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Cardiac involvement in
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of advanced echocardiography
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Anderson–Fabry disease (AFD) is a lysosomal storage disorder, depending on
defects in alpha galactosidase A activity, due to a mutation in the galactosidase
alpha gene. Cardiovascular involvement represents the leading cause of death in
AFD. Cardiac imaging plays a key role in the evaluation and management of AFD
patients. Echocardiography is the first-line imaging modality for the identification
of the typical features of AFD cardiomyopathy. Advanced echocardiography that
allows assessment of myocardial deformation has provided insights into the
cardiac functional status of AFD patients. The present review highlights the value
and the perspectives of advanced ultrasound imaging in AFD.
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Introduction

Anderson–Fabry disease (AFD) is a lipidosis caused by deficient αGLA (α-galactosidase

A) enzyme activity due to a mutation in the galactosidase alpha gene leading to progressive

lysosomal accumulation of complex sphingolipids in vascular endothelial and smooth-

muscle cells throughout the body and in the cells of kidney, nervous system, eyes, and

heart (1, 2). Cardiac involvement represents the main cause of impaired quality of life

and of reduced life expectancy (3). In the heart, accumulation of globotriaosylceramide

(Gb3) affects all cell types, including myocytes, endocardium, valvular fibroblasts, and

specific myocardium cardiomyocytes. Imaging represents a key tool in the diagnostic and

therapeutic approaches to AFD cardiac manifestations (4, 5). Two-dimensional (2D)

transthoracic echocardiographic assessment is the first step in to detail morphologic and

functional aspects of heart in AFD, namely: left ventricular (LV) concentric hypertrophy,

preserved ejection fraction, disproportionate hypertrophy of papillary muscles and, often,

right ventricular (RV) hypertrophy. Advancement in cardiac ultrasound imaging allows

to quantify myocardial deformation in the different spatial directions offering an

innovative evaluation of LV function. Tissue Doppler strain rate curves and speckle

tracking echocardiography (STE) unrevealed an impairment of myocardial function in

AFD patients with preserved ejection fraction. Given its angle dependency, tissue

Doppler is limited in assessing LV apex. Owing the ability to assess myocardial

deformation in all segments of LV walls, STE allows to overcome such limitations.

Myocardial deformation measurements by 2D STE have been validated against both

sonomicrometry and 2D-tagged cardiac magnetic resonance imaging (6). Further

technological advancement of real-time three-dimensional (3D) echocardiography has

developed software that tracks the motion of speckles irrespective of their direction and
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allows to obtain a homogeneous spatial distribution of all three

components of the myocardial displacement vector. Myocardial

strain can be analyzed from full-volume acquisitions, potentially

overcoming the out-of-plane loss of speckles associated with 2D

STE analyses. Thus, a series of studies revealing the impairment of

LV function caused by AFD flourished during the last two

decades. New insights have been provided in subclinical detection

of AFD-related abnormalities as well as in disease staging and in

prognostication. Given that AFD is a rare disease, most studies

offered insights into small cohorts of patients. This paper aims to

provide a comprehensive review of current knowledge and of

ongoing research into the evaluation of AFD cardiomyopathy with

use of advanced echocardiography.
Left ventricular systolic function

The heart in AFD patients presents a phenocopy of

hypertrophic cardiomyopathy with preserved LV ejection until

the late stages of disease. Strain imaging revealed that the AFD

patients may have an impairment of LV systolic function, despite

an ejection fraction within the normal range. Studies using tissue

Doppler echocardiography demonstrated subclinical LV

dysfunction even in early stages of disease (7, 8). Weidemann

et al. found out that both peak systolic strain rate and systolic

strain were significantly reduced in either the radial or

longitudinal direction in 16 AFD patients compared with

controls (9). In 2007, the same group described a double peak

sign in tissue Doppler strain rate curves in myocardial segments

with late gadolinium enhancement by magnetic resonance

imaging (10) and demonstrated that a pattern-based analysis was

more sensitive and more specific for detecting fibrosis than peak

strain (11). Studies by STE showed a decrease in LV longitudinal

strain (12–14) involving mainly basal segments (15–17) although

apical segments were not completely spared, unlike amyloidosis

related cardiomyopathy (15, 18). Moreover, AFD patients with

LV hypertrophy were found to have a worse longitudinal

function than patients with non-obstructive hypertrophic

cardiomyopathy (14). By using the quantitative measurement of

myocardial fibrosis with magnetic resonance imaging, Kramer

et al, demonstrated an association between the impairment of

longitudinal strain and the amount of myocardial replacement

fibrosis (19). Interestingly, measuring time-to-peak longitudinal

strain unveiled a high prevalence of intraventricular

dyssynchrony in AFD patients with LV hypertrophy (20).

Cardiac sympathetic denervation has been described in AFD

related cardiomyopathy (21–24). It has been found that the

presence of denervated areas affects segmental longitudinal strain

yielding reduction of global LV function (25). Several studies

have highlighted the reduction of LV global longitudinal function

before the occurrence of LV hypertrophy, suggesting that

myocardial functional impairment is an intrinsic feature of

disease and not a consequence of increased LV mass (13, 17, 26,

27). In AFD patients, cardiomyocyte glycosphingolipid storage

causes myofibrillolysis and myofilament derangement resulting in

a detrimental functional effect (28). A study including a quite
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large cohort of patients with late- onset cardiac variant showed

that AFD patients without LV hypertrophy still had a reduced

global longitudinal strain when compared to healthy subjects,

despite similar LV mass and morphology (29). It has been

suggested that basal longitudinal strain should be considered

when screening for cardiac involvement in AFD, particularly in

female AFD patients with normal LV wall thickness (17).

Reduction in longitudinal strain was found associated with low

native T1 in AFD patients without LV hypertrophy (30, 31).

Furthermore, in females carrying α-Gal A mutation and without

LV hypertrophy, LV global longitudinal strain was impaired in

presence of focal myocardial inflammation, identified as focal
18F-luorodeoxyglucose uptake by cardiac positron emission

tomography (32).

There are limited data on the impairment of LV circumferential

strain in AFD (13, 14, 19, 33). Circumferential strain refers to mid-

wall fibers, the same myocardial portion where fibrosis finds its most

typical distribution in AFD. Shanks et al. did not find any difference

in circumferential function between AFD patients and age- and

gender matched healthy subjects (13), while other studies by

echocardiography (14, 21, 33) or cardiac magnetic resonance (34)

demonstrated that, alongside with impairment in longitudinal

function, AFD patients experienced the decrease of global

circumferential strain and the loss of base to apex gradient

irrespectively of LV geometry (14). Conversely, patients with

nonobstructive hypertrophic cardiomyopathy compensated the

decrease in longitudinal function with an increase in global

circumferential strain and preservation of the base-to-apex

gradient (14). Thus, the loss of base to apex gradient seems to be

specific to AFD cardiomyopathy and could be caused by the

greater impairment of subepicardial fibers, which are mainly

responsible for circumferential strain (35).

The data on LV radial strain are even more scarce. Color

Doppler myocardial imaging demonstrated an impairment in

radial strain rate of posterior wall in AFD patients with LV

hypertrophy as well as in female patients with normal LV mass

and evidence of late gadolinium enhancement by cardiac magnetic

resonance (9, 36). Studies by 2D STE reported conflicting findings

(13, 37). While an early study showed normal values of radial

strain (13), another study including a larger population

demonstrated an early deterioration in LV radial strain, affecting

even patients without clear-cut wall hypertrophy (37).

Interestingly, global longitudinal strain was significantly associated

to LV mass whereas, radial strain was not. However, a recent

study by 3D echocardiography has shown an inverse correlation

between LV mass and radial strain in 75 AFD patients (51% with

LV hypertrophy or concentric remodeling). The use in 3D analysis

of a different method for radial strain assessment that was based

on volume conservation might account for the different results

(38). However, among the various myocardial deformation

components, global longitudinal strain has shown the best ability

in detecting subclinical LV systolic dysfunction. Figure 1 shows

representative examples of longitudinal strain in AFD patients

(panel 1). Nevertheless, longitudinal strain is influenced by loading

conditions. Myocardial work derived by pressure-strain analysis is

a novel non-invasive method to characterize myocardial
frontiersin.org
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FIGURE 1

Panel 1. Left ventricular longitudinal strain measurements by means of two-dimensional speckle tracking echocardiography. Bull’s-eye rendering of LV
longitudinal strain from a 42-year-old female AFD patient without LV hypertrophy (left) and a 53-year-old male AFD patient with LV hypertrophy
(right). Panel 2. (A) Representative example of pressure–strain loops by estimated LV pressure and LV longitudinal strain; (B) Bull’s eye plot showing
segmental LV myocardial work index in a 17-segment model; (C) constructive work (green column) and wasted work (blue column) values from
the same patients as in the panel 1 (upper, female patient without LV hypertrophy; lower, male patient with LV hypertrophy). Panel 3 shows the
role of strain echocardiography in the characterization of cardiac involvement in AFD. LV, left ventricular; AFD, Anderson–Fabry disease; SEPT,
septal; LAT, lateral; ANT, anterior; INF, inferior; POST, posterior; LVP, left ventricular pressure; GLS, global longitudinal strain; GWI, global work
index; GCW, global constructive work; GWW, global wasted work; GWE, global work efficiency; BP, blood pressure; 18F-FDG PET, 18F-
luorodeoxyglucose uptake by cardiac positron emission tomography.
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deformation in relation to afterload conditions (39). Early findings

indicate that myocardial work may have an additive value in the

functional assessment of AFD cardiomyopathy (40, 41). In the

Figure 1, representative examples of myocardial work from AFD

patients are shown (panel 2).
Left ventricular diastolic function

Progressive LV hypertrophy with preserved ejection fraction and

diastolic dysfunction have been described as the major

echocardiographic features of AFD cardiomyopathy (42). There is

a growing awareness of diastolic dysfunction being an early sign of

cardiac involvement in AFD. It has been suggested that the tissue

Doppler derived diastolic index, namely early diastolic mitral

annulus velocities (i.e., e′) could provide satisfactory preclinical
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evidence for diastolic dysfunction in patients with AFD (7). Yet,

this was not found in subsequent studies (8, 29). The diastolic

strain rate measured by 2D STE emerged as a sensitive tool in

detecting diastolic dysfunction, better than conventional diastolic

indices (43). Shanks et al. showed that longitudinal strain rate

parameters, particularly those measured during early diastole,

identify AFD patients from healthy controls, independent of LV

hypertrophy and in a more specific manner than tissue Doppler

measurements (13). A recent study confirmed the impairment in

diastolic longitudinal strain rate of AFD patients without clear-cut

LV wall hypertrophy (44). LV diastolic longitudinal strain rate is

attenuated by myocardial fibrosis, a typical feature of AFD

cardiomyopathy (45). Similarly, LV diastolic rotational mechanics

may be also impaired in AFD patients. Indeed, reduced early

diastole untwisting rate has been demonstrated associated to

myocardial sympathetic denervation (21).
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Left atrial function

Histopathological findings demonstrated the accumulation of

Gb3 in the left atrium (LA) of AFD patients supporting atrial

myopathy (42, 46, 47). However, few studies have investigated the

effects of AFD on LA size and mechanical function. LA acts as a

blood reservoir during ventricular systole, as a passive conduit

during the passage of blood from the pulmonary veins to the left

ventricle during early diastole and as a contractile chamber to

increase ventricular filling during atrial systole. Strain and strain

rate imaging allows to assess atrial function via the analysis of the

cardiac cycle. Boyd et al. used tissue Doppler imaging with a four-

point segmental approach to assess LA strain and strain rate and

demonstrated that LA systolic strain and early diastolic strain rate

were selectively reduced in AFD patients with LV hypertrophy.

Interestingly, LA enlargement and reduced atrial compliance were

found in the subgroup without LV hypertrophy, despite a normal

diastolic function with e′ values like those in controls (48).

Almost all studies explored LA function using 2D STE, as the

technique allows a complete assessment of endocardial strain.

Morris et al. could detect LA myocardial dysfunction in AFD

patients, even when LA volume was normal. However, in their

study data on conduit function were not reported (12).

Notwithstanding, a retrospective study comparing 50 AFD patients

with 50 healthy control subjects demonstrated that LA reservoir,

conduit, and contractile functions were all affected in AFD

patients (49). Saccheri et al. analyzed LA function in AFD patients

with LV hypertrophy in comparison with patients with

hypertrophic cardiomyopathy and found out that both disorders

exhibited a severe functional impairment, although LA volume was

lower in AFD (50). Conversely, a lower LA volume and a lower

impairment of all three phases of LA mechanics have been

detected in AFD patients than in patients with cardiac amyloidosis

(51, 52). Several data suggest that differential echocardiographic

diagnostic work-up of unclear LV hypertrophy can be improved

by integrating LA strain analysis. Frumkin et al. analyzed patients

with AFD cardiomyopathy and patients with LV hypertrophy due

to other causes and found that LA conduit strain showed the

highest diagnostic accuracy to discriminate AFD, superior to the

posterolateral strain impairment and papillary muscle hypertrophy

pattern (53). Likewise, in a recent study by cardiac magnetic

resonance imaging the impairment in LA reservoir strain

performed better than the established approach using LV mass

index and low native T1 in identifying early disease (54).

Although none of the above parameters has so far been validated

as independent predictor in large enough cohorts, deformation

analysis by means of advanced echocardiography or other cardiac

imaging modality has the potential to provide valuable insights

into LA functional status of AFD patients. Bradyarrhythmia are

common manifestations of cardiac involvement in AFD, often

requiring pacemaker implantation. It has been demonstrated that

LA reservoir dysfunction can be a useful marker associated to

bradyarrhythmia (55). Atrial fibrillation is a possible complication

of AFD occurring in about 13% of patients. The risk factors for

atrial fibrillation hitherto identified are limited to age, LV

hypertrophy and atrial dilatation. Few data suggest an association
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between the impairment of LA strain parameters with the

occurrence of atrial fibrillation and stroke in FD patients (49).

However, the role of LA dysfunction as a risk factor for atrial

fibrillation needs to be addressed in large studies. Quite common

features of central nervous system involvement in AFD are non-

specific periventricular and deep white matter lesions along with

silent lacunar infarctions of the brain. In a small cohort of AFD

patients, Esposito et al. found that LA function expressed as peak

atrial longitudinal strain was inversely associated with the presence

of non-specific white matter lesions (56).
Right ventricular function

Anatomopathological findings demonstrated that structural

changes such as the accumulation of Gb3 take place also in the

right ventricle (RV). RV hypertrophy, defined as wall thickness

>5 mm, is more frequent with increasing age, and the extent is

correlated with the degree of coexisting LV hypertrophy (57–61).

When assessed by conventional echocardiography, indices of RV

systolic function may be found within the normal range, even

when severe RV hypertrophy is present (12, 60). Indeed, only in

the late disease stages RV involvement progresses to severe

systolic and diastolic RV dysfunction (57). Morris et al. (12)

evaluated longitudinal systolic strain peak from the free and

septal wall (i.e., RV strain) and just from the free wall of the RV

(i.e., RV FW strain) and unveiled systolic dysfunction in 20% of

patients (61, 62). Lillo found out that the physiologic difference

between the RV-FW strain and the global RV strain was

preserved regardless of the presence of overt cardiomyopathy

(62). Compared to patients with hypertrophic cardiomyopathy,

AFD patients showed worse RV FW longitudinal strain, despite

comparable conventional parameters (52, 61). Conversely, a

minimal involvement of RV function has been documented in

AFD compared to cardiac amyloidosis (51). According to 2D

echocardiography, RV involvement seems to be a late

phenomenon of the disease as RV strain is preserved in the pre-

hypertrophic phase (62). Nevertheless, a pilot study by 3D STE

showed an early subclinical functional damage (63). Nevertheless,

the putative 3D imaging advantages that derive from the

independency from the through-plane phenomenon and the

ability to provide real information on volume and wall

deformation with no need for geometric assumptions (64), still

need to be confirmed in larger patient cohorts.
Advanced echocardiography and
prognosis

Identifying patients who are at risk of adverse cardiac outcome

may facilitate more evidence-based treatment guidance (65–67).

The assessment of LV function by longitudinal strain has become

widely adopted, but its prognostic value in AFD remains unclear.

Early findings indicated a link between alterations in LV global

longitudinal function and symptomatic status and prognosis (12).

Interestingly, also basal longitudinal strain reduction was found
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associated with major adverse cardiovascular events (17). In a

cohort of 96 AFD patients, global longitudinal strain showed an

incremental prognostic value over clinical factors, LV mass index

and diastolic function, during a median follow-up of 5.2 years

(40). The prognostic value of LV global longitudinal strain has

been confirmed by other studies including one by 3D

echocardiography (38, 68, 69). Mechanical dispersion STE has

been proposed as an additional risk marker (70). The only study

utilizing strain derived myocardial work for the assessment of LV

function in AFD suggested a higher accuracy of myocardial work

in comparison with global longitudinal strain (GLS) in predicting

event free survival has been observed, with constructive

myocardial work being the best performing index (40).
Advanced echocardiography and the
effects of therapy

While there is a growing acceptance of the role of strain

imaging in early detecting of cardiac involvement of AFD and

thus, in determining the candidacy to disease- specific therapy,

there is a lack of findings regarding its usefulness in assessing the

effects of therapy Already in 2003, Weidemann et al.

demonstrated a significant improvement in longitudinal and

radial strain values by tissue Doppler after 1 year of enzyme

replacement therapy (9), whereas the presence of myocardial

fibrosis did not benefit from therapy over a period of 3 years

(71). A significant decrease of longitudinal systolic strain rate at

basal-mid level of LV lateral wall was observed in AFD patients

treated prospectively with enzyme replacement therapy for 6

years (72). There are findings suggesting that enzyme

replacement therapy may delay the onset of cardiac involvement,

thus, supporting the initiation of therapy at an earlier stage of

the disease (73). Recently, a significant improvement in apical

circumferential strain was observed during enzyme replacement

therapy (44) The effects of therapy on LA function have been

scarcely investigated. Pichette et al. reported an improvement in

LA reservoir strain and in some cases in conduit and contractile

strains after 12 months of treatment (49). However, therapy was

able to improve LA strain, but not to reduce LA volume (62). A

recent study demonstrated no improvement, rather a stabilized

LA strain in patients treated with enzyme replacement therapy as
TABLE 1 Strain echocardiography features of Anderson–Fabry disease and ot

Left ventricle
Anderson–Fabry
disease

Reduced longitudinal strain in the basal posterior-lateral wall;
reduced GLS, inversely and independently associated with LV ma
(12–17), impaired subepicardial longitudinal strain at multilayer
strain analysis (35), loss of normal circumferential strain base-to
apex gradient (12, 33, 34), reduced radial strain (9, 36–38), reduce
constructive work (40, 41).

Hypertrophic
cardiomyopathy

Reduced longitudinal, circumferential and radial strain (75) reduce
constructive work (76).

Cardiac amyloidosis Reduced longitudinal strain with relative apical sparing pattern (1
and increased EFSR (77); reduced radial strain (78), reduced glob
constructive work and work efficiency (41, 79).

GLS, global longitudinal strain; LV, left ventricular; EFRS, ejection fraction longitudinal systolic
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well as in those receiving chaperone therapy (74). Finally,

therapy seems to have no direct impact on RV morphology and

function (59).
Advanced echocardiography: benefits
and pitfalls

The diagnosis AFD is based on signs and symptoms suggestive

of a systemic disease, family history, an absent or reduced (<5% of

normal) leukocyte α-GalA activity level (in men) and is confirmed

by genotype testing. Standard and advanced echocardiography are

not enough to confirm diagnosis of AFD, but provide essential

insights in the functional evaluation AFD, unrevealing

myocardial dysfunction in patients with LV hypertrophy and

preserved ejection fraction. Once a diagnosis of AFD disease has

been established, the presence of abnormal global or segmental

strain in an otherwise normal heart may be suggestive of early

involvement and should trigger closer clinical follow-up. In the

Figure 1, the role of strain echocardiography in identifying the

features of heart involvement in AFD is shown (panel 3). When

comparing standard and advanced echocardiography to other

morphological analysis such as cardiac magnetic resonance, it

has to be kept in mind that the information is often additive,

more than alternative. Indeed, cardiac magnetic resonance can

provide a precise evaluation of heart morphology and tissue

characteristics. Native T1 mapping allows early detection of

cardiac involvement in a pre-hypertrophic stage and can

discriminate between control subjects and AFD patients without

LV hypertrophy. Moreover, low myocardial T1 values in pre-

hypertrophic stage correlate with reduced global longitudinal

strain (30). However, its wide adoption is hampered by the lack

of standardized cut-off values for T1 mapping as the analysis is

influenced by imaging equipment and protocols. In this

perspective, echocardiography has the advantage of being widely

spread, less expensive and easily repeatable. Nevertheless, cardiac

imaging findings, either by advanced echocardiography or by

cardiac magnetic resonance, are not specific nor pathognomonic

of AFD. Some feature can help diagnosis: in the setting of LV

hypertrophy the presence of a typical pattern of midmyocardial

late gadolinium enhancement in the basal to mid inferolateral

wall may aid in differential diagnosis (10). Longitudinal strain
her conditions of left ventricular hypertrophy in adults.

Left atrium Right ventricle

ss

-
d

Reduced left atrial strain/
strain rate parameters (48–52)

Reduced longitudinal systolic right ventricle
strain and right ventricle free wall strain (12, 58,
59, 61–63)

d Reduced phasic left atrial
strain (50, 53)

Reduced longitudinal systolic right ventricle
strain and right ventricle free wall strain (61)

8)
al

Impairment of left atrial strain
more severe than in AFD (51,
52).

Reduced longitudinal systolic right ventricle
strain and right ventricle free wall strain with
increased apical ratio (51, 80).

strain ratio.

frontiersin.org

https://doi.org/10.3389/fcvm.2024.1440636
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Spinelli et al. 10.3389/fcvm.2024.1440636
has proven to be less useful in distinguishing AFD patients from

other conditions associated with LV hypertrophy (14, 18, 50–52,

61, 75–80). Loss of base to apex gradient of LV circumferential

strain, irrespectively of the increase in LV wall thickness, seems

to be specific for AFD (12, 33, 34). Table 1 summarizes

myocardial strain characteristics of AFD and of other forms of

cardiac hypertrophy such as nonobstructive hypertrophic

cardiomyopathy and cardiac amyloidosis.
Conclusions

Advanced cardiac imaging has played a crucial role in defining

features of the unique cardiac involvement due to AFD. Strain

imaging by cardiac ultrasound is involved in many aspects: the

initial diagnostic suspicion of AFD in case of evidence of

unexplained heart damage, the differential diagnosis with other

cardiomyopathies, the early detection of heart involvement in

patients with already diagnosed AFD, the decisions regarding the

initiation of chaperone or enzyme replacement therapy. Further

large studies are warranted to ascertain the prognosticator value

of LV longitudinal strain in defining patient risk profile and

monitoring evolution of AFD cardiomyopathy. Research should

be prompted to verify whether and at what extent advanced

echocardiography may provide insights into the impact of

disease-specific therapy on the heart of AFD patients.
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