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Mendelian randomization study
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Background: The escalating global economic burden of ischemic stroke poses a
significant public health challenge amid global aging trends. The broad
therapeutic efficacy of new antidiabetic drugs may offer new options in the
prevention and treatment of ischemic stroke. Consistent conclusions regarding
the relationship between novel antidiabetic agents and the risk of ischemic
stroke remain elusive, and the causal relationship deserves further investigation.
Materials and methods: Three novel antidiabetic drug targets were selected,
and cis-expression quantitative trait loci (cis-eQTL) were screened as
instrumental variables. Genetic association data for ischemic stroke were
obtained from the Genome-wide Association Study (GWAS) database.
Mendelian randomization (MR) analysis, facilitated by R software, calculated
MR estimates for each single nucleotide polymorphism (SNP), and meta-
analysis was performed using five methods. To ensure robustness, sensitivity
analyses, heterogeneity analyses, horizontal pleiotropy analyses, and co-
localization analyses were conducted for significant MR associations.
Results: Three eQTLs for antidiabetic drug genes served as instrumental
variables, utilizing a GWAS dataset comprising 34,217 cases and 406,111
controls for ischemic stroke. Genetic variants in glucagon-like peptide-1
receptor agonists (GLP-1 RA) targets exhibited a positive correlation with
ischemic stroke risk (OR 1.06, 95% CI 1.04–1.08, P= 0.000), while
genetic variation in dipeptidyl peptidase 4 inhibitors (DPP-4i) targets showed
a negative association with ischemic stroke risk (OR 0.93, 95% CI 0.89–0.97,
P=0.003). Sensitivity analyses supported robust conclusions, revealing no
heterogeneity or horizontal pleiotropy.
Conclusion: This study found that GLP-1 RA and DPP-4i were associated with an
increased risk of ischemic stroke by MR analysis. Although sensitivity analyses
provide support for this result, it contradicts previous knowledge. Therefore,
the results of this study still need to treated with caution. Updated and more
in-depth GWAS data and high-quality real-world data are expected to validate
the results.
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1 Introduction

Ischemic stroke, constituting approximately 80% of all stroke

cases (1), exhibits an age-associated surge in incidence.

Projections suggest a global increase to 89.32 per 100,000 people

by 2030 (2). While strides have been made in mitigating

ischemic stroke lethality, survivors contend with enduring

disabilities impacting daily life (3). This scenario amplifies the

escalating global economic burden, posing a substantial public

health challenge amid global aging trends (4). The current gold

standard for acute ischemic stroke treatment involves intravenous

thrombolysis and thrombectomy. However, the efficacy is

confined to a small subset of patients due to restricted treatment

limitations (5). Concurrently, secondary brain tissue damage

induced by ischemia-reperfusion persists as a significant

concern (6). Therefore, primary prevention before the onset,

encompassing strategies like antiplatelet agents, statins, and blood

pressure control, emerges as the most effective means to curtail

the harm and disease burden of ischemic stroke (7).

Disturbed glucose metabolism stands out as a crucial risk

factor for ischemic stroke (8), emphasizing the significance

of maintaining moderate blood glucose levels in primary

prevention (9, 10). In recent years, emerging novel antidiabetic

agents such as glucagon-like peptide-1 receptor agonists (GLP-1

RA), sodium-glucose co-transporter 2 inhibitors (SGLT-2i), and

dipeptidyl peptidase 4 inhibitors (DPP-4i) have demonstrated

robust therapeutic effects across endocrine, cardiovascular, and

renal domains (11–13). Their diverse therapeutic effects present

potential options in ischemic stroke prevention and treatment.

However, conclusive conclusions about the relationship between

novel antidiabetic drugs and ischemic stroke risk remain

elusive, warranting in-depth exploration of their effects and

causality (14–16).

Hence, this study employs Mendelian randomization (MR)

analysis to delve into the causal relationship between the use of

novel antidiabetic drugs and the risk of ischemic stroke.

Leveraging genetic variants associated with drug targets as

instrumental variables, MR simulates a randomized controlled

trial setting, offering insights into the reuse potential and risk of

novel antidiabetic drugs in ischemic stroke. The outcomes hold

promise as a reference for clinical practice.
2 Materials and methods

2.1 Identification of target data for novel
antidiabetic drugs

Novel antidiabetic drugs, including GLP-1 RA, SGLT-2i, and

DPP-4i, were selected for this study. Genes encoding the target

proteins of these drugs were meticulously identified from the

Drugbank (v5.0) and ChEMBL (v29.0) databases (17, 18). The

chromosomal locations, start, and termination sites of these

genes were precisely determined through the National Center for

Biotechnology Information (NCBI).
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2.2 Identification of cis-expression
quantitative trait loci (eQTL) data associated
with novel antidiabetic drug targets

Given the proximity of cis-eQTL to target genes in drug

development studies (19, 20), we extracted cis-eQTL with full

statistical significance (false discovery rate <0.05 ± 1Mb per

probe) from the eQTLGen consortium database (21). This

approach aims to analyze the genetic underpinnings of complex

traits through blood gene expression.
2.3 Genetic association data screening for
ischemic stroke

Genetic association data for ischemic stroke were obtained

from the European Ischemic Stroke Cohort, the largest GWAS

meta-analysis of the disease to date (22), pooled by the

MEGASTROKE Consortium. The pooled data were adjusted for

unknown confounders such as sex and ethnicity to avoid possible

bias. The type of stroke included any type of ischemic stroke,

and a total of 34,217 cases and 406,111 controls were included

(23). All ischemic stroke diagnoses were confirmed by clinical

symptoms and imaging criteria. All participants gave informed

consent, and the local research ethics committee and institutional

review board approved the study.
2.4 MR analysis

The TwoSampleMR R software package (v 4.3.2) was used for

MR analysis. To ensure the reliability of the results, stringent

criteria were used to filter low-quality genetic tools. Based on the

key assumption that MR analyses are established (24), the criteria

for screening SNPs in the exposure data were as follows (25): (1)

genome-wide SNPs with significance (P < 5 × 10−6), (2) exclusion

of weak instrumental variables with an F-statistic <10, (3) linkage

disequilibrium (LD) testing to ensure independence of selected

instrumental variables (r2 < 0.1 within a 1,000 kb range) (26, 27),

and (4) removal of SNPs with incompatible or palindromic allele

frequencies. Subsequently, drug target-associated SNPs were

further screened based on gene chromosomal loci ±100 kb range

and filtered based on eaf >0.01. Finally, the ending data were

extracted and merged based on the filtered instrumental variables.

MR estimates for each SNP were calculated using the Wald

ratio method, and meta-analysis of MR estimates was performed

using inverse variance weighted (IVW), MR-Egger, weighted

median, simple mode, and weighted mode (28). IVW assumes

that each genetic variant exists independently and can only

influence the outcome through the exposure of interest (29).

However, in the presence of pleiotropy, causality may be biased.

Methods such as MR Egger and weighted median may avoid the

bias caused by pleiotropic effects and confounders in genetic

variants, but may yield wider confidence intervals (30, 31). The

IVW method has been reported to be slightly more accurate than
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the other methods under practical conditions (28). Therefore, the

results of this study are mainly based on the IVW method, with

the other four methods as its complement. MR estimates with

P < 0.05 were considered statistically significant. All estimates were

expressed as odds ratio (OR) with a 95% confidence interval (CI)

per standard deviation increase in the corresponding exposure.
2.5 Sensitivity and co-localization analysis

The MR-PRESSO test was used to test for horizontal

pleiotropy. If horizontal pleiotropy was found between

instrumental variables, outliers were removed and the MR

analysis was re-executed (32). Sensitivity analyses were conducted

via the leave-one-out method. This method calculates the meta

effect of the remaining SNPs by progressively eliminating each

SNP in order to observe the potential impact of each SNP on the

study results (33). Cochran’s Q statistic was utilized to assess

potential heterogeneity. The method infers the presence of

heterogeneity in the sample by calculating the estimated

difference between the causal effect estimate and the estimated

difference in the instrumental variable (34). The presence of

horizontal pleiotropy can cause the results of MR analyses to be

untenable, so we performed the MR Egger intercept test in

addition to the MR-PRESSO test (30). The above analysis was

done using TwoSampleMR R package (v 4.3.2).

Subsequently, co-localization analysis was executed with the

colocR package and default prior. For the eQTL dataset, a priori

probabilities of 1E-04 for cis-eQTL and ischemic stroke

associations were set, with the prior probability of a single

variant affecting both traits at 1E-05. Significant co-localization

was determined at PH4 >0.80, and genes strongly co-localized

with ischemic stroke were considered as potential target

molecules. The overall design of the study is shown in

Supplementary Figure 1.
TABLE 2 Estimated effects of genetic variations in antidiabetic drug
targets on ischemic stroke.

Gene Method N SNPs β OR P value
GLP1R MR Egger 113 0.115 1.120 0.204

Weighted median 113 0.077 1.079 0.000*

IVW 113 0.061 1.063 0.000*

Simple mode 113 0.078 1.081 0.014*
3 Results

3.1 Selection of genetic tools for novel
antidiabetic drugs

We identified three major genes encoding proteins

experimentally modified by novel antidiabetic drugs. To generate

genetic tools for substituting novel antidiabetic drug targets, we

selected cis-eQTL within ±100 kb of each gene’s genomic

location (Table 1). The eQTL of the three antidiabetic drug genes
TABLE 1 Target genes and cis-eQTL of antidiabetic drugs.

Drug class Encoding genes of
target proteins

Gene location

DrugBank ChEMBL
GLP-1 RA GLP1R GLP1R Chr6: 39,016,557–39,059,079

SGLT-2i SLC5A2 SLC5A2 Chr: 16: 31,494,444–31,502,090

DPP-4i DPP4 DPP4 Chr2: 162,848,755–162,930,725
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with the highest significance were chosen as tool variables based

on their P values. GWAS data for ischemic stroke were obtained

from the ebi-a-GCST005843 dataset (22), comprising 34,217 cases

and 406,111 controls from the MEGASTROKE Consortium,

encompassing a total of 7,537,579 SNPs.
3.2 MR analysis

As shown in Table 2, GLP1R were significantly associated with

ischemic stroke risk according to the Inverse variance weighted

method (OR 1.06, 95%CI 1.04–1.08, P = 0.000). Additionally,

DPP4 were significantly associated with ischemic stroke risk (OR

0.93, 95%CI 0.89–0.97, P = 0.003). Conversely, SLC5A2 was not

statistically significantly associated with ischemic stroke risk (OR

1.23, 95%CI 0.97–1.55, P = 0.077). The scatter plot (Figure 1)

visualized the causal relationship. Each point in the graph

represents a SNP, and the short lines of the cross at each

point reflect its 95% CI. The abscissa is the effect of the SNP on

the exposure, and the ordinate is the effect of the SNP on the

outcome. The slash lines of different colors represent the MR

fitting results of different calculation methods. A slope greater

than 0 indicates that the exposure factor is a disadvantage of

ischemic stroke. For the fitting results of different methods, the

results of IVW are generally the main ones. All five pooling

methods concurred on the ischemic stroke risk of GLP1R and

the protective effect of DPP4.
3.3 Sensitivity analysis and
co-localization analysis

We performed the sensitivity analysis by the “leave-one-out”

method (Supplementary Figure 2). The results showed that

excluding each SNP individually did not affect the results of the

MR pooling analysis, which indicated that the stability of the

MR analysis.

To further verify the robustness of MR analysis, we analyzed the

heterogeneity of MR by Cochran’s Q statistic, and the MR-PRESSO
Weighted mode 113 0.078 1.081 0.015*

SLC5A2 Wald ratio 1 0.208 1.232 0.077

DPP4 MR Egger 13 −0.026 0.975 0.694

Weighted median 13 −0.064 0.938 0.046*

IVW 13 −0.068 0.934 0.003*

Simple mode 13 −0.027 0.974 0.605

Weighted mode 13 −0.064 0.938 0.135

N SNPs represents the number of SNPs; OR, odds ratio; IVW, inverse variance weighted, MR,

mendelian randomization.
*P value meets the significance threshold.

frontiersin.org

https://doi.org/10.3389/fcvm.2024.1449185
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


FIGURE 1

The effect of genetic variation in novel antidiabetic drug targets on ischemic stroke. (A) GLP1R (B) DPP4.

TABLE 3 Heterogeneity analysis and pleiotropy analysis.

Outcome Gene P for MR
Egger test

P for Q
test

P for MR-
PRESSO test

Ischemic
stroke

GLP1R 0.551 1.000 1.000

DPP4 0.482 0.877 0.904
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method and Egger intercept test verified the horizontal pleiotropy of

MR. As shown in Table 3, the results all indicated that there was no

heterogeneity or horizontal pleiotropy between GLP1R and DPP4

gene and ischemic stroke risk (P > 0.05).

Co-localization analyses were conducted to ascertain the

probability of shared causal genetic variants between SNPs

associated with ischemic stroke and novel antidiabetic drug eQTL.

Results revealed a 6.5% probability of the GLP1R gene having a

shared genetic effect between eQTL and ischemic stroke risk, while

the DPP4 gene exhibited a 10.7% probability of shared genetic

effect between eQTL and ischemic stroke risk (Figure 2).
4 Discussion

In recent years, novel antidiabetic agents, including GLP-1 RA,

SGLT-2i, and DPP-4i, have exhibited broad therapeutic efficacy,

potentially introducing new avenues for ischemic stroke

prevention and treatment (35). However, the relationship

between novel antidiabetic drugs and ischemic stroke risk lacks

consistent conclusions. This study marks the inaugural

exploration of the causal association between genetic variants of

novel antidiabetic drug targets and ischemic stroke risk through

MR analysis. Leveraging large-scale genetic association data on

ischemic stroke, our analyses unveil a positive association

between genetic variants of GLP-1 RA targets and ischemic
Frontiers in Cardiovascular Medicine 04
stroke risk, contrasting with a negative association for genetic

variants of DPP-4i targets. Notably, since GLP-1 RA promotes

gene expression, and DPP-4i is an inhibitor of gene expression.

Therefore, the final result of the analysis is that both GLP-1 RA

and DPP-4i are risk factors for ischemic stroke. Although this

result is somewhat contradictory to common sense, rigorous

sensitivity analyses, heterogeneity assessments, and horizontal

pleiotropy analyses support the robustness of these findings.

GLP-1 RA effectively lowers blood glucose in type 2 diabetes

patients by stimulating β- and α-cell GLP-1 receptors, enhancing

insulin secretion, inhibiting glucagon secretion, and improving

insulin sensitivity (36). A meta-analysis of seven large

randomized controlled studies with cardiovascular outcomes as

endpoints showed that GLP-1 RA was able to reduce the risk of

total stroke by 16% (37). This seems to provide compelling

clinical evidence for the protective effect of GLP-1 RA against

ischemic stroke. However, in all published studies, the subjects

were clearly type 2 diabetic and the incidence of stroke was only

one of the secondary indicators. For other patients with other

metabolic diseases who may be taking GLP-1 RA for various

reasons or for the normal population, there are no clear

conclusions about the role of the drug in ischemic stroke.

Furthermore, even in studies of patients with type 2 diabetes, the

role of GLP-1 RA on stroke remains contradictory (38). For

example, in the ELIXA study, it was found that GLP-1 RA

appeared to increase the incidence of multiple strokes (39).

Similarly, some early findings seem to suggest a protective effect

of DPP4i against stroke (40, 41). However its possible risks are

yet to be followed up and discussed in real-world study results.

Another conflicting finding came from a previously published

Mendelian randomization study (42). This study found that genetic

variants in GLP-1 were not associated with ischemic stroke, which
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FIGURE 2

Co-localization analysis of the effect of genetic variants in novel antidiabetic drug targets on ischemic stroke. (A) GLP1R (B) DPP4.
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seems to be inconsistent with both the previous study and our

findings. The reason for this contradiction is mainly related to

the limitation of GWAS sequencing depth and the number of

SNPs (43). When the number of available SNPs is less than

three, limiting the scope of a full Mendelian randomization (MR)

analysis, these results should be excluded from the analysis to

ensure the robustness and reliability of the results (44, 45).

Therefore, the conclusions of the present study can be considered

as a complement and extension of the results of that study.

Overall, our study identified GLP-1 RA and DPP-4i as risk

factors for ischemic stroke.The MR analysis method was able to

avoid confounding factors such as blood glucose levels and

population, thus obtaining an exact causal association in a larger

population. In addition, co-localization analysis of MR results was

performed for the first time in this study, although this result does

not seem to be very favorable. This apparent inconsistency may

stem from the methodological differences between the two

approaches. MR selectively identifies exposure-related variants,

whereas co-localization is more conservative, requiring significant

associations of causal variants with both traits. The co-localization

analysis was performed with a Bayesian test, which assumes that

there is only one shared causal variance locus. If more than one

shared causal variance locus exists within an association interval,

the results of the analysis may be affected (46, 47). In addition,

some statistical experts believe that a higher PH4 suggests the

presence of horizontal pleiotropy between the two, and therefore a

lower PH4 can instead more favorably demonstrate a causal

relationship between the two phenotypes (48).

SGLT-2i operates by selectively inhibiting glucose reabsorption

in proximal renal tubules, leading to increased urinary glucose

excretion (49, 50). Studies have demonstrated its efficacy in

reducing the risk of hospitalization for ischemic stroke and

improving cardiovascular outcomes, including ischemic stroke (16,

51). A retrospective cohort study indicated a lower risk of new

stroke in SGLT-2i users compared to non-users, with an even

greater reduction in patients concurrently using other
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hypoglycemic and lipid-lowering medications (52). Experimental

studies further supported the neuroprotective effects of cagliflozin

in a mouse model of moderate ischemic injury, reducing infarct

volume, brain swelling, and improving neurological function (53).

However, conflicting evidence suggests that SGLT-2i may not

significantly reduce the incidence of ischemic stroke (14, 15). A

meta-analysis involving five large randomized controlled trials with

46,969 subjects revealed no significant efficacy of SGLT-2i against

fatal stroke, nonfatal stroke, ischemic stroke, or transient ischemic

attack, with potential protective effects only against hemorrhagic

stroke (54). Consequently, no consistent conclusions have been

drawn regarding the relationship between SGLT-2i and the risk of

ischemic stroke. This study, employing drug target-related genetic

variants as instrumental variables, aims to infer causality by

simulating a randomized controlled trial setting, offering a fresh

perspective on addressing this issue. Our findings, however, fail to

establish a causal association between gene variants in the target of

action of SGLT-2i and the risk of ischemic stroke. It is noteworthy

that due to the limitation of sequencing depth, we obtained an

insufficient number of SNPs in the SGLT gene, and the results

need to be interpreted with caution.

To the best of our knowledge, this represents the inaugural MR

analysis on the target of action of novel antidiabetic drugs and the

risk of ischemic stroke, providing a novel lens for drug

development in this context. The strength of the MR design is its

ability to infer causality while reducing confounding bias and

reverse causality. Focusing on European ancestry minimizes

spurious associations due to population stratification, and the

selection of genetic variants as instruments within a narrow

window of encoding genes mitigates biases arising from off-target

effects and downstream proteins as instrumental variables.

However, there are some limitations to this study. Firstly, the

current analysis was limited to European ancestry, which limits

the generalizability of the results to other races. In addition,

while drug target screening methods are effective in localizing

effectiveness at the gene level, this somewhat limits our capacity
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to screen for SNPs. Although the screening criteria for SNPs in this

study were sufficiently rigorous to ensure the reliability of the

findings, the results need to be interpreted with caution.

Furthermore, although we screened the cis-eQTL with the most

significant relationship with gene expression of drug targets as a

tool. In some cases, changes in eQTL may not fully reflect

changes in blood glucose levels. However, due to the limitation

of GWAS sequencing depth, we were unable to employ

downstream indicators of blood glucose such as fasting blood

glucose level and glycated hemoglobin as genetic tools for

detailed discussion and analysis. This to some extent limits the

accuracy of our drug target screening using MR analysis, so we

look forward to more updated GWAS studies to provide more

in-depth analysis and discussion of the findings.
5 Conclusion

This study found that GLP-1 RA and DPP-4i were associated

with an increased risk of ischemic stroke by MR analysis.

Although sensitivity analyses provide support for this result, it

contradicts previous knowledge. Therefore, the results of this

study still need to treated with caution. Updated and more in-

depth GWAS data and high-quality real-world data are expected

to validate the results.
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