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Predicting long-term risk of
sudden cardiac death with
automatic computer-
interpretations of
electrocardiogram
Minna Järvensivu-Koivunen1, Antti Kallonen1, Mark van Gils1,
Leo-Pekka Lyytikäinen1,2, Juho Tynkkynen3 and
Jussi Hernesniemi1,2,4*
1Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland, 2Tays Heart
Hospital, Tampere University Hospital, Tampere, Finland, 3Department of Radiology, Tampere
University Hospital, Tampere, Finland, 4Finnish Cardiovascular Research Center Tampere, Tampere
University, Tampere, Finland
Background: Computer-interpreted electrocardiogram (CIE) data is provided
by almost all commercial software used to capture and store digital
electrocardiograms. CIE is widely available, inexpensive, and accurate. We tested
the potential of CIE in long-term sudden cardiac death (SCD) risk prediction.
Methods: This is a retrospective of 8,568 consecutive patients treated for acute
coronary syndrome. The primary endpoint was five-year occurrence of SCDs or
equivalent events (SCDs aborted by successful resuscitation or adequate ICD
therapy). CIE statements were extracted from summary statements and
measurements made by the GE Muse 12SL algorithm from ECGs taken during
admission. Three supervised machine learning algorithms (logistic regression,
extreme gradient boosting, and random forest) were then used for analysis to
find risk features using a random 70/30% split for discovery and validation cohorts.
Results: Five-year SCD occurrence rate was 3.3% (n= 287). Regardless of the
used ML algorithm, the most significant risk ECG risk features detected by the
CIE included known risk features such as QRS duration and factors associated
with QRS duration, heart rate–corrected QT time (QTc), and the presence of
premature ventricular contractions (PVCs). Risk score formed by using most
significant CIE features associated with the risk of SCD despite adjusting for
any clinical risk factor (including left ventricular ejection fraction). Sensitivity of
CIE data to correctly identify patients with high risk of SCD (over 10% 5-year
risk of SCD) was usually low, but specificity and negative prediction value
reached up to 96.9% and 97.3% when selecting only the most significant
features identified by logistic regression modeling (p-value threshold <0.01 for
accepting features in the model). Overall, CIE data showed a modest overall
performance for identifying high risk individuals with area under the receiver
operating characteristic curve values ranging between 0.652 and 0.693
(highest for extreme gradient boosting and lowest for logistic regression).
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Conclusion: This proof-of-concept study shows that automatic interpretation of
ECG identifies previously validated risk features for SCD.
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Introduction

Sudden cardiac death (SCD) is a significant cause of death in

the general population and even more so in patients with known

coronary artery disease (CAD) (1, 2). Most SCD victims are

patients with mildly reduced or normal left ventricular ejection

fraction (LVEF), who are therefore not eligible for primary

prevention with an implantable cardioverter-defibrillator

(3, 4). During the last few decades, multiple plausible

electrocardiographic (ECG) risk factors for SCD depicting

autonomic abnormalities have been identified, such as heart

rate, signs of myocardial scarring, and signs of abnormal

ventricular depolarization or repolarization (5–12). Several

potential ECG-based composite risk scores have also been

developed (13–15). These results seem promising, but they have

not led to actual advances in clinical practice, perhaps due to

the lack of replicability and the low sensitivity. In previous ECG

risk score studies, usually incorporating 4–6 partly overlapping

risk markers, the only consistently emerging risk factor for SCD

has been left ventricular hypertrophy (LVH) (13–15), and even

then the SCD risk associated with LVH has been approximately

2.2–2.5-fold in discovery cohorts but usually greatly reduced in

multivariable analyses and in validation studies (13–15). The

replicability issue is partly influenced by the heterogeneity of

the used risk markers, although they usually depict the same

phenomena and the small number of cases available in

discovery cohorts of prospective trials and the even smaller

number of cases in replication cohorts (14, 15). The lack of

other large cohort studies with high-quality endpoint data for

SCD and access to standardized ECG data is a significant

challenge (13, 14, 16).

One potential solution to the replicability problem in

the research on SCD could be to use computerized

interpretation of the ECG (CIE) to provide standardized

phenotype data. There are even promising results of CIE

outperforming experienced physicians (17). GE-Marquette

12SL ECG analysis (GE Healthcare, Milwaukee, WI, USA) is

a standardized computerized interpretation program that is

used globally (18). Our aim was to evaluate the prognostic

value and feasibility to use data of basic measurements and

statement combinations by GE-Marquette in the prediction

of SCD.
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Methods

Study design and cohort

This study is based on a retrospective analysis of the real-life

data of patients treated in a tertiary center, collected in a single

research database (MADDEC study) (19). The scientific

monitoring committee of Pirkanmaa Hospital District approved

the study. The study complies with the Declaration of Helsinki

ethical principles for medical research.

Between January 2007 and December 2018, 10,314 consecutive

patients underwent coronary angiography for ACS in Tampere

Heart Hospital (a part of Tampere University Hospital). The

Heart Hospital is the sole specialized health care provider in

cardiologic emergencies in a region of over 0.5 million inhabitants,

and all patients undergoing invasive diagnostics within this region

are treated in the study center. ACS was defined as an ST

elevation MI (STEMI), non-ST elevation MI (NSTEMI), or

unstable angina pectoris (UAP), according to ESC guidelines (20).

In Tampere Heart Hospital, less than 10% of patients with

suspected ACS do not undergo coronary angiography, usually due

to a poor estimated prognosis and overall condition (21).

Out of all 10,314 consecutive patients undergoing angiography for

ACS, patients with no electronic ECG available (n = 191) and those for

whom the ECGwas recordedmore than 7 days prior to, or over 90 days

after, the angiography (n = 205) were excluded. Finally, as follow-up

time was limited to 5 years (last follow-up date Dec 31, 2021),

patients without adequate five-year follow-up data for SCD were

excluded (n = 1,350; this criterion applies to patients treated between

2017 and 2018 who were alive at the end of the follow-up). After

exclusions, 8,568 patients were available for analysis. The majority

(n = 8,239, 96.2%) of the ECGs were recorded on the same day, as or

within 1 week after, the angiography. A flowchart of the patient

selection is presented in Figure 1.
Data collection

The MADDEC (Mass Data in Detection and Prevention of

Serious Adverse Events in Cardiovascular Disease) database was

used to obtain laboratory results and information on patients’

medical history. The database combines written patient record data
teristic; CIE, Computer-interpreted electrocardiogram; ECG, Electrocardiogram;
achine learning; LR, Logistic regression; LVEF, Left ventricular ejection fraction;
n delay; NSTEMI, Non-ST elevation myocardial infarction; RF, Random Forest;
able angina pectoris; XGB, Extreme Gradient Boosting.
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FIGURE 1

Patient flowchart.
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from specialized healthcare with electronic health records, such as

laboratory results, diagnoses, body measurements, and ECGs, and

with the KARDIO registry, which contains information on

diagnostic procedures and treatments (19). Information on deaths

was obtained from Statistics Finland, patient records, and death

certificates with written descriptions of the manner of death (see

below for a more detailed description of SCD endpoint adjudication).

All available standard 12-channel ECGs recorded after angiography,

or before if an ECG was not available after angiography (n = 9), were

considered. The ECGs were recorded as a part of the normal clinical

workflow by a trained laboratory technician or a nurse with standard

commercially available GE ECG recording devices, and the recordings

were stored in the MUSE database hosted by Fimlab Laboratories.

The ECGs were interpretated using the 12SL GE Marquette program,

and the ECGs were stored in pdf format, from which the

interpretations were extracted by using an R program (package

pdftools) (22). The text format interpretations included statements

and numerical measurement of the present ECG selected for analysis

(Figure 2 for example). Possible statements comparing the present

ECG to the previous one was not included (this feature is available if

there are previous ECGs available for interpretation in the database).

Before testing the associations between ECG interpretations and SCD,

potentially clinically relevant subgroups of features were further

merged to form additional ECG variables. A full list of ECG

statements and the subgroups formed a priori following clinical

rationale is presented in Supplementary Table S1.
FIGURE 2

Example of computer interpreted ECG statement by using GE
Marquette 12SL data.
Endpoint definitions

The primary endpoint is a composite SCD event—denoting

true SCDs and cases where a patient would most likely have died
Frontiers in Cardiovascular Medicine 03
an SCD without intervention, i.e., accurate ICD therapy for

ventricular arrhythmia (VA) or successful resuscitation (with or

without anoxic brain damage)—occurring within five years of

ACS. In order to identify only risk markers specific to SCD,

patients who remained alive at five years or who died within five

years of other causes were regarded as controls. A death was

classified as an SCD if it was presumably of cardiac etiology and

occurred within 1 h of the onset of symptoms, or if the patient

was found dead within 24 h of being asymptomatic. The

classification was based on the AHA/ACC/HRS and ESC
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guidelines (3, 23). If a hospitalized patient had prolonged cardiac

symptoms; if the patient had a deteriorating clinical condition,

severe dementia, or was in palliative care; or if the description of

the manner of death was vague, the death was not classified as

an SCD. Successfully resuscitated patients were identified by

screening written patient records of Tampere University Hospital,

where all resuscitated patients who survive until reaching the

hospital are treated, and suspected cases were further assessed by

an in-depth review of all written patient records. Pacemaker

events of patients with an ICD were screened to identify accurate

ICD therapies. ICD therapy readings were then confirmed

individually by reviewing the written patient records detailing the

pacemaker ECG data and the classification, therapy, and

description of the event. In the case of multiple endpoint

episodes, the first one was chosen for the analysis. For sensitivity

analysis, patients with ICD devices (either received before ACS

or anytime during the five-year observation period) were

additionally excluded from the study. Endpoint data were

collected until the 31st of December 2021.
Statistical methods

The t-test was used to test differences between groups for

continuous variables, while Pearson’s X2 test was applied for

categorical variables. The overall dimensionality of ECG features

was reduced with principal component analysis (PCA) based on

Eigenvalues (>1 with no fixed limit for components) using IBM

SPSS Statistics software (v. 29.0.1.0). A threshold for the number

of components to maintain was obtained to explain 95% of the

ECG data variance. These principal components (PC) were then

used in the logit model adjusted for sex and age to calculate their

association with SCD. PCA was performed using the whole data set

without train/validation split.

To screen for potential CIE-based risk markers and to validate

their predictive value, the population was divided into independent

training and validation samples with a random division of 70%

(training) and 30% (validation). This split was chosen based on

our data size. Based on training data, a five-year risk of SCD was

calculated for all patients. Three different supervised machine

learning (ML) risk prediction models were built to predict SCD:

logistic regression analysis (LR), random forest (RF) and Extreme

Gradient Boost (XGB) (24–26).

The logistic regression model was constructed by filtering the

most significant ECG features, first by testing which features

were associated with SCD risk, with a nominal p-value of 0.05 or

less. These nominally significant ECG features were then

introduced to the model by a forward stepwise algorithm using a

conservative p-value of 0.01 for entry and removal from the

model. Random forest is an ensemble learning method that

operates by constructing a multitude of decision trees at training

time and outputting the class that is the mode of the classes of

the individual trees for classification tasks. In this case, two

classes represented the SCD endpoints. The optimization of the

random forest parameters was conducted using a grid search

algorithm. This method involves evaluating a model across a
Frontiers in Cardiovascular Medicine 04
range of algorithm parameters specified in a grid to identify the

combination that optimizes the model’s performance. Specifically,

the parameters optimized for the random forest model included

the max_depth of the tree, tested at 10, 60, and 100; the

min_samples_leaf, which is the minimum number of samples

required at a leaf node, tested at 1, 2, and 4; and the

min_samples_split, or the minimum number of samples

necessary to split an internal node, tested at 2, 5, and 10. During

the grid search, all possible combinations of the specified

parameter values were evaluated, and the best combination was

retained. The best parameters for each model were then selected

based on their performance on the development set. This process

was repeated for each of the specified models. Following the grid

search, the optimal parameters for the random forest were

determined to be a max_depth of 10, min_samples_leaf of 4, and

min_samples_split of 10. Parameter optimization, training, and

data visualization were performed using Python version 3.10.12

with the packages sklearn, pandas, and matplotlib. The Python

codings are introduced specifically in Supplementary Table S2.

Extreme gradient boosting was performed with the R package

xgboost, and hyperparameters for extreme gradient boosting were

optimized with the package ParBayesianOptimization The

optimized hyperparameters were eta (range 0–1), gamma (0–20),

max depth (1–20), min child weight (2–30), subsample (0.1–1),

and max delta steps (0–20). The tuning function used a 10-fold

cross-validated extreme gradient boosting model, max rounds of

75, and early stop rounds 20. Both unscaled and scaled models

were performed (scale pos weight = 30) to evaluate performance

after prediction. Also, unscaled risk was used to test the 10%

SCD threshold. The tuning was performed with seven initial

starting points, in 100 iterations and at 5 times per epoch.

Optimized hyperparameters (non-scaled values for SCDv5:

eta = 0.4614819, gamma = 2.108328, max_depth = 1, min_child_

weight = 2.496067, subsample = 1, max_delta_step = 20; the

number of rounds in the best iteration was also extracted) were

used in the model training, and the model performance was

finally tested in the validation set.

Model calibration was tested using the Hosmer–Lemeshow test

with ten risk level/stratification groups. Only XGB model showed

suboptimal fit among the very highest risk categories (p = 0.01

comparing predicted risk and occurred events, see data

supplement). Feature importance was assessed by feature

importance algorithms in each ML; Gini (analyzing the change

in the model’s prediction error after permuting the feature) in

RF, Gain (training loss reduction gained when using a feature for

splitting) in XGB and regression coefficient in LR.

Additionally, the clinical stratification value (performance) of

the risk scores was tested by analyzing their predictive value over

a priori defined, clinically meaningful thresholds for SCD risk in

the validation sample using an area under the receiver operating

characteristic (AUROC) curve. For the purpose of this study, a

10% five-year risk was defined as a threshold of interest, after

which an ICD is likely to be indicated. This threshold was selected

as it corresponds roughly with the 2%–3% yearly SCD event rate

in control populations of trials testing the efficacy of ICD devices

(27–34). It is also clearly above the actionable limit for ICD
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1439069
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


TABLE 1 Baseline characteristics of patients undergoing coronary angiography for acute coronary syndrome in Tampere Heart Hospital between 2007
and 2018.

All patients (n= 8,568) Training set (n = 6,012) Validation set (n= 2,556) P-valuea

Age 68.4 (11.9) 68.4 (11.8) 68.4 (12.1) 0.890

Men,% (n) 67.3% (5,768) 67.2% (4,043) 67.5% (1,725) 0.829

Acute coronary syndrome type 0.259

Unstable angina 19.2% (1,646) 19.5% (1,175) 18.4% (471)

Non-ST elevation myocardial infarction 45.2% (3,877) 44.7% (2,688) 46.5% (1,189)

ST elevation myocardial infarction 35.5% (3,045) 35.7% (2,149) 35.1% (896)

Coronary artery disease severity 0.359

No flow-limiting occlusions 11.1% (1,103) 11.0% (764) 11.4% (339)

1-vessel disease 38.6% (1,145) 39.4% (2,735) 38.6% (1,145)

2-vessel disease 25.9% (770) 26.9% (1,871) 25.9% (770)

3-vessel disease 24.1% (716) 22.7% (1,578) 24.1% (716)

Killip classifications for heart failure 0.699

I 77.3% (6,606) 77.6% (4,655) 76.5% (1,951)

II 14.2% (1,213) 14.1% (843) 14.5% (370)

III 6.9% (556) 6.3% (381) 6.9% (175)

IV 2.2% (55) 2.0% (121) 2.2% (55)

Previous history of myocardial infarction 17.8% (1,529) 17.7% (1,066) 18.1% (463) 0.674

Diabetes 25.5% (2,177) 25.7% (1,539) 25.0% (638) 0.560

Peripheral artery disease 8.0% (681) 7.8% (467) 8.4% (214) 0.345

Hypertension 60.1% (5,135) 60.1% (3,607) 59.9% (1,528) 0.889

History of cancer (any) 8.4% (708) 8.7% (516) 7.6% (192) 0.101

Valvular heart disease (any) 7.3% (627) 7.3% (436) 7.5% (191) 0.720

History of chronic or acute kidney disease 12.5% (1,072) 12.4% (744) 12.9% (328) 0.545

Dyslipidemia 57.1% (4,873) 57.1% (3,422) 57.0% (1,451) 0.935

History of stroke 8.3% (713) 8.2% (492) 8.6% (221) 0.478

Median creatinine, umol/l (interquartile range) 77 (66–92) 77 (66–91) 77 (67–92) 0.238

Mean hemoglobin, mg/dl (SD) 129.3 (16.0) 129.6 (16.0) 128.8 (16.0) 0.040

Mean left ventricular ejection fraction,% (SD)b 51.2 (11.9) 51.2 (11.8) 51.2 (12.0) 0.812

SCD occurrence rate 3.3% (287) 3.5% (209) 3.3% (78) 0.317

Overall mortality rate 23.6% (2,026) 41.3% (2,483) 40.5% (3,519) 0.508

aComparison between values in the statistical analysis training set and validation set.
bData available for 75.1% of all patients in the study population (n = 6,435/8,568).
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implantation in hypertrophic cardiomyopathy. The sensitivity,

specificity, positive and negative prediction values were reported.
Results

Characteristics

At baseline, the mean age of the entire population was 68.3 years

(±11.8 SD), and 67.3% (n = 6,671) of the patients were male. There

were no significant differences between training and validation sets

in baseline characteristics or in the occurrence of SCDs (Table 1).
Rate and incidence of events and
association between SCD and traditional
risk factors

During the five-year follow-up period, 2,026 patients died

(23.6%) and 287 SCDs or equivalent events were recorded, 80.1%

(n = 230) of which occurred in patients without ICDs. Based on

these events, the five-year occurrence rate of SCDs or equivalent

events was 3.3% and the SCD occurrence rate among patients
Frontiers in Cardiovascular Medicine 05
without ICDs was 2.7%. The unadjusted and adjusted associations

(in the form of odds ratios) between SCD and traditional risk

factors in the entire study population are presented in Table 2.
Principal component analysis

The overall variance in the data obtained from CIE statements

was analyzed with principal component analysis (PCA). The six

first PCs explained over 95% of the variance and were

introduced to a logit model adjusted for age and sex (Figure 3).

Together, these six principal components reached an AUROC

value of 0.642, predicting SCD in the entire study population.
Machine learning models and SCD
prediction

The performance of ML risk prediction models is presented in

Figure 4. In brief, the highest AUROC values were attributed to

the XGB (0.693) and RF models (0.681) and the lowest to LR

(0.652). For reference, using clinical data (age, sex, creatinine,

hemoglobin, Killip class, dyslipidemia, hypertension, diabetes,
frontiersin.org
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TABLE 2 Association between traditional risk factors and sudden cardiac death among patients undergoing coronary angiography for acute coronary
syndrome in Tampere Heart Hospital between 2007 and 2018.

Univariable odds
ratio (95% CI)

Multivariable odds ratio (95% CI) Multivariable odds ratio (95% CI)a

Age 1.07 (0.97–1.19) 0.92 (0.82–1.03) 0.92 (0.80–1.06)

Men,% (n) 1.56 (1.18–2.04) 1.59 (1.12–2.26) 1.39 (0.97–1.99)

Acute coronary syndrome type
Unstable angina Reference Reference Reference

Non-ST elevation MI 1.97 (1.36–2.88) 1.63 (1.01–2.41) 1.42 (0.93–2.19)

ST elevation MI 1.58 (1.06–2.34) 1.44 (0.95–2.19) 0.94 (0.57–1.54)

Coronary Artery Disease Severity
No flow-limiting occlusions Reference Reference Reference

1-vessel disease 2.33 (1.24–4.38) 2.05 (1.01–4.18) 2.18 (1.03–4.63)

2-vessel disease 3.70 (1.97–6.95) 2.52 (1.23–5.17) 2.45 (1.14–5.25)

3-vessel disease 4.28 (2.29–8.03) 2.43 (1.17–5.02) 2.41 (1.12–5.19)

Killip classification
I Reference Reference Reference

II 2.41 (1.81–3.20) 1.96 (1.39–2.75) 1.54 (1.07–2.21)

III 3.25 (2.29–4.60) 2.24 (1.44–3.50) 1.56 (0.97–2.52)

IV 1.61 (0.74–3.48) 1.24 (0.49–3.15) 0.97 (0.38–2.56)

Previous history of MI 2.52 (1.97–3.24) 2.18 (1.60–2.96) 1.59 (1.12–2.27)

Dyslipidemia 1.04 (0.82–1.32) 0.74 (0.55–1.00) 0.80 (0.58–1.10)

Valvular heart disease 1.39 (0.93–2.07) 0.85 (0.52–1.41) 0.83 (0.50–1.39)

Cancer (any) 1.05 (0.69–1.61) 0.89 (0.56–1.40) 0.93 (0.58–1.48)

Chronic obstructive pulmonary disease 2.23 (1.56–3.19) 1.57 (1.04–2.38) 1.48 (0.97–2.27)

History of stroke 1.51 (1.04–2.17) 0.79 (0.49–1.28) 0.77 (0.47–1.26)

Diabetes 1.99 (1.56–2.54) 1.55 (1.15–2.11) 1.62 (1.16–2.26)

Peripheral artery disease 2.39 (1.73–3.30) 1.42 (0.96–2.11) 1.36 (0.90–2.05)

Hypertension 1.16 (0.91–1.48) 0.95 (0.70–1.30) 1.01 (0.73–1.39)

History of kidney disease 2.07 (1.56–2.75) 0.96 (0.63–1.47) 0.90 (0.58–1.40)

Serum creatinine 1.24 (1.70–1.32) 1.16 (1.06–1.27) 1.20 (1.09–1.32)

Left ventricular ejection fraction 0.54 (0.47–0.61) - 0.62 (0.53–0.73)

aModel tested in a subsample (75%) of patients with LVEF data available (n = 6,435/8,568).
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cancer, valvular heart disease, peripheral arterial disease, chronic

obstructive pulmonary disease, and kidney disease as variables)

and the RF classifier, the resulting AUROC was 0.668. Adding

ECG data to this RF prediction model increased the AUROC to

0.692, indicating that ECG variables have incremental predictive

value (Figure 5). The same observation was made if the analysis

was repeated after excluding patients with ICDs (Figure 6).

Additionally, when the association between LR-based standard risk

prediction metric (range of predicted risk values between 0 and 1)

and SCD was analyzed before and after adjusting the model for

significant clinical risk factors, the association remained statistically

significant and similar indicating that the association between

ECG features and SCD is independent of traditional risk factors

(including left ventricular ejection fraction) (Table 3).
Variable importance

The most important ECG features in the RF model and

XGB are listed by rank in Table 4, which also presents the

variables (features) selected by LR with their corresponding

odds ratios (calculated from the validation dataset).

Regardless of the applied ML algorithm, the same common

features were highlighted. These included previously
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identified risk factors for SCD, such as QRS duration or

factors associated with QRS duration (presence of non-

specific intraventricular conduction disorders or incomplete

left bundle branch block), heart rate–corrected QT time

(QTc), and the presence of premature ventricular

contractions (PVCs). T wave axis and R wave axis were also

top-ranked by the XGB and RF algorithms (Table 4).
The applicability of different ML models
using CIE statements for identifying patients
at high risk of SCD

The predictive value of CIE statements by different ML

models in identifying patients at a high (10%) five-year risk

of SCD is presented in Table 5. LR identified only a small

fraction of the population (3.3%) at high risk, with

subsequently low sensitivity (14.1%) and PPV (12.6%), but

with high specificity (96.9%) and negative predictive value

(97.3%). XGB performed very similarly in identifying high-

risk individuals (Table 5). Using the RF algorithm, a ten-

fold number of patients compared to LR analysis were

identified to have a high risk (37.8%), with higher sensitivity

(61.5%) but lower specificity (63.0%) (Table 5).
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Discussion
In this study, we used a large retrospective cohort of

consecutive patients treated for ACS with high-quality endpoint

data for SCD to evaluate the prognostic value of CIE in the
FIGURE 3

The number of principal components and their relation to the
explained variance in the electrocardiographic (ECG) data
extracted from 12-channel ECGs by Marquette 12SL software in
patients treated for acute coronary syndrome (n= 8,568).

FIGURE 4

The overall performance, as reflected in an ROC plot, of different mach
statements for the prediction of sudden cardiac death or equivalent event w
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prediction of SCD. According to our observations, CIE can be

used to identify patients at high risk for SCD, but the overall

performance is modest. ML algorithms, such as random forest

and XGB perform better than standard regression modeling

when measuring AUROC values across the entire risk spectrum.

However, in identifying high-risk patients for clinical purposes, a

conventional and conservatively built regression model performs

adequately, although the sensitivity of the model is low (14%).

According to our sensitivity analysis, CIE-based risk prediction

also works to identify patients at risk of SCD outside of ICD

indications, and CIE parameters are independent of traditional

risk factors.

There are no similar previous studies to which can compare our

results to. Although internally validated, our results require outside

validation. However, using different ML methods, we observed

that QRS duration and related features, such as nonspecific

intraventricular conduction delay (NIVCD) and incomplete left

bundle branch block (LBBB), are all significantly associated with

the risk of SCD. Although these results are based on fully

automated interpretation, they align very well with previous

observations (6, 7, 35–37). Not surprisingly, QTc time was also a

major component in the SCD prediction models. Furthermore, the

presence of premature ventricular contractions also seemed to

associate with SCD (38). In contrast to many studies, elevated

heart rate was not predictive of SCD event possibly due to high

risk of competing events in patients with heart failure (39).

Complex ML algorithms have gained interest in recent medical

research. We also tested different ML algorithms, given the

complexity of the CIE-produced data. As a rule, ML models
ine learning algorithms using computer-interpreted electrocardiogram
ithin five years of an acute coronary syndrome event.
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FIGURE 5

Incremental predictive value of ECG parameters added to information obtained from traditional risk factors in predicting the five-year occurrence of all
SCD events. Models constructed with the random forest machine learning algorithm. Clinical variables used in the model: age, serum creatinine value,
hemoglobin value, Killip classification for heart failure, dyslipidemia, hypertension, diabetes, prevalent cancer, valvular heart disease, peripheral artery
disease, chronic obstructive pulmonary disease, history of kidney failure, patient sex.
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must balance between interpretability and performance, where a

more highly performing model must sacrifice interpretability and

vice versa (40). Model suitability is dependent on data size,

quality, and complexity, as well as the goals and preferences of

the study (40, 41). The best-known and perhaps the simplest ML

algorithms, linear and logistic regression, perform well in the

absence of complex relationships and are often easier to use and

interpret than modern ML algorithms (41, 42). Decision trees are

tree-like structured algorithms that represent decisions and

possible consequences (41, 43). Methods such as the “boosting”

or “bagging” of multiple decision trees are used in more complex

algorithms, such as the RF and XGB used in our study (41, 43,

44). In our data, XGB and RF algorithms produced the highest

AUROC values. However, as evidenced by the principal

component analysis, the overall complexity of our data set was

not high, despite integrating several hundred parameters (mostly

with low frequency), and there was very little difference in the

performance of different ML methods.

There have been several attempts to develop ECG-based SCD

risk prediction scores using conventionally interpreted (and often

manually or semi-automatically measured) ECG. The risk score

developed in the Oregon Sudden Death Study (Oregon SUDS)

was validated in the prospective Atherosclerosis Risk in

Communities (ARIC) study, in which individuals from the

general population with extremely high scores (4–6 positive risk

markers, prevalence 1.1%) had an approximately 2%–2.5% five-
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year incidence of SCD (13). The risk score developed in the

prospective PREDETERMINE study (patients with established

CAD but no indication for ICD device) was validated in the

ARTEMIS study, in which CAD patients with high risk scores

(prevalence of 10%) were observed to have a roughly 5.2% five-

year cumulative incidence of sudden arrhythmic death (14).

Unfortunately, we lack the data of several components used in

these ECG scores and are unable to compare the results directly.

In our study, with all available data from automated statements,

we were able to identify approximately 3.3% of the population at

high risk (over 10% five-year risk) of SCD using a regression

analysis–based model. This model had low sensitivity (only

capturing 14% of all SCD cases). Still, primary prevention based

on this risk scoring would target patients with an event rate

comparable to the control populations of trials testing the

efficacy of ICDs in patients with a low LVEF (27–33). Compared

to traditional ECG risk markers, the results obtained using CIE

can be rapidly repeatable everywhere with corresponding

outcome data because it uses (manufacturer-dependent)

algorithms for fast and mostly accurate evaluation of recorded

ECGs given the sufficient signal quality (45).

Potential SCD risk stratification tools are also based on clinical

data (46). However, their applicability is usually subject to

heterogeneity as regards the baseline risk and the definitions of

the different components of the risk scores. Recently, a

composite risk score (VFRisk) for SCA was developed using
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FIGURE 6

Incremental predictive value of ECG parameters added to information obtained from traditional risk factors in predicting the five-year occurrence
SCDs among patients not eligible for an intra-cardiac defibrillator device. Models constructed with the random forest machine learning algorithm.
Clinical variables used in the model: age, serum creatinine value, hemoglobin value, Killip classification for heart failure, dyslipidemia, hypertension,
diabetes, prevalent cancer, valvular heart disease, peripheral artery disease, chronic obstructive pulmonary disease, history of kidney failure,
patient sex.

TABLE 3 The association between ECG statement–based continuous risk
score (by logistic regression analysis) and SCD with or without adjusting
for traditional risk factors and LVEF in the validation sample. The odds
ratio (OR) estimate corresponds to a one standard deviation increase in
the ECG risk score. Adjusting variables for Model 3 and Model 4 were
selected by taking all significant variables associating with the risk of
SCD in the training population.

OR for SCD p-value OR for SCD
(no ICDs)a

p-value

Unadjusted
Model

1.39 (1.23–1.57) <0.001 1.38 (1.21–1.58) <0.001

Model 2 1.35 (1.19–1.53) <0.001 1.33 (1.15–1.52) <0.001

Model 3 1.27 (1.11–1.46) <0.001 1.28 (1.10–1.49) 0.001

Model 4 1.26 (1.08–1.47) 0.003 1.31 (1.10–1.56) 0.002

Model 5 1.32 (1.16–1.51) <0.001 1.33 (1.15–1.54) <0.001

Model 2 adjusted for age and sex; Model 3 adjusted for age, sex, diabetes, history of

myocardial infarction, CAD severity, Killip classification, prevalent chronic obstructive

pulmonary disease, and serum creatinine; Model 4 adjusted for age, sex, diabetes, history
of myocardial infarction, CAD severity, serum creatinine, and left ventricular ejection

fraction; Model 5 adjusted for left ventricular ejection fraction.
aAll patients who received an implantable cardioverter defibrillator before an acute coronary

syndrome event or within five years of the event are excluded.

TABLE 4 The top features in random forest, extreme gradient boosting
and logistic regression models in predicting sudden cardiac death.

Metric for
importance

Extreme Gradient Boosting Gain
QRS duration 0.216

QTc duration 0.121

Lateral ST segment depression (isolated) 0.111

Premature ventricular contractions 0.108

T wave axis 0.106

Random Forest Gini
QRS duration 0.0708

QTc duration 0.0645

T wave axis (missing values replaced by mean) 0.0608

T wave axis 0.0596

R wave axis 0.0577

Logistic Regression Regression

coefficienta

QRS duration (for one SD increase) 1.19 (0.95–1.48)

Premature ventricular contractions 2.10 (1.12–3.93)

Non-specific intraventricular conduction disorder/block 2.72 (0.97–7.61)

Lateral ST segment depression 1.93 (0.94–3.87)

Incomplete left bundle branch block 5.57 (2.06–15.04)

aVariables not ranked by metric of importance and coefficients presented as odds ratios in a

multivariable model with all features simultaneously in the same model.

Järvensivu-Koivunen et al. 10.3389/fcvm.2024.1439069
clinical, echocardiographic, and ECG-based parameters in a case–

control setting (the Oregon SUDS). Subsequently, four of the

thirteen components were ECG parameters. The VFRisk

successfully discriminates SCA cases from controls with an
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TABLE 5 The ability of the studied risk prediction algorithms to identify
patients at a high risk of sudden cardiac death (10% or higher five-year
SCD risk).

Specificity Sensitivity NPV PPV Prevalence

Endpoint: all SCDs
Logistic regression 96.9% 14.1% 97.3% 12.6% 3.3%

Random forest 63.0% 61.5% 98.1% 5.0% 37.8%

Extreme gradient
boosting

98.1% 9.0% 97.2% 13.1% 2.1%

Endpoint: SCDs among patients with no ICDs
Logistic regression 96.4% 14.3% 97.7% 9.4% 2.5%

Random forest 95.8% 12.7% 97.7% 7.3% 4.4%

Extreme gradient
boosting

99.1% 3.2% 97.5% 8.7% 0.9%

Abbreviations: NPV, negative predictive value; PPV, positive predictive value; ICD,

implantable cardioverter-defibrillator.

Järvensivu-Koivunen et al. 10.3389/fcvm.2024.1439069
internally and externally validated AUROC value of 0.782 (47).

While these results are promising, the problem is that, in

contrast to many ECG parameters, traditional clinical risk factors

for SCD (or for SCA) are also risk factors for deaths due to

other causes and, therefore, their applicability in identifying

patients who would benefit from targeted SCD prevention with

an ICD device is ambiguous. All possible risk scores should be

validated in a clearly defined population while controlling for

mortality due to other causes during follow-up. Compared to

more general risk factor–based risk stratification tools, ECG is

more likely to provide more cardiac-specific information that can

stratify the population at high risk of specifically SCD but at a

low risk of death due to other causes. For example, many of the

major components of the risk score developed in the ARIC

cohort, such as age, serum albumin, and renal function, are also

associated with a high risk of death due to other causes (46, 48).
Limitations

As our cohort only included patients with previous ACS, it is

not generalizable to patients with no previous heart conditions.

In particular, the observations concerning individual potential

risk factors should be considered cautiously because many of the

features are only seen in patients after ACS (and with significant

coronary artery disease). Also, the cohort is from a limited

geographical area in Finland, comprising mainly Caucasian

individuals, which limits the generalizability to geographically

and ethnically different populations. Furthermore, CIE

algorithms differ by manufacturer, and clinical interpretation is

still required if the actual predictive value of specific ECG

features needs to be verified (45). In addition, updates to the

algorithms over time were not considered in our study, and they

are subject to change over time. However, this means that using

the same software version for all recordings would probably only

improve the predictive performance of CIE when the

heterogeneity in the data is reduced. Furthermore, we did not

have full five-year follow-up data for subjects treated in years

2017 and 2018 and still alive at the end of the follow-up period

(December 31st of 2021) and thus they were not included in our
Frontiers in Cardiovascular Medicine 10
analyses (13% of all patients). This exclusion of control patients

from later years could lead to some bias in our analyses.

However, as these excluded patients had similar age and sex

distribution when compared to patients included to control

population in our analyses, it is likely that the current control

population represents adequately those not at risk of SCD.

Our data are based on ECG recordings made at the time of

ACS, and only on automated interpretations of recorded ECGs

(i.e., not on the raw signal). For this reason, the full depth/

potential of standardized 12-channel ECG data is probably

under-represented. With longitudinal data and a more complete

data matrix, the predictive value of ECG may be substantially

better and more likely the low problem of low sensitivity of ECG

based models can be addressed better.
Strengths

The strengths of the present study include the reliable endpoint

definitions for SCD, which are based on a full-disclosure review of all

patient records and accounts of the circumstances leading to death.

The autopsy rate of cardiac deaths in the present population was

29% between 2007 and 2019, and, overall, Finland has one of the

highest autopsy rates in Northern Europe (49). Similarly, our

results are based on a population of ACS patients with very

minimal selection bias because the study center is the sole service

provider for invasive diagnostics and care in the geographical

region of Pirkanmaa, Finland (50). In the study center, less than

10% of all patients treated for myocardial infarction do not

undergo an invasive evaluation due to poor overall functional

capacity, severe neurodegenerative disability, or prognosis (21).

However, in these patients, autopsy rates are lower and the

prevention of SCD is usually no longer considered a clinical

imperative. Additionally, one clear advantage of the present study

is that, when searching for ECG risk markers for SCD, we were

able to compare SCD cases to the pooled control group of patients

who were still alive at the end of the five-year follow-up and

patients who died of other causes within that time span. While

this approach can lead to missing some risk factors associated

with both a higher risk of SCD and mortality due to other

cardiovascular causes, the approach provides the best opportunity

to screen for SCD-specific risk markers and the utility of ECG to

reveal SCD specific prognostic factors.
Conclusion

The results of this proof-of-concept study show that CIE

statements can be used to stratify patients at high risk of SCD, but

the overall performance is modest. CIE could perhaps be used to

guide primary SCD prevention. However, using ECG data from

only one recording after ACS can only identify a very small

proportion of patients at high risk without significant sacrifices in

terms of specificity and positive prediction value. Given the

feasibility of CIE, these results can be replicated in any cohort with

ECG data in electronic format. This method also allows for rapid
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screening for SCD-specific ECG risk markers from serial recordings,

which can increase the sensitivity of risk prediction. Future research

should be directed to using more detailed parameters in risk model

development with the clear intention to find patients at particularly

high risk of SCD, despite the possibly low sensitivity of such

models, so that ECG data could be used to direct clinical trials

aiming at primary prevention of SCD.
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