause of global mortality (1). A critical consequence of IHD is myocardial

infarction (MI), cell death due to prolonged ischemia, leading to impaired heart muscle

function (2). MI occurs due to an acute interruption of blood flow to a specific region

of the myocardium, leading to ischemia and subsequent necrosis of the affected tissue.

The most common underlying cause is the rupture of atherosclerotic plaques within the

coronary arteries, which initiates thrombus formation and subsequent arterial occlusion.

Cardiac magnetic resonance imaging (CMR) plays a critical role in the detection and

characterization of MI, offering a non-invasive method to infarcts (3). CMR’s ability to

provide detailed tissue characterization through late gadolinium enhancement (LGE)

allows for the precise identification of infarcted myocardium, distinguishing viable from

non-viable tissue (4, 5). CMR provides superior spatial resolution and tissue contrast,

making it a gold standard in diagnosing MI, evaluating scar tissue, detecting infarct size

and guiding subsequent treatment strategies (6, 7). Hence, CMR has become the

imaging gold standard for diagnosing MI. However, gadolinium-based contrast agents

(GBCA), currently essential for CMR-based MI detection (8), pose limitations. These

limitations include:

• Safety Concerns: GBCA use can be risky for patients with contrast allergies, chronic

kidney disease or populations such as pregnants and children (9). The risks

associated with the use of GBCAs include allergic and adverse physiological

reactions, acute kidney injury, brain deposition, nephrogenic systemic fibrosis and
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environmental problems (10). GBCA is known to lead to allergic

reactions. Patients with unrelated allergies have a 2- to 3-fold

increased risk of an allergic-like contrast reaction, while those

with a prior allergic history have an approximately 5-fold

increased risk (11, 12). Physiologic adverse reactions may

relate to molecular properties, such as direct chemotoxicity,

osmotoxicity. Cardiac arrhythmias, depressed myocardial

contractility, and pulmonary edema are, potentially serious

physiologic reactions to GBCA. Cardiovascular effects are

more frequent and significant in patients with underlying

cardiac disease. Such as severe aortic stenosis, cardiac

arrhythmias or cardiomyopathies (10). Acute kidney injury

(AKI) is one of the most important adverse effects of GBCA.

Etiologic factors that have been suggested include renal

vasoconstriction and direct tubular toxicity. Recent studies have

demonstrated that GBCA related AKI increases short term and

long-term mortality (13) GBCA deposits in the brain regions,

particularly the globus pallidus and dentate nucleus (14). A

single injection of GBCA is observed even after long-term

follow-up in the cerebellar parenchyma of rats (15).

Nephrogenic systemic fibrosis is a scleroderma-like illness that

occurs in patients with severe renal disease and after exposure

to certain GBCAs (16). Additionally, GBCA may increases

environmental pollutions. The increasing use of GBCA is

leading to widespread contamination of freshwater and

drinking water systems. Following their excretion via urine,

GBCAs enter the sewage system and are released into surface

waters as they are not removed by conventional sewage

treatment plants (17, 18).

• Time Constraints: Conventional contrast-enhanced CMR scans

require lengthy scan times (35–45 min) (19). Contrast-free scans

offer the potential for faster scan times.

• Accessibility: The need for contrast agents can add complexity

and cost to CMR procedures, potentially limiting accessibility.

• Requirement Doctors: It is essential for a qualified doctor to

be present during the administration of GBCAs to ensure patient

safety and manage any complications that might arise (20, 21).
1.1 The promise of contrast-free CMR
with AI

Driven by these limitations, there is growing interest in

developing non-invasive, contrast-free CMR techniques for MI

detection. These techniques hold promise for:

• Improved Safety: Eliminating the need for GBCA would

address safety concerns for patients with contraindications.

• Enhanced Efficiency: Faster scan times with contrast-free CMR

could improve patient experience and workflow efficiency.

• Increased Accessibility: Simpler procedures with contrast-free

CMR could make this technology more accessible to a wider

range of patients.

This mini review explores the potential of AI-powered contrast-free

CMR for MI detection. We examine the various AI models
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employed in recent studies (summarized in Table 1) and delve

into their strengths and limitations to assess the feasibility and

future directions of this promising approach.
2 Methods

2.1 Conventional CMR techniques
for contrast-free MI detection and
deep learning

CMR techniques, such as steady-state free precession cine

imaging, T1 mapping, T2 mapping, and diffusion tensor imaging

(DTI) provide valuable, contrast-free insights into myocardial

tissue properties and pathophysiology (31). T1 mapping, in

particular, shows promise for evaluating prior MI without

contrast. Quantitative analysis of T1 maps demonstrates a strong

correlation with histopathological findings (32). However, the

diagnostic accuracy of visual T1 map analysis suffers due to

factors like non-standardized map presentation and potential

confounding variables (33). T2 mapping measures the transverse

relaxation time, which is sensitive to water content in tissues,

making it a marker for inflammation, acute injury, or edema,

such as in myocarditis or acute MI (34). DTI goes beyond

standard imaging by capturing the directional diffusion of water

molecules in the myocardium, providing detailed information

about the orientation and integrity of myocardial fibers. This

allows for the detection of microstructural changes in conditions

like hypertrophic cardiomyopathy or diffuse myocardial fibrosis

The ability to non-invasively assess myocardial composition with

these techniques is critical, but interpreting the data is complex

due to the subtle variations in relaxation times between healthy

and diseased tissues (35, 36). Although several CMR techniques

could be used for the diagnosis of cardiovascular diseases, LGE-

MR appears to offer advantages in detecting small or

subendocardial infarcts of MI with high accuracy and is well

validated (37–39). LGE-MRI remains the imaging gold standard

for diagnosing myocardial infarction (MI) and assessing scar

tissue (40). However, GBCAs used in LGE-MRI can pose safety

concerns for some patients.

Deep learning (DL), a powerful branch of machine learning,

utilizes artificial neural networks to achieve high accuracy in

various applications, including medical imaging reconstruction

and aiding diagnostic tasks. In the context of CMR, DL holds

promise for improving disease detection, diagnosis, prediction,

and prognosis (41). In developing DL models for CMR analysis,

key image features like contrast, noise, texture, and motion are

integrated into a feature set used for training. The models

optimize their parameters based on expert-labeled ground truth

data. For tasks such as image segmentation, DL models extract

essential data features to make accurate predictions, applicable to

both classification (e.g., disease presence) and regression (e.g.,

extent of myocardial infarction) (42). In tasks like myocardial

contouring, DL methods, particularly convolutional neural

networks (CNNs), automatically learn image features for contour

prediction. CNNs, composed of convolutional, pooling, fully
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TABLE 1 Studies that explore the use of ML/DL models in conjunction with native CMR techniques to predict and detect MI without contrast agents.

First author Publication
year

Patients age
gender

Model training
participant\outcome

Aim (ground truth) Used model Model
performance

Xu et al. (22) 2018 165\140 MI detection (LGE) RNN-LSTM Accuracy: %95
Sensitivity: %90
Specifity: %98

Xu et al. (23) 2018 165\140 MI segmentation
quantification
(lgeradiologist)

Spatio-temporaL
NN (DSTGAN)

Clasification
Accuracy: %96
Sensitivity: %92
Specifity: %98

Larozzo et al. (24) 2018 50\50 MI detection (LGE) SVM AUC: 0.849,
Sensitivity: 92%

Zhang et al. (25) 2019 %80
57 ± 12 years

299\212 MI detection (LGE) RNN-LSTM AUC: 0.94

Avard et al. (26) 2022 72\52 MI detection (LGE) SVM AUC: 0.92

Abdulkareem
et al. (27)

2022 272\108 Prediction LGE results
(LGE)

SVM Accuracy: 0.68
F1: 0.63
Precision: 0.64

Zhang et al. (28) 2022 %81
64 ± 11 years

1,687\912 MI scar detection (LGE) Generative
adversarial networks

Specifity: %100
Sensitivity: %77

Zhang et al. (29) 2022 145\43 MI detection (LGE) Generative
adversarial networks

AUC: 0.83

Amyar et al. (30) 2023 %56
54 ± 18 years

3,000\1,130 MI scar detection (LGE) Spatio-temporal NN
(ST-RAN)

AUC: 0.92
TP: 0.98
FP: 0.09
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connected, and SoftMax layers, are extensively used in image

analysis (43, 44). More recently, Recurrent Neural Networks

(RNNs) and Transformers have been successfully applied to

extract informative features from CMR images and classify MI

(45). Hybrid approaches combining multiple techniques can

further enhance performance too. The main premise behind

these methods to utilize ground truth labels with input images

(CMR) without the need for contrast and force the neural

networks to match the input data to ground truth labels.
2.2 Search criteria

To comprehensively identify relevant studies for this mini-

review, we conducted a systematic search across PubMed,

Embase, and Cochrane databases. Our search strategy employed

a combination of Medical Subject Headings (MeSH) terms and

relevant keywords, including “cardiac magnetic resonance

imaging (CMR)”, “contrast-free”, “machine learning”, “artificial

intelligence”, “deep learning”, “myocardial infarction”, and

“coronary artery disease ”. Authors rigorously evaluated the full

texts of all eligible studies using a standardized data extraction

form. This form captured key study characteristics, including first

author, publication year, study design (prospective/retrospective),

patient population size, specific ML/DL model employed, and the

area under the receiver operating characteristic curve (AUC) for

the ML model compared to other models (if applicable). This

structured approach ensured consistent data extraction and

facilitated a comprehensive analysis of both clinical and ML

aspects within the studies. Models designed with clinical

outcomes other than MI and those developed using techniques
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other than ML were excluded. The retrieved articles were

assessed based on pre-defined inclusion and exclusion criteria.

High-quality studies were selected as the current review focuses

on AI-based detection of myocardial infarction using non-

contrast CMR. In total, 144 relevant studies were identified. After

reviewing records by title/abstracts, full-text articles were assessed

for eligibility, and studies meeting inclusion criteria underwent

qualitative synthesis. 9 papers were ultimately included in our

mini review (Figure 1).
3 Results and discussions

It was found that all ML-based detection models developed

using non-contrast CMR statistically significantly predicted MI in

studies where LGE-MRI was used as ground truths. Studies have

investigated the potential of non-contrast cine-CMR images as an

alternative to LGE-CMR images for assessing MI location and

size without GBCA injection, employing Recurrent Neural

Networks and Long Short-Term Memory (RNN-LSTM)

algorithms (22). RNN-LSTM resilience to long gaps enhances

memory efficiency for processing segments of CMR image

sequences while incorporating temporal data. By using patch

sequences instead of full image sequences, pixel-wise motion

feature extraction is streamlined, reducing input dimensions and

aiding in the LSTM-RNN’s learning process and time series

prediction Xu et al. (22) validated the performance of the RNN-

LSTM model using a dataset of 165 cine CMR images for

delineating MI. Their experimental results demonstrated an

accuracy of 0.95. In this study experimental results showed that

framework has high classification accuracy compared to the
frontiersin.org
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FIGURE 1

Flowchart for the study screening and selection.
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ground truth. Zhang et al. (25) introduced an RNN-LSTM model

for contrast-free CMR, facilitating the confirmation, detection,

and delineation of chronic MI. Study participants included 212

patients with chronic MI and 87 healthy control patients.

However, the authors of the two studies conducted with RNN-

LSTM noted a significant limitation: both studies were conducted

in a single center and with a small number of subjects.

The Spatial-Temporal Adversarial Networks (STAN)

framework aims to understand normal patterns and detect

anomalies by capturing their inherent spatial-temporal

characteristics without relying on optical flow mapping. Xu et al.

(23) presented a contrast-free deep spatiotemporal generative
Frontiers in Cardiovascular Medicine 04
adversarial network for the simultaneous delineation and

measurement of myocardial infarction from CMR images. Their

model achieves higher segmentation and quantification accuracy,

as well as more precise quantification terms compared to existing

segmentation and quantification methods. The proposed

ML-based model utilized a conditional GAN approach, achieving

a pixel classification accuracy of 96.98%. Amyar et al. (30)

introduced a residual attention block designed to extract spatial

and temporal features at various scales, thereby capturing both

global and local motion characteristics to detect myocardial scar

using a dataset of 3,000 patients. The model yielded results with

an introduced AUC of 0.84, F1 score of 0.72, and sensitivity of
frontiersin.org
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0.90. To mitigate the intricacies associated with 4D convolution, an

efficient training and inference strategy based on spatiotemporal

factorization (4D as 3D + time) has been employed. This method

enables a reduction in model parameters by a factor of 32 while

preserving high performance. The proposed layer extracts spatial

and temporal features while enhancing attention on features in

both directions. This enables the detection of subtle differences

in left ventricle myocardial texture and cardiac motion.

Support Vector Machines (SVMs) establish margins between

classes to maximize the distance between margins and classes,

thus minimizing classification errors. As a binary classification

method, SVMs accept labeled data from two classes and generate

a model file for classifying new, unlabeled or labeled data (46).

Originating from Vapnik’s concept of structural risk

minimization, SVMs primarily operate as two-class classifiers,

systematically learning linear or nonlinear class boundaries (47).

Avard et al. (26) developed an SVM-based ML model employing

radiomics features to distinguish between MI tissue and viable

myocardium on non-contrast cine-CMR images. The authors

reported an optimal performance with an area under the curve

(AUC) of 0.92 ± 0.05, an F1 Score of 0.90 ± 0.02, an accuracy of

0.85 ± 0.04, a recall of 0.92 ± 0.01, and a precision of 0.88 ± 0.04.

Larroza et al. (24) trained an SVM classifier to investigate the

capability of texture analysis using cine-CMR images to

discriminate among infarcted nonviable, viable, and remote

segments. The authors demonstrated that non-viable segments

can be detected on non-contrast cine-CMR images using texture

analysis, with an AUC of 0.849 and a sensitivity of 92%.

Abdulkareem et al. (27) developed an SVM-based AI model to

predict post-contrast information (i.e., presence, location, and/or

extent of myocardial infarction scar) from non-contrast data of

272 patients with diagnoses of myocardial infarction (n = 108)

and healthy controls (n = 164). They used UNet for segmentation,

ResNet50 for classification. The model performance was accuracy:

0.68, F1: 0.63, precision: 0.64.

Generative models are algorithms designed to learn the

underlying probability distribution of a dataset, enabling the

generation of new samples that closely resemble the original data.

These models find applications in data augmentation, creative

content generation, and other innovative domains including

medical image synthesis. Generative models manifest in various

forms, each exhibiting distinct characteristics and applications.

GANs have recently demonstrated remarkable success in

modeling distributions, particularly low-dimensional manifolds,

and generating visually appealing natural images in high-

dimensional data spaces. Notably, GANs achieve state-of-the-art

perceptual quality for image super-resolution tasks, scaling up to

4× upscaling for natural images sourced from datasets like

ImageNet. Furthermore, GANs have been deployed for tasks

such as image inpainting, style transfer, and visual manipulation,

exhibiting outstanding performance compared to existing

alternatives (48). Zhang et al. (28) integrated cine-CMR images

and native T1-mapping to generate LGE-like images using a

novel DL technique termed virtual native enhancement (VNE).

This methodology employed a GAN model to enhance the

imaging signal in native T1-mapping and cine images. The VNE
Frontiers in Cardiovascular Medicine 05
was evaluated against LGE images using linear regression,

Pearson correlation, and intraclass correlation coefficients.

Additionally, a histological comparison was conducted in a

porcine model of MI. VNE exhibited strong correlations with

LGE in quantifying scar size (R: 0.89; intraclass correlation

coefficient ICC: 0.94) and transmurally (R: 0.84; intraclass

correlation coefficient ICC: 0.90). It achieved an accuracy of 84%

in detecting scars with a specificity of 100% and a sensitivity

of 77%. Furthermore, it demonstrated excellent visuospatial

agreement with the histopathological porcine model. In another

study, Zhang et al. (29) utilized a GAN-based VNE technique to

generate virtual images from contrast-free CMR data, which

exhibited significantly better image quality for MI detection

compared to LGE images (P < 0.001).
3.1 Limitations and future prospects

Several limitations warrant consideration when interpreting the

current landscape of contrast-free CMR with AI for MI detection:

1. Data Heterogeneity: CMR image variability arises from

differences in scanner hardware, imaging protocols, and

patient populations, leading to discrepancies in resolution

and quality, complicating the generalization of DL models

across clinical settings.

2. Lack of Large, Annotated Datasets: A critical challenge in

developing DL algorithms for CMR analysis is the lack of

large, well-annotated datasets. This scarcity limits the

development and external validation of robust models across

diverse patient populations.

3. Limited Generalizability: Most studies involve single centers

and relatively small patient populations, hindering

generalizability. Future work must focus on using more

patients and heterogenous with sex and races features.

4. Interpretability: (“Black Box” Algorithms): The lack of

transparency in many ML models makes it challenging to

understand their decision-making processes. In other words,

while these algorithms can deliver accurate predictions or

classifications based on input data, the process by which

they reach these decisions is not readily understandable.

This circumstance also emerges as a constraint in the

mentioned studies.

5. Regulatory Approval: ML models for medical imaging must

undergo thorough validation and obtain regulatory approval

before clinical use. These lengthy, resource-intensive processes

pose significant barriers to the widespread adoption of ML

models in clinical practice.

6. External Validation Gap: The field currently lacks robust

external validation studies to confirm the efficacy of these

models in broader clinical settings. This gap underscores

potential limitations or biases in the model’s generalizability

and emphasizes the importance of rigorous validation across

diverse datasets or settings to ensure robustness and reliability.

To bridge these gaps and propel this approach towards clinical

practice, future research should prioritize:
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• Multicenter Trials: Conducting studies across multiple

institutions with diverse patient populations. This approach

provides enhanced generalizability, reduced bias, a diverse

patient population, quality assurance, efficiency, and cost-

effectiveness for studies.

• Multi-Reader Validation: Incorporating assessments from

multiple readers to evaluate model robustness. By involving

multiple readers, multi-reader validation helps reduce the

influence of individual reader biases and provides a more

robust evaluation of the diagnostic accuracy of the test.

• Paired Validation Studies: Directly comparing AI-based

contrast-free CMR with established diagnostic methods like

LGE-MRI.

By addressing these limitations, future research can pave the way

for the reliable integration of contrast-free CMR with AI into

clinical decision-making for MI diagnosis.
4 Conclusions

This mini-review explores the promise of AI-powered contrast-

free CMR for MI detection. Studies using machine learning,

specifically DL models with CMR techniques, demonstrate

encouraging results for MI prediction without GBCAs. These

models can learn to recognize patterns in the data and identify

areas needing further investigation. This evolution benefits

patient comfort (eliminating the need for intravenous

cannulation), enhances safety, and reduces the potentially

harmful environmental consequences of excreted gadolinium.

Additionally, this advancement shortens the procedure time for

cardiac MRI, decreases complexity, reduces healthcare costs, and

increases patient efficiency, all while maintaining high

quantitative and qualitative performance. These findings

underscore the ability of ML/DL models to address real-world

challenges in cardiovascular medicine. Future research should

aim to overcome limitations such as limited generalizability and

lack of external validation through multicenter, multi-reader,
Frontiers in Cardiovascular Medicine 06
and paired validation studies. By addressing these challenges,

AI-powered contrast-free CMR has the potential to become a

reliable and valuable tool for MI diagnosis in clinical settings.
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