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Machine-learning based risk
prediction of in-hospital
outcomes following STEMI: the
STEMI-ML score
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Ravinay Bhindi1,2 and Usaid K. Allahwala1,2

1Department of Cardiology, Royal North Shore Hospital, Sydney, NSW, Australia, 2Faculty of Medicine
and Health, University of Sydney, Sydney, NSW, Australia
Background: Traditional prognostic models for ST-segment elevation
myocardial infarction (STEMI) have limitations in statistical methods and usability.
Objective: We aimed to develop a machine-learning (ML) based risk score to
predict in-hospital mortality, intensive care unit (ICU) admission, and left
ventricular ejection fraction less than 40% (LVEF < 40%) in STEMI patients.
Methods: We reviewed 1,863 consecutive STEMI patients undergoing primary
percutaneous coronary intervention (pPCI) or rescue PCI. Eight supervised ML
methods [LASSO, ridge, elastic net (EN), decision tree, support vector
machine, random forest, AdaBoost and gradient boosting] were trained and
validated. A feature selection method was used to establish more informative
and nonredundant variables, which were then considered in groups of 5/10/
15/20/25/30(all). Final models were chosen to optimise area under the curve
(AUC) score while ensuring interpretability.
Results: Overall, 128 (6.9%) patients died in hospital, with 292 (15.7%) patients
requiring ICU admission and 373 (20.0%) patients with LVEF < 40%. The best-
performing model with 5 included variables, EN, achieved an AUC of 0.79 for
in-hospital mortality, 0.78 for ICU admission, and 0.74 for LVEF < 40%. The
included variables were age, pre-hospital cardiac arrest, robust collateral
recruitment (Rentrop grade 2 or 3), family history of coronary disease, initial
systolic blood pressure, initial heart rate, hypercholesterolemia, culprit vessel,
smoking status and TIMI flow pre-PCI. We developed a user-friendly web
application for real-world use, yielding risk scores as a percentage.
Conclusions: The STEMI-ML score effectively predicts in-hospital outcomes
in STEMI patients and may assist with risk stratification and individualising
patient management.
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1 Introduction

The advent of timely reperfusion strategies for patients with ST elevation myocardial

infarction (STEMI) has yielded improvement in prognosis, including mortality (1). Whilst

the overall outcomes following STEMI have improved over time, it remains a notable

health problem with significant morbidity and mortality (2). The in-hospital mortality

rate associated with STEMI ranges from 8.4%–33.5%, and complications include heart
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failure, cardiogenic shock, malignant arrhythmias, ventricular free

wall rupture and tamponade (2, 3). Early identification of

patients who are at the highest risk of poorer outcomes after

STEMI remains key in both mitigating these outcomes and the

burden to the healthcare system.

The Thrombolysis In Myocardial Infarction (TIMI) and Global

Registry of Acute Coronary Events (GRACE) scores are commonly

used risk assessment tools for acute coronary syndrome, including

STEMI (4, 5). However, treatment strategies for STEMI have

evolved significantly since the creation of these scores and their

applicability in this contemporary setting remains uncertain. The

GRACE risk score encompasses both STEMI and non-ST-

segment elevation myocardial infarction (NSTEMI) patients, thus

limiting its suitability as a predictive model specifically for

STEMI patients, who remain a higher risk cohort (5–7). Whilst

the TIMI risk score targets STEMI patients, it has been

developed from a cohort of patients managed predominantly

with thrombolytic therapy, as opposed to the contemporary gold

standard of primary percutaneous reperfusion (4, 8, 9).

Moreover, these traditional risk scoring models may fail to

capture nonlinear effects of significance and oversimplify

intricate interrelations among variables (10).

Consequently, there remains a need for sophisticated predictive

models that accurately predict outcomes in patients after STEMI,

including mortality, intensive care unit (ICU) admission and left

ventricular impairment, to allow for effective risk stratification,

resource allocation and optimal patient management. Machine-

learning (ML) is a branch of computer science dedicated to

predicting outcomes in intricate datasets through various

algorithms that iteratively learn from the data (11, 12). In

contrast to conventional statistical methods, which dependent on

predefined assumptions regarding data behaviour and preselected

variables, ML algorithms empower the model to develop by

recognizing and integrating underlying data patterns (13, 14).

ML models have consistently exhibited significantly better

performance when compared to traditional methods for

predicting risks (10).

The aim of our study is to develop a highly interpretable and

effective machine-learning based risk prediction algorithm for

mortality, ICU admission and left ventricular ejection fraction

less than 40% (the STEMI-ML Score).
2 Methods

2.1 Study cohort

We reviewed all consecutive patients presenting to our tertiary

Australian centre for primary percutaneous coronary intervention

(pPCI) or rescue PCI (following thrombolysis) for STEMI from

July 2010 to December 2019. The study received approval from

the Northern Sydney Local Health District Human Research

Ethics Committee. All patients were treated with aspirin prior to

PCI, unless intolerant of oral medications and all patients were

given intra-arterial, therapeutic heparin at the start of the
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procedure. The use of glycoprotein IIb/IIIa inhibitors was at the

discretion of the proceduralist.
2.2 Exposure and outcome variables

Patient electronic medical records were analysed to identify key

demographic, clinical, biochemical, imaging, and procedural

details. At the onset of coronary angiography, invasive

hemodynamic parameters such as heart rate (HR) and aortic

systolic blood pressure (SBP) were recorded and labelled as

“starting HR” and “starting SBP”. Individual coronary

angiograms were analysed to determine the presence and

maturity of collaterals, which were then graded according to the

Rentrop classification as grade 0 (absence of collateral filling),

grade 1 [filling of side branches of the infarct-related artery

(IRA)], grade 2 (partial filling of the epicardial vessel of the IRA)

and grade 3 (complete filling of the IRA). Patients with Rentrop

grade 0 or 1 collaterals were labelled as having poor collaterals,

and patients with Rentrop grade 2 or 3 collaterals were labelled

as having robust collaterals. Left ventricular function was

evaluated using transthoracic echocardiogram after STEMI, or if

unavailable, ventriculography at the time of the index procedure.

The time at the onset of continuous chest pain to the time of

acquisition of the first angiographic image during percutaneous

coronary intervention was defined as the ischaemic time.

The primary outcomes were in-hospital mortality, intensive

care unit (ICU) admission and left ventricular ejection fraction

less than 40% (LVEF < 40%). In the included sites, STEMI

patients are routinely admitted to the Coronary Care Unit

(CCU) for ongoing care. There were no specific criteria for ICU

admission. Generally, patients who require significant inotropic/

vasopressor support (e.g., noradrenaline or adrenaline),

intubation/mechanical ventilation, mechanical circulatory support

(e.g., intra-aortic balloon pump or extracorporeal membrane

oxygenation) or significant clinical instability prohibiting ongoing

care in CCU are transferred to ICU.
2.3 Machine-learning process

Data were separated into two subsets, with 80% used as

training data for feature selection and training of model

parameters and 20% used as test data to evaluate model

performance. The methodology of this machine-learning process

is shown in Figure 1. We used eight supervised-learning

classification models to create risk prediction algorithms for the

outcome variables of in-hospital mortality, ICU admission and

LVEF < 40%. These models include three linear, logistic

regression (LR) based models [least absolute shrinkage and

selection operator (LASSO or L1), ridge (L2) and Elastic Net

(EN)] and five non-linear, models [decision tree (DT), support

vector machine (SVM), random forest (RF), AdaBoost (AB) and

gradient boosting (GB)].
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FIGURE 1

Overview of study methodology for data training and testing.
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We oversampled the training dataset for each model by the

minority class using SMOTENC, which is an extension of

SMOTE (15). Missing values for each included feature were

imputed by the median value and features were standardised by

subtracting the mean and scaling to a variance of 1. Feature

selection for LR was performed in a sequential forward fashion

and a subset of features were selected in a greedy fashion, where

the next best feature to add in the subset is based on the AUC

cross validation score. The best 5/10/15/20/25/30(all) features as

determined by the coefficient magnitude were used as features

for other models. This particular process of extracting, ranking,

and grouping features was utilised to promote model

interpretability and usability.

Model hyperparameters were chosen using 5-fold cross

validation with AUC as the scoring metric. After parameter tuning,

each model was evaluated on the test set and the final model was

chosen based on the AUC score. The final models were then

calibrated by fitting a sigmoid regressor and isotonic regressor, and

optimal calibration was evaluated using the the Brier score and

calibration plot. The threshold for significance was established at

5% for all statistical tests. We performed our analyses with Python

(version 3.7), and the methodology code can be found on:

https://github.com/harisritharan/stemi_risk_prediction/blob/master/

stemi%20model%20building.ipynb.
2.4 Application

To facilitate real-world use of our models, a pragmatic and

user-friendly web application was built using Python Dash.

Within this web application, the top-performing models for
Frontiers in Cardiovascular Medicine 03
in-hospital mortality, ICU admission, and LVEF < 40% are

incorporated, allowing users to manually select variables to

generate a risk assessment score presented as a percentage.
3 Results

3.1 Study cohort

The total study cohort included 1,863 patients; 128 (6.9%)

patients died in-hospital, 292 (19.0%) patients required ICU

admission and 373 (20.8%) patients had LVEF < 40%. The mean

age of patients was 64.9 ± 13.7 years and 77.1% were male.

Additional study cohort characteristics are detailed in Table 1.
3.2 Predictive models for in-hospital
mortality

From the 8 ML algorithms applied, the model obtained by EN

had the best performance for the outcome of in-hospital mortality

when including 30 features (AUC 0.81), 25 features (AUC 0.81), 20

features (AUC 0.81), 15 features (AUC 0.80), 10 features (AUC

0.79) and 5 features (AUC 0.79). The changes in model

performance across the 8 ML algorithms based on the number of

included features is shown in Figure 2A.

When balancing model performance with ease of

interpretability and useability, the model obtained by EN

including 5 features was chosen as the final model (AUC 0.79,

accuracy 0.74, precision 0.18, recall 0.68, f1 score 0.28). The

performance of this EN model and its comparison against the
frontiersin.org
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TABLE 1 Baseline characteristics.

All patients Proportion of
missing values

Mean age (SD)—year 64.9 (13.7) 0%

Male–no. (%) 1,436 (77.1%) 0%

Body mass index (SD)—kg/m2 27.3 (4.8) 5.4%

Hypertension–no (%) 807 (46.4%) 6.7%

Hypercholesterolemia–no. (%) 677 (39.1%) 7.0%

Diabetes mellitus–no. (%) 278 (16.4%) 9.2%

Family history of coronary disease before age 50–no. (%) 458 (29.1%) 15.5%

Smoking history 19.2%

Never smoker–no. (%) 604 (40.2%)

Ex-smoker–no. (%) 431 (28.7%)

Current smoker–no. (%) 470 (31.3%)

Pre-hospital cardiac arrest–no. (%) 218 (11.7%) 0%

Ischaemic time (SD)—min 484.5 (657.0) 11.1%

Starting heart rate (SD)–beats/min 79.8 (19.9) 0.6%

Starting systolic blood pressure (SD)—mmHg 122.7 (28.2) 0.9%

Previous stent–no. (%) 186 (10.1%) 7.5%

Culprit coronary artery 0%

Left anterior descending–no. (%) 885 (47.5%)

Left circumflex–no. (%) 269 (14.4%)

Right coronary–no. (%) 709 (38.1%)

Robust collateral recruitment 0%

Yes (Rentrop grade 2 or 3)–no. (%) 399 (21.4%)

No (Rentrop grade 0 or 1)–no. (%) 1,464 (78.6%)

Thrombolysis in myocardial infarction flow pre-PCI 0%

0–no. (%) 1,096 (58.8%)

1–no. (%) 156 (8.4%)

2–no. (%) 511 (27.4%)

3–no. (%) 100 (5.4%)

Thrombolysis in myocardial infarction flow post-PCI 0%

0–no. (%) 21 (1.1%)

1–no. (%) 29 (1.6%)

2–no. (%) 138 (7.4%)

3–no. (%) 1,675 (89.9%)

Presence of chronic total occlusion in a remote vessel–no. (%) 116 (6.2%) 0%

Percutaneous coronary intervention performed–no. (%) 1,714 (92.0%) 0%

Number of stents (SD)–no. 1.2 (0.6) 0%

Length of stented segment (SD)—mm 30.1 (16.1) 8.0%

Glycoprotein IIb/IIIa inhibitor use–no. (%) 1,002 (54.8%) 1.8%

Inotrope use during procedure–no. (%) 269 (14.5%) 0.2%

Intra-aortic balloon pump (IABP) or extracorporeal membrane oxygenation (ECMO) use during
procedure–no. (%)

44 (2.7%) 11.8%

Ventricular arrhythmia during procedure–no. (%) 124 (6.7%) 0.2%

In-hospital mortality–no. (%) 128 (6.9%) 0%

Intensive care unit admission–no. (%) 292 (15.7%) 1.4%

Left ventricular ejection fraction less than 40%–no. (%) 373 (20.8%) 3.8%
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performance of other models including 5 features derived by

the remaining 7 ML algorithms is detailed in Supplementary

Table S1; Supplementary Figure S1.

The results of the final model found that higher age and pre-

hospital cardiac arrest were associated with increased in-hospital

mortality. In contrast, the presence of robust collateral

recruitment, a family history of coronary disease before age 50

and higher starting SBP were associated with lesser in-hospital

mortality. The coefficients of the EN model were used to

build the in-hospital mortality component of the STEMI-ML

score (Figure 3A).
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3.3 Predictive models for ICU admission

The model obtained by RF had the best performance for the

outcome of ICU admission when including 30 features (AUC

0.82). The model obtained by GB performed best when including

25 features (AUC 0.83) and 15 features (AUC 0.82). The model

obtained by AB had the best performance when including 20

features (AUC 0.82), and the model obtained by L2 had the best

performance when including 10 variables (AUC 0.81). However,

the model obtained by EN performed best when including 5

features (AUC 0.78). The changes in model performance across
frontiersin.org
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FIGURE 2

Predictive performance of models by number of variables for in-hospital mortality (A), ICU admission (B) and LVEF < 40% (C).
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FIGURE 3

Included coefficients and weighting in final models for in-hospital mortality (A), ICU admission (B) and LVEF < 40% (C).
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the 8 ML algorithms based on the number of included features is

shown in Figure 2B.

When balancing model performance with ease of

interpretability and useability, the model obtained by EN

including 5 features was chosen as the final model (AUC 0.78,

accuracy 0.76, precision 0.32, recall 0.67, f1 score 0.44). The

performance of this EN model and its comparison against the

performance of other models including 5 features derived by the

remaining 7 ML algorithms is detailed in Supplementary

Table S2; Supplementary Figure S2.

The results of the final model found that pre-hospital cardiac

arrest and a higher starting HR were associated with increased ICU

admission. However, pre-existing diagnosis of hypercholesterolemia,

a family history of coronary disease before age 50 and higher

starting SBP were associated with decreased ICU admission. The

coefficients of this EN model were used to build the ICU

admission component of the STEMI-ML score (Figure 3B).
3.4 Predictive models for LVEF < 40%

Out of the 8 ML algorithms, the model obtained by AB had the

best performance for the outcome of LVEF < 40% when including 30

features (AUC 0.76), 25 features (AUC 0.76), 15 features (AUC 0.75)

and 10 features (AUC 0.76). The model obtained by RF had the best

performance when including 20 features (AUC 0.76). However,

when including 5 features (AUC 0.74), the model obtained by EN

had the best performance and this was marginally lower than the

AB and RF models that included more features. The changes in

model performance across the 8 ML algorithms based on the

number of features included is shown in Figure 2C.

When balancing model performance with ease of

interpretability and useability, the model obtained by EN

including 5 features was chosen as the final model (AUC 0.74,

accuracy 0.72, precision 0.44, recall 0.64, f1 score 0.52). The

performance of this EN model and its comparison against the
Frontiers in Cardiovascular Medicine 06
performance of other models including 5 features derived by the

remaining 7 ML algorithms is detailed in Supplementary

Table S3; Supplementary Figure S3.

The results of the final model found that the left anterior

descending coronary artery as the culprit vessel was associated

increased likelihood of LVEF < 40%. However, higher starting

SBP, current smoking status, TIMI flow 2 pre-PCI and the

presence of robust collateral recruitment were associated with

decreased likelihood of LVEF < 40%. The coefficients of this EN

model were used to build the LVEF < 40% component of the

STEMI-ML score (Figure 3C).
3.5 The STEMI-ML score application

Finally, we developed a web-based application for the

individual probability for in-hospital mortality, ICU admission

and LVEF < 40% in STEMI patients. This web application is

shown in Figure 4 and is available at: https://stemi-ml-score.

onrender.com.
4 Discussion

We present dedicated machine-learning based risk prediction

models for in-hospital mortality, ICU admission and LVEF < 40%

in STEMI patients. These models are practical in their design

and use data that is routinely collected during and in the lead up

to PCI; thereby allowing for risk prediction immediately post-

PCI. A criticism of existing prediction models is the large

number of variables included and the limited useability in this

context. We have pragmatically included five variables in all our

models and have still achieved highly effective predictive

capabilities with AUC greater than 0.7 and comparable if not

superior efficacy to existing risk scores (16, 17). Moreover, we have

developed a user-friendly, web-based application, the “STEMI-ML
frontiersin.org
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FIGURE 4

STEMI-ML risk score web application.
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Score”, to assist clinicians at the bedside in risk stratifying patients in

real-time: https://stemi-ml-score.onrender.com.

The presence of robust coronary collaterals has previously

been reported as a protective factor for in-hospital mortality

and left ventricular function in STEMI patients, however

existing risk models do not consider it as one of their exposure

variables (18–20). This significant impact of robust coronary

collaterals on in-hospital outcomes is again reflected in our

study, where it features in our final models for mortality and

left ventricular impairment. The inclusion of variables such as

coronary collateral circulation presents a major strength of our

study and methodology with a machine-learning approach,

wherein a larger number of variables can be considered, and

key novel signals can be appreciated.

Whilst patients with a family history of coronary disease are at

increased risk of developing a myocardial infarction, observational

studies have conversely demonstrated lower in-hospital mortality

and adverse clinical events in this group. A retrospective,

observational study of 2,123,492 STEMI admissions demonstrated

significantly lower odds of in-hospital mortality in patients with a

family history of coronary artery disease compared to patients

without [1.4% vs. 8.1%; aOR 0.42, 95% confidence interval

(CI): 0.41–0.44; P < 0.001] (21). The purported mechanism for this

difference was the influence of family history on heightened

patient awareness of cardiovascular health and increased patient

focus on pharmacological and non-pharmacological modalities of

cardiovascular risk reduction (21). Our final models for in-hospital
Frontiers in Cardiovascular Medicine 07
mortality and ICU admission find family history of coronary

disease before age 50 to be a significant protective factor.

Several studies have investigated the cholesterol paradox in

patients with acute coronary syndromes and NSTEMI or STEMI

alone (22, 23). While hypercholesterolemia is a well-known risk

factor for STEMI, studies have demonstrated lower risk of adverse

events following STEMI in patients with hypercholesterolemia

(22, 24). A retrospective, observational study including 11,543

STEMI patients and 8,470 NSTEMI patients demonstrated lower

adverse events in patients with higher low-density lipoprotein-C

and triglyceride levels (24). Similarly, the smoker’s paradox has

also been investigated in several studies, with a lower risk of

adverse events noted especially in current smokers following

STEMI (25, 26). This smoker’s paradox may be explained by the

younger age and fewer cardiovascular risk factors in smokers

compared with non-smokers (27). Both the cholesterol paradox

and smoker’s paradox are demonstrated in our final models, with

hypercholesterolemia a protective factor for ICU admission and

current smoking a protective factor for left ventricular impairment.

Higher age and pre-hospital cardiac arrest are well-established

predictors of poor outcomes in STEMI patients and are seen in our

models for in-hospital mortality and ICU admission (28–30). A

higher starting SBP is also an established protective predictor of

outcomes in STEMI patients and features in all our final models

(31). However, a higher starting heart rate has been associated

with poorer outcomes in STEMI patients and was similarly a

predictor for ICU admission in our study (32). Left ventricular
frontiersin.org
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impairment with an ejection fraction less than 40% was seen in

20.8% of patients in our study, and a culprit lesion in the left

anterior descending artery (LAD) was a significant predictor of

this outcome, likely mediated by the large myocardial territory

supplied by the LAD.

Our study has some important limitations. Whilst our model

was validated on an internal test dataset, external validation on

another dataset would be ideal and necessary prior to

consideration of widespread use. External validation also would

be ideal from the perspective of validating the generalisability of

our study, which involved a single centre only. Furthermore, our

dataset exhibited an imbalance in the outcome variables, which is

a common challenge encountered in the construction of

machine-learning-based risk prediction algorithms for medical

applications where the outcomes may be less common. To

address this issue, we employed oversampling of the minority

class during the training of each model, and thereby mitigated

the impact of this imbalance on the algorithm’s performance.

Finally, the exposure variables included in the analysis were not

comprehensive, and missing variables, although imputed and

uncommon, may influence the outcomes.
5 Conclusion

We present a highly interpretable and effective machine-

learning based risk prediction algorithm to predict in-hospital

mortality, ICU admission and LVEF < 40% in STEMI patients:

the STEMI-ML Score. This may assist in the risk stratification,

individualised monitoring, and management of STEMI patients.
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