
TYPE Original Research
PUBLISHED 26 September 2024| DOI 10.3389/fcvm.2024.1450757
EDITED BY

Ramdas G. Pai,

University of California, Riverside,

United States

REVIEWED BY

Francesca Bartoli-Leonard,

University of Bristol, United Kingdom

Alexander Fletcher,

University of Glasgow, United Kingdom

*CORRESPONDENCE

Hae-Ok Jung

hojheart@gmail.com

RECEIVED 18 June 2024

ACCEPTED 12 September 2024

PUBLISHED 26 September 2024

CITATION

Kim KA, Jung H-O, Kim M-J, Lee S-Y, Ahn Y,

Jung M-H, Chung W-B, Lee D-H, Youn H-J

and Chang H-J (2024) Higher serum

phosphate within the normal range is

associated with the development of calcified

aortic valve disease.

Front. Cardiovasc. Med. 11:1450757.

doi: 10.3389/fcvm.2024.1450757

COPYRIGHT

© 2024 Kim, Jung, Kim, Lee, Ahn, Jung,
Chung, Lee, Youn and Chang. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.
Frontiers in Cardiovascular Medicine
Higher serum phosphate within
the normal range is associated
with the development of calcified
aortic valve disease
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Background: Despite the essential role of ectopic osteogenic calcium-
phosphate metabolism in the development of calcific aortic valve disease
(CAVD), the implications of high serum phosphate levels in CAVD development
are not fully understood.
Methods: Asymptomatic individuals who underwent health screening using
serial cardiac computed tomography (CT) and echocardiography were
selected from a multicenter registry. CAVD was identified and quantified on CT
images using the aortic valve calcification (AVC) score. The associations
between initial serum phosphate levels and the presence of baseline CAVD,
development of new CAVD, and the AVC score progression rate were
investigated using multivariable regression models.
Results: A total of 736 individuals were selected for analysis, and the median
interscan duration was 36.4 months. On initial CT, 83 (13.7%) participants had
baseline CAVD, while 52 (7.0%) individuals developed new CAVD during
follow-up. Serum phosphate levels were not associated with a higher
probability of baseline CAVD but were predictive of newly developed CAVD
(odds ratio per 1 mg/dl, 1.05; 95% confidence interval, 1.01–1.10; p= 0.02).
Higher phosphate levels were also associated with a faster AVC score
progression in those with baseline CAVD (regression coefficient per 1 mg/dl,
15.55 Agatston units/year; 95% confidence interval, 6.02–25.07; p < 0.01), an
association which remained significant when the analysis was extended to
include newly developed CAVD.
Conclusion: Even slight elevations in serum phosphate are associated with
accelerated CAVD progression from an early stage. Further studies are needed
to investigate whether the regulation of phosphate metabolism can slow the
progression of CAVD to aortic stenosis.
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1 Introduction

Calcific aortic valve disease (CAVD) is characterized by fibrotic

thickening and calcification of the aortic valve (1). CAVD can

progress to the point where the limitation of aortic valve opening

becomes hemodynamically significant, which is referred to as

aortic stenosis (AS)—a major cause of cardiovascular morbidity

worldwide (2, 3). The detection of aortic valve calcification

(AVC) on computed tomography (CT) is a sensitive and accurate

method to quantify the calcific burden of CAVD and monitor

disease progression (4, 5).

In the pathogenesis of CAVD, multiple pathways related to

atherosclerosis and ectopic osteogenic calcium-phosphate

metabolism are involved (6, 7). Although atherosclerotic risk

factors are responsible for the initiation of CAVD, they are not

associated with its progression (8, 9), and lipid lowering using

statins did not succeed in preventing significant AS (10).

Therefore, pathways related to osteogenesis and calcium-

phosphate metabolism may be the key to developing

pharmacologic interventions for CAVD (6, 11, 12). However,

although elevated serum phosphate has been associated with the

presence of CAVD, the implications of serum phosphate levels in

CAVD progression are not fully understood (13, 14).

Furthermore, the role of calcium-phosphate metabolism in

CAVD may be of particular interest in the East Asian

population, which has a lower burden of atherosclerosis

compared with other ethnicities (3, 15, 16). Therefore, we sought

to identify, among other factors, the relationship of serum

phosphate levels with the progression of CAVD in ethnic Korean

participants who were examined with cardiac CT scans as part of

a general health examination.
2 Methods

2.1 Study design and population

The data used in this study were collected as part of the KOrea

Initiatives on Coronary Artery calcification (KOICA) registry,

which is a multicenter registry of individuals examined using

cardiac CT scans during self-referred health examinations in six

high-volume healthcare centers affiliated with tertiary hospitals in

Korea. A total of 93,914 individuals were registered, and further

details can be found in previous reports (16, 17). For this study,

we selected the participants who were examined at Seoul

St. Mary’s Hospital, where same-day echocardiography was also

part of the health examination. We limited our analysis to those

with at least two CT scans during the study period (April 2009–

July 2016) to identify factors associated with the progression of

CAVD. Participants with bicuspid aortic valves were excluded, as

they were thought to represent a heterogeneous population.

Demographic factors, medical history, and current symptoms

were self-reported using a detailed questionnaire. Medical records

were retrospectively reviewed to ensure that the participants were

free of cardiovascular symptoms at the initial or repeat CT scans

which may have prompted the examination. Laboratory samples
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were drawn after a 12-hour fasting period and measured using

an automatic analyzer (7,600–210; Hitachi Medical Corp., Tokyo,

Japan). Lipid profiles were measured using a direct enzymatic

method. The estimated glomerular filtration rate (eGFR) was

calculated using the Chronic Kidney Disease Epidemiology

Collaboration equation. The institutional review board of Seoul

St. Mary’s Hospital approved the study protocol (IRB

KC23RISI0357) and waived the need for written informed

consent because of the study’s retrospective nature. The study

protocol conforms to the ethical guidelines of the 1975

Declaration of Helsinki.
2.2 Data acquisition

Cardiac CT images were acquired using a 64-slice, dual-source

CT scanner (SOMATOM Definition; Siemens, Forchheim,

Germany). A non-contrast scan was first obtained using

prospective triggering at 70% of the RR interval. The parameters

used were tube voltage 120 kVp, gantry rotation time of 330 ms,

and maximum tube current of 400 mA·s. Next, enhanced CT

angiography scans were obtained using a retrospective

electrocardiogram-gated protocol after the administration of

80–110 ml of iodinated contrast. CT images were transferred and

reconstructed immediately after scanning using a computerized

workstation (Advantage Windows Workstation 4.3; GE

Healthcare, Milwaukee, WI, USA) with a slice thickness of

3 mm. Further details regarding the protocol for cardiac CT at

our institution can be found in previous reports (18, 19).

CAVD was primarily assessed on CT images using a

commercially available CT processing program (3mensio

Structural Heart 10.0; Pie Medical Imaging, Maastricht, the

Netherlands). As recommended in those undergoing evaluation

for AS, the severity of CAVD was quantified on non-contrast

axial images using the AVC score according to the Agatston

method (4). Each calcified lesion from the base to the tip of the

aortic valve leaflets was carefully selected, excluding

calcifications found in the coronary arteries, aortic root, and left

ventricular outflow tract. If necessary, the corresponding

enhanced CT images were additionally referred to for the

verification of anatomic structures. The AVC score was defined

as the sum of the values for each calcified lesion and was

assessed by two cardiologists (K.A.K. and S.-Y.L.) with 3 years

of experience in cardiac imaging. A third cardiologist (H.-O.J.)

with more than 20 years of cardiac imaging experience was

consulted in cases of uncertainty.

The hemodynamic effects of CAVD were assessed using

transthoracic echocardiography, which was performed by trained

sonographers following standard guidelines (20). Images were

obtained using commercially available ultrasound machines with

2.5- to 3.5-MHz transducers (GE Vivid E7 and Vivid E9, GE

Healthcare, Chicago, IL, USA; Philips iE33, Amsterdam, the

Netherlands). Because the majority of participants did not have

findings suggestive of AS, continuous-wave Doppler

measurements across the aortic valve were not routinely

performed in these individuals.
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2.3 Statistical analyses

The participants were classified into three groups according to

the presence of CAVD on initial and subsequent CT scans: (1) no

CAVD, defined as no AVC on any scan; (2) newly developed

CAVD, defined as no AVC on the initial CT but with AVC score

>0 on subsequent CT; (3) baseline CAVD. In the baseline

characteristics, categorical data are presented as numbers and

frequencies and compared using the χ2 test, and continuous

variables are expressed as mean ± standard deviation and

compared using one-way analysis of variance.

The relationship between serum phosphate and CAVD

development was analyzed in a number of ways. First, the

association between phosphate levels and both baseline and
FIGURE 1

Selection process of the study population. KOICA, Korea initiatives on corona
calcified aortic valve disease.
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newly developed CAVD was analyzed using multivariable logistic

regression models. Restricted cubic splines were also constructed

to visualize the relationship between serum phosphate levels and

other significant predictors with the probability of newly

developed CAVD. Second, the association between phosphate

levels and CAVD progression was analyzed using multivariable

linear regression on the annualized AVC score progression rate

in those with baseline CAVD. Finally, the association between

CAVD progression and serum phosphate levels was analyzed in

the entire group including both baseline CAVD and newly

developed CAVD using a multivariable linear mixed-effects

model with individual intercepts and the repeated effect

estimated for time. Subgroup analysis was also performed using

the multivariable linear mixed-effects model to confirm the effect
ry artery calcification; CT, computed tomography; AV, aortic valve; CAVD,
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of phosphate levels on CAVD progression in different populations.

The relationship between serum phosphate levels and

echocardiographic parameters was additionally explored using

multivariable linear and logistic regression models.

Statistical analyses were performed using R version 4.3.2

(R Foundation for Statistical Computing, Vienna, Austria), and a

two-sided p value <0.05 was considered statistically significant.

Further details of the statistical methods used in this study can

be found in the Supplementary Material.
3 Results

3.1 Baseline characteristics

From the KOICA registry, we selected 6,641 individuals who

underwent examination at Seoul St. Mary’s Hospital. After

excluding two individuals with missing data and two with

bicuspid aortic valves, 736 participants with at least two CT

scans during the study period (April 2009–July 2016) were

included in the final study (Figure 1). The median duration

between the initial and final CT was 36.4 [interquartile range

(IQR), 23.5–50.3] months, and a total of 1,695 CT scans were

considered for analysis. Baseline CAVD was present in 83

individuals (11.2%) on the initial CT scan, and new-onset CAVD

developed in 52 participants (7.1%) on subsequent scans. In

participants with baseline CAVD, the median AVC score was

30.4 (IQR, 10.6–57.2) Agatston units (AU) on the initial CT

(Figure 2A) and increased to 49.4 (IQR, 24.9–92.1) AU on the

final CT, with an annualized progression rate of 6.0 (IQR, 2.1–

16.8) AU/year (Figure 2B).

The baseline characteristics of the study population are

presented in Table 1. The median age of the participants was 57

years, and 80.6% were male, with a low proportion of

comorbidities overall. Compared with individuals without CAVD,

those with baseline or newly developed CAVD were older, were

more likely to have hypertension and higher systolic blood
FIGURE 2

Distribution of (A) baseline aortic valve calcification scores (B) annualized
calcification; AU, Agatston units.
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pressure (SBP), and had lower eGFR and higher Framingham

Risk Scores (21). On echocardiography, the participants with

baseline or newly developed CAVD had a higher proportion of

aortic regurgitation, higher left ventricular outflow tract

velocities, higher left ventricular mass index (LVMI), and worse

diastolic function profiles. Two individuals in the baseline AVC

group had mild AS.
3.2 Association of serum phosphate
with the probability of calcified aortic
valve disease

On univariable logistic regression, there was no clear

association between serum phosphate and baseline CAVD, but

higher serum phosphate levels were associated with a

significantly higher probability of newly developed CAVD (odds

ratio [OR] per 1 mg/dl increase, 1.06; 95% confidence interval

[CI], 1.01–1.10; p = 0.02) (Table 2). This association remained

after adjustment for age, sex, hypertension, diabetes,

dyslipidemia, and eGFR (model 1a: OR, 1.06; 95% CI, 1.02–1.11;

p = 0.01); for age, sex, SBP, glycated hemoglobin, low-density

lipoprotein cholesterol (LDL-C), and eGFR (model 1b: OR, 1.05;

95% CI, 1.01–1.10; p = 0.02); or for the Framingham risk score

(21), glycated hemoglobin, and eGFR (model 2: OR, 1.05; 95%

CI, 1.01–1.10; p = 0.02).

Predictors of baseline and newly developed CAVD other than

the traditional atherosclerosis risk factors were identified and

adjusted for using a stepwise model (model 3 in Tables 2, 3).

Older age (OR per 10 years, 1.15; 95% CI, 1.12–1.19; p < 0.001),

higher body mass index (BMI) (OR per 5 kg/m2, 1.05; 95% CI,

1.02–1.10; p < 0.01), history of hypertension (OR, 1.05; 95% CI,

1.00–1.11; p = 0.04), and higher LDL-C levels (OR per 10 mg/dl,

1.01; 95% CI, 1.00–1.02; p = 0.02) were associated with baseline

CAVD; however, serum phosphate levels were not (OR per

1 mg/dl, 1.02; 95% CI, 0.93–1.07; p = 0.41). In contrast, higher

serum phosphate (OR per 1 mg/dl, 1.06; 95% CI, 1.02–1.10;
progression rate of aortic valve calcification scores. AVC, aortic valve
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TABLE 1 Baseline characteristics of the study population stratified according to the presence of calcified aortic valve disease at baseline and follow-up
computed tomography.

No CAVD Newly developed CAVD Baseline CAVD p-value

(n = 601) (n = 52) (n= 83)

Demographic, clinical, and laboratory characteristics
Age (years) 53.7 ± 7.9 57.7 ± 7.0 62.6 ± 8.2 <0.001

Sex 0.50

Male (%) 485 (80.7) 39 (75.0) 69 (83.1)

Female (%) 116 (19.3) 13 (25.0) 14 (16.9)

BMI (kg/m2) 24.7 ± 3.3 24.9 ± 2.8 25.5 ± 2.6 0.08

History of smoking 0.16

Non-smoker 353 (58.7) 36 (69.2) 57 (68.7)

Ex-smoker 133 (22.1) 8 (15.4) 10 (12.0)

Current smoker 115 (19.1) 8 (15.4) 16 (19.3)

Hypertension (%) 169 (28.3) 18 (35.3) 39 (47.0) <0.01

Diabetes (%) 76 (12.6) 5 (9.6) 18 (21.7) 0.06

Dyslipidemia (%) 104 (17.3) 9 (17.3) 19 (22.9) 0.46

Atrial fibrillation (%) 4 (0.8) 1 (2.1) 1 (1.3) 0.57

Stroke (%) 6 (1.0) 1 (1.9) 2 (2.4) 0.49

CKD (%) 1 (0.2) 1 (1.9) 0 (0.0) 0.06

SBP (mmHg) 123.7 ± 13.0 128.0 ± 13.3 127.1 ± 11.3 0.01

DBP (mmHg) 75.4 ± 9.9 74.9 ± 7.9 74.7 ± 7.8 0.76

WBC (109/L) 5.9 ± 1.7 5.6 ± 1.7 5.9 ± 1.5 0.39

Hemoglobin (mg/dl) 15.0 ± 1.4 14.9 ± 1.1 14.8 ± 1.4 0.41

Platelet (109/L) 232.0 ± 50.3 229.8 ± 49.6 231.6 ± 44.5 0.95

HbA1C (%) 5.8 ± 0.7 5.8 ± 0.7 5.9 ± 0.7 0.15

HDL-C (mg/dl) 49.7 ± 11.3 50.1 ± 10.2 49.4 ± 11.8 0.95

LDL-C (mg/dl) 120.9 ± 32.7 119.8 ± 31.7 121.0 ± 31.6 0.97

Triglycerides (mg/dl) 128.5 ± 80.9 122.6 ± 72.2 133.4 ± 69.7 0.75

Calcium (mg/dl) 9.2 ± 0.4 9.2 ± 0.3 9.2 ± 0.3 0.98

Phosphate (mg/dl) 3.4 ± 0.5 3.6 ± 0.4 3.5 ± 0.5 0.12

eGFR (ml/min/1.73 m2) 84.3 ± 10.4 84.2 ± 8.4 80.0 ± 8.7 <0.01

hs-CRP (mg/dl) 0.15 ± 0.34 0.20 ± 0.52 0.17 ± 0.31 0.72

Framingham risk score 11.3 ± 3.5 12.6 ± 3.0 13.6 ± 3.0 <0.001

Echocardiographic characteristics
AR severity <0.001

None/trivial (%) 570 (94.8) 46 (88.5) 68 (81.9)

Mild (%) 31 (5.2) 6 (11.5) 15 (18.1)

AS severity <0.001

None (%) 601 (100.0) 52 (100.0) 81 (97.6)

Mild (%) 0 (0.0) 0 (0.0) 2 (2.4)

LVOT peak velocity (m/s) 0.94 ± 0.15 0.97 ± 0.19 0.99 ± 0.12 0.03

LVOT VTI (cm) 20.2 ± 3.4 20.9 ± 4.5 21.3 ± 2.9 0.04

LVOT diameter (cm) 2.2 ± 0.2 2.2 ± 0.2 2.2 ± 0.2 0.47

LVEF (%) 65.8 ± 5.4 67.1 ± 4.4 65.9 ± 5.1 0.24

LVEDV (ml) 79.9 ± 19.7 82.8 ± 18.6 79.7 ± 20.9 0.61

LVMI (kg/m2) 85.1 ± 18.0 93.8 ± 25.7 92.9 ± 18.2 <0.001

LAVI (ml/m2) 24.7 ± 7.4 28.4 ± 9.6 25.8 ± 7.2 0.01

Septal E/e’ 8.7 ± 2.3 9.7 ± 2.5 10.2 ± 2.7 <0.001

TR peak velocity (m/s) 2.16 ± 0.25 2.22 ± 0.22 2.25 ± 0.26 0.04

CAVD, calcified aortic valve disease; BMI, body-mass index; CKD, chronic kidney disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; WBC, white blood cell;

HbA1c, glycated hemoglobin; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitivity

C-reactive protein; AR, aortic regurgitation; AS, aortic stenosis; LVOT, left ventricular outflow tract; VTI, velocity-time integral; LVEF, left ventricular ejection fraction; LVEDV, left

ventricular end diastolic volume; LVMI, left ventricular mass index; LAVI, left atrial volume index.

Kim et al. 10.3389/fcvm.2024.1450757
p = 0.01) was a significant predictor for the development of new

CAVD, as were older age (OR per 10 years, 1.05; 95% CI,

1.02–1.08; p < 0.01), higher SBP (OR per 10 mmHg, 1.04; 95%

CI, 1.01–1.07; p < 0.01), and higher LVMI (OR per 10 g/m2, 1.02;

95% CI, 1.00–1.03; p = 0.03). Analysis using restricted cubic
Frontiers in Cardiovascular Medicine 05
splines also showed a positive correlation between age, SBP,

serum phosphate, and LVMI with the probability of newly

developed CAVD (Figure 3). The increase in the probability of

newly developed CAVD with increasing serum phosphate was

most prominent between 3.0–4.0 mg/dl and plateaued past this
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range. The optimal cutoff points for predicting newly developed

CAVD were age >51 years, SBP >128 mmHg, serum phosphate

>3.6 mg/dl, and LVMI >99 g/m2 (Supplementary Material

Figure S1), and the C-index for the regression models was 0.79

for baseline CAVD and 0.81 for newly developed CAVD

(Supplementary Material Figure S2).
3.3 Association of serum phosphate
with the progression rate of calcified aortic
valve disease

In individuals with baseline CAVD, the initial AVC score,

serum phosphate, left ventricular end-diastolic volume, and

LVMI were associated with a higher annualized AVC score

progression rate on univariable linear regression (Table 4). After

multivariable adjustment, higher serum phosphate levels
TABLE 2 Association of serum phosphate with the probability of baseline
and newly developed calcified aortic valve disease.

Baseline CAVD Newly developed
CAVDa

OR (95% CI) p-value OR (95% CI) p-value
Unadjusted 1.01 (0.96–1.06) 0.66 1.06 (1.01–1.10) 0.02

Model 1a 1.03 (0.98–1.08) 0.29 1.06 (1.02–1.11) 0.01

Model 1b 1.02 (0.97–1.07) 0.43 1.05 (1.01–1.10) 0.02

Model 2 1.00 (0.96–1.05) 0.90 1.05 (1.01–1.10) 0.02

Model 3 1.02 (0.97–1.07) 0.41 1.06 (1.02–1.10) 0.01

aAdditionally adjusted for interscan duration in all analyses. Model 1a: adjusted for age, sex,

hypertension, diabetes, dyslipidemia, and estimated glomerular filtration rate. Model 1b:

adjusted for age, sex, systolic blood pressure, glycated hemoglobin, low-density lipoprotein

cholesterol, and estimated glomerular filtration rate. Model 2: adjusted for Framingham
risk score, glycated hemoglobin, and estimated glomerular filtration rate. Model 3:

adjusted for age, sex, body-mass index, hypertension, low-density lipoprotein cholesterol,

and estimated glomerular filtration rate in baseline aortic valve calcification, and for age,

systolic blood pressure, left ventricular mass index, and estimated glomerular filtration rate
in new-onset aortic valve calcification. CAVD, calcified aortic valve disease; OR, odds ratio.

TABLE 3 Factors associated with baseline and newly developed calcified aor

Baseline CAVDa

Characteristics OR (95% CI) p-va
Age (per 10 years) 1.15 (1.12–1.19) <0.0

Sex 0.7

Male 1.01 (0.96–1.07)

Female Referent

BMI (per 5 kg/m2) 1.05 (1.02–1.10) <0.0

Hypertension 1.05 (1.00–1.11) 0.0

SBP (per 10 mmHg)

LDL-C (per 10 mg/dl) 1.01 (1.00–1.02) 0.0

Phosphate (per 1 mg/dl) 1.02 (0.97–1.07) 0.4

eGFR (per 10 ml/min/1.73 m2) 1.02 (0.99–1.04) 0.1

LVMI (per 10 g/m2)

Interscan duration (per 1 year)

aAdjusted for age, sex, body-mass index, hypertension, low-density lipoprotein cholesterol, phos
bAdjusted for age, sex, systolic blood pressure, left ventricular mass index, phosphate, and estima

AVC, aortic valve calcification; BMI, body-mass index; SBP, systolic blood pressure; LDL-C,

ventricular mass index.
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(regression coefficient per 1 mg/dl, 15.80; 95% CI, 5.65–25.96;

p < 0.01), as well as the initial AVC score (regression coefficient

per 1 AU, 0.29; 95% CI, 0.26–0.32; p < 0.001), male sex

(regression coefficient, 15.95; 95% CI, 4.22–27.67, p = 0.01), and

LVMI (regression coefficient per 10 g/m2, 2.31; 95% CI, 0.16–

4.45; p = 0.04) emerged as factors significantly associated with a

higher annualized AVC score progression rate.

When the association between CAVD progression and serum

phosphate levels was analyzed in the entire group including both

baseline and newly developed CAVD using a linear mixed-effects

model, higher serum phosphate was again found to be

independently associated with a higher annualized AVC score

progression rate (regression coefficient per 1 mg/dl, 1.03; 95% CI,

0.25–1.83; p = 0.01) (Table 5). The only other risk factor

associated with CAVD progression in this analysis was the initial

AVC score (regression coefficient per 1 AU, 0.26; 95% CI, 0.25–

0.27; p < 0.001). In subgroup analysis, higher phosphate was

associated with more rapid progression in both baseline and

newly developed CAVD, with a larger effect in those with

baseline CAVD (regression coefficient per 1 mg/dl, 10.46; 95%

CI, 0.16–22.13; p = 0.05) compared with those with newly

developed CAVD (regression coefficient per 1 mg/dl, 0.54; 95%

CI, 0.21–0.83; p < 0.01) (Figure 4). However, the effect of

phosphate on CAVD progression was consistent across other

subgroups. Finally, as a sensitivity analysis, multivariable linear

mixed-effects regression was repeated using log-transformed

AVC scores, and serum phosphate remained significantly

associated with a higher rate of CAVD progression (p < 0.001)

(Supplementary Table S1).
3.4 Association of serum phosphate levels
with echocardiographic parameters

The association between serum phosphate levels and

hemodynamic parameters measured using echocardiography are
tic valve disease.

Newly developed CAVDb

lue OR (95% CI) p-value
01 1.05 (1.02–1.08) <0.01

0 0.76

1.01 (0.95–1.07)

Referent

1

4

1.04 (1.01–1.07) <0.01

2

1 1.06 (1.02–1.10) 0.01

5 1.02 (1.00–1.05) 0.10

1.02 (1.00–1.03) 0.03

1.03 (1.02–1.05) <0.01

phate, and estimated glomerular filtration rate.

ted glomerular filtration rate, and interscan duration. OR, odds ratio; CI, confidence interval;

low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; LVMI, left
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FIGURE 3

Relationship between the probability of newly developed calcified aortic valve disease and (A) age (B) systolic blood pressure (C) serum phosphate
(D) left ventricular mass index. SBP, systolic blood pressure; LVMI, left ventricular mass index.
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shown in Supplementary Table S2. Depending on the regression

model used for adjustment, elevated phosphate had a borderline

association with higher E/e’. However, serum phosphate levels

did not show a clear relationship with measurements of left

ventricular size and function, left ventricular outflow tract

velocities, or the probability of aortic regurgitation.
4 Discussion

In this retrospective cohort study, we assessed CAVD

development using cardiac CT and echocardiography in

asymptomatic individuals undergoing self-referred health

examination. Higher serum phosphate was associated with the

development of new CAVD and a higher annualized AVC score

progression rate. We also found differences in factors related to

baseline CAVD and the AVC progression rate; the former was

most strongly associated with age, BMI, history of hypertension,

and LDL-C levels, whereas the latter was associated with the

initial AVC score, male sex, serum phosphate levels, and LVMI.

Meanwhile, the predictors of new-onset CAVD were intermediate

between the two—age, SBP, phosphate, and LVMI.
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Previous large cohort studies found that traditional

atherosclerotic risk factors, such as older age, higher BMI,

smoking, hypertension, and dyslipidemia, are associated with the

development of CAVD (8, 22). However, despite the notable

overlap, atherosclerosis alone does not fully explain the

pathophysiologic process of CAVD. In the Multi-Ethnic Study of

Atherosclerosis (MESA), the prime predictor of CAVD

progression was the baseline AVC score per se, supporting the

concept of a self-perpetuating cycle in which calcium begets

calcium (8, 9). Our findings are in accord with previous studies

in identifying the association of atherosclerotic risk factors with

baseline CAVD, and in identifying the baseline AVC score as the

most important factor in CAVD progression. The incidence rate

of newly developed CAVD (2.3%/year) in the present study was

comparable to that reported in MESA (1.7%/year) (8). The

identification of male sex and LVMI as a factor in accelerated

AVC score progression is also in accord with previous reports

(8, 23–25). In addition, we found that higher serum phosphate

levels within the normal range were associated with the

development of new CAVD and a higher annualized AVC score

progression rate, which to the best of our knowledge has not

been reported previously.
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TABLE 4 Linear regression for the annualized progression rate of the aortic valve calcification score in the individuals with baseline calcified aortic valve
disease.

Risk factors Unadjusted p-value Multivariable adjusteda p-value

Regression coefficient (95% CI) Regression coefficient (95% CI)
Initial AVC score (per 1 AU) 0.28 (0.25–0.31) <0.001 0.29 (0.26–0.32) <0.001

Age (per 10 years) −6.84 (−17.16–3.49) 0.19 −4.64 (−11.29–2.02) 0.17

Sex 0.25 0.01

Male 13.20 (−9.63–36.04) 15.95 (4.22–27.67)

Female referent referent

BMI (per 5 kg/m2) 6.02 (−11.08–23.13) 0.49

Smoking 14.60 (−3.49–32.69) 0.11 8.09 (−2.31–18.49) 0.14

Diabetes −9.10 (−29.91–11.71) 0.39

Hypertension −0.25 (−17.41–16.91) 0.99

Dyslipidemia 5.78 (−16.03–27.59) 0.60

SBP (per 10 mmHg) 0.82 (−6.92–8.57) 0.83

DBP (per 10 mmHg) 5.45 (−5.72–16.61) 0.34

WBC count (per 109/L) 4.92 (−0.67–10.51) 0.08

Hemoglobin (per 1 mg/dl) 4.18 (−2.14–10.49) 0.19

HbA1c (per 1%) −3.66 (−17.30–9.98) 0.59

LDL-C (per 10 mg/dl) 0.45 (−2.35–3.26) 0.75

Triglycerides (per 10 mg/dl) 0.10 (−1.18–1.38) 0.88

eGFR (per 10 ml/min/1.73m2) 3.96 (−5.99–13.91) 0.43 0.51 (−4.65–5.67) 0.84

Calcium (per 1 mg/dl) 11.64 (−13.68–36.97) 0.36 −1.03 (−14.22–12.16) 0.88

Phosphate (per 1 mg/dl) 9.93 (1.18–18.69) 0.03 15.80 (5.65–25.96) <0.01

hs-CRP (per 1 mg/dl) −3.70 (−26.80–19.40) 0.75

LVEF (per 1%) 0.52 (−1.35–2.38) 0.58

LVEDV (per 10 ml) 0.45 (0.02–0.88) 0.04

LVMI (per 10 g/m2) 4.58 (0.34–8.81) 0.03 2.31 (0.16–4.45) 0.04

AR severity 0.16

None/trivial referent

Mild 10.07 (−3.94–24.08)
LVOT peak velocity (per 10 cm/s) −4.51 (−12.38–30.13) 0.23

LVOT VTI (per 1 cm) −1.91 (−5.09–1.27) 0.24

Septal E/e’ (per 1) 0.16 (−6.09–1.01) 0.16

TR peak velocity (per 1 m/s) 28.25 (−17.85–74.34) 0.22

aAdjusted for initial aortic valve calcification severity, age, sex, history of smoking, estimated glomerular filtration rate, calcium, phosphate, and left ventricular mass index. CI, confidence

interval; AVC, aortic valve calcification; AU, Agatston unit; BMI, body-mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; WBC, white blood cell; HbA1c, glycated
hemoglobin; LDL-C, low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitivity C-reactive protein; LVEF, left ventricular ejection fraction;

LVEDV, left ventricular end diastolic volume; LVMI, left ventricular mass index; AR, aortic regurgitation, LVOT, left ventricular outflow tract; VTI, velocity-time integral.
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Since calcification depends on the deposition of calcium-

phosphate crystals in vivo, phosphate plays an essential role in

both physiologic and ectopic vascular calcification (26). The

role of elevated phosphate in promoting cardiovascular

calcification and as a risk factor for cardiovascular events is

well established in patients with chronic kidney disease (27).

In addition, a number of previous studies have investigated

the relationship between phosphate and CAVD in patients

without renal dysfunction. In the Cardiovascular Health Study,

higher phosphate levels within the normal range were

associated with the presence of CAVD detected on

echocardiography (13). Analysis of the Multi-Ethnic Study of

Atherosclerosis (MESA) cohort also found that higher serum

phosphate was associated with prevalent AVC on CT (14).

Although serum phosphate levels are tightly controlled in a

relatively narrow range, they are also subject to variation,

notably with age (28), and thus the association between the

onset of AVC and phosphate may be weakened by time. We
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speculate that the smaller number of individuals in our study

may have resulted in the causative association between AVC

and phosphate being lost at the time of baseline examination,

while it may have been retained in the MESA study. In the

same cohort however, phosphate levels were not associated

with the progression of AVC severity (29), and similar results

were found in other recent studies (30, 31). Our results are

consistent with previous reports in identifying higher

phosphate levels as a risk factor in CAVD development, but is

also in contrast with these studies in the association of

phosphate with accelerated CAVD progression.

One explanation for this apparent discrepancy may be found in

the lower baseline AVC scores in our study population (median

AVC score 30.4 [IQR 10.6–57.2] vs. 56 [IQR 19–137] in the

MESA cohort (8). In the pathogenesis of CAVD, after initial

endothelial injury and lipid infiltration, differentiation of aortic

valvular interstitial cells into a osteoblast-like phenotype next

takes place, a process which elevated phosphate is known to
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FIGURE 4

Subgroup analysis for the effect of serum phosphate on the annualized prog
CAVD, calcified aortic valve disease.

TABLE 5 Multivariable linear mixed-effects model for identification of risk
factors with the annualized progression rate of the aortic valve
calcification score in the entire population.

Risk factors Regression
coefficient (95% CI)

p-value

Initial AVC score (per 1 AU) 0.28 (0.25–0.27) <0.001

Age (per 10 years) −0.42 (−1.22–0.30) 0.26

Sex 0.22

Male 0.84 (−0.55–2.29)
Female referent

BMI (per 5 kg/m2) −0.32 (−1.20–0.47) 0.45

Smoking 0.53 (−0.06–1.16) 0.10

SBP (per 10 mmHg) −0.10 (−0.48–0.27) 0.62

HbA1c (per 1%) −0.53 (−1.24–0.22) 0.15

LDL-C (per 10 mg/dl) −0.01 (−0.16–0.13) 0.86

eGFR (per 10 ml/min/1.73 m2) 0.04 (−0.48–0.60) 0.88

Calcium (per 1 mg/dl) 0.12 (−1.35–1.83) 0.88

Phosphate (per 1 mg/dl) 1.22 (0.12–2.30) 0.02

LVMI (per 10 g/m2) 0.15 (−0.11–0.39) 0.27

CI, confidence interval; AVC, aortic valve calcification; AU, Agatston unit; BMI, body-mass

index; SBP, systolic blood pressure; HR, heart rate; HbA1c, glycated hemoglobin; LDL-C,

low-density lipoprotein cholesterol; eGFR, estimated glomerular filtration rate; LVMI, left
ventricular mass index.
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promote (7, 26, 32–36). In contrast, signaling via transforming

growth factor β1 and the Wnt/β-catenin pathway in response to

mechanical stress is known to be the dominant factor driving

calcification in the later stages after osteogenic differentiation has

occurred (6, 37–39), which is supported by the correlation

between hemodynamic severity and disease progression found in

established AS (40–42). There is very limited data on the AVC

scores for the prediction of mild AS; however, the presence of

mild calcific AS has been found even at AVC scores as low as

100 (43, 44). Thus we may hypothesize that a non-negligible

proportion of the MESA cohort may have had more advanced

CAVD and elevated transaortic valve pressures, which could have

weakened the influence of phosphate on disease progression.

However, no significant relationship between CAVD progression

and hemodynamic parameters measured on echocardiography

was found in our analysis. Thus, we suggest that our population

may be representative of CAVD in the earlier stages of

development where osteoblast differentiation is the main

pathophysiologic mechanism, and which may possibly be affected

by serum phosphate levels. Alternatively, there is a possibility
ression rate of the aortic valve calcification score. CI, confidence interval;
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that our results are specific to the East Asian population. Previous

studies have found that there are ethnic differences in bone-mineral

metabolism (45, 46), which may be an explanation for the different

results found in our analysis.

It is not clear whether the association between phosphate levels

and CAVD progression found in our study is directly causative in

nature, or whether it reflects another underlying process in mineral

metabolism. However, serum phosphate is widely measured in

clinical practice, and elevated phosphate levels in patients with

CAVD may indicate a higher risk of accelerated CAVD

progression, which may potentially benefit from therapeutic

interventions targeting various pathways in mineral metabolism

(12). Further studies are needed to investigate whether the

regulation of phosphate metabolism can slow the progression of

early CAVD to AS.

Despite the findings of our study, it had several limitations.

First, as previously mentioned, the severity of CAVD in our

study population was generally low, and due to the small

number of participants with higher AVC scores, we could not

perform subgroup analysis to investigate the effect of

phosphate levels according to the severity of CAVD or

determine cut-off points. Second, although various

hemodynamic parameters were included in our analysis, the

effect of peak transaortic velocities on CAVD could not be

investigated because our study population did not include

significant AS and only a small proportion of the population

had continuous-wave Doppler transaortic velocity measurements.

However, we analyzed the effect of left ventricular outflow

tract velocities and diastolic profiles and found no association

between these parameters and CAVD progression. Although these

factors have been linked with accelerated AS progression in

previous studies (41, 42), our negative results suggest that

hemodynamic effects may not be significant at least in the early

stages of CAVD. Third, we only adjusted for the effect of

laboratory and echocardiographic variables measured at

baseline, which may have changed during the follow-up period.

Lastly, owing to the retrospective nature of the study, there

was heterogeneity in patient characteristics and duration to follow-

up examination. Although we used multivariable regression to

adjust for confounders, we cannot exclude the possibility of

remaining bias.
5 Conclusion

In a cohort of asymptomatic individuals undergoing health

examination, atherosclerotic risk factors were strongly

associated with baseline CAVD. Upper normal phosphate

levels were associated with the development of new CAVD

and the accelerated progression of existing CAVD. The effect

of phosphate on CAVD progression may be due to the lower

baseline AVC scores in our study population, as the dominant

pathophysiologic mechanism driving calcification may be

different across the stages of CAVD development. Further
Frontiers in Cardiovascular Medicine 10
studies are needed to confirm these findings, and to

investigate whether therapeutic interventions targeting

phosphate metabolism can slow the progression of early

CAVD to AS.
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