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Assessing the relative importance
of vitamin D deficiency in
cardiovascular health
Maira Rubab1* and John D. Kelleher2

1Hamilton Institute, Maynooth University, Maynooth, Co. Kildare, Ireland, 2ADAPT Research Centre,
School of Computer Science and Statistics, Trinity College Dublin, College Green, Dublin, Ireland
Previous research has suggested a potential link between vitamin D (VD) deficiency
and adverse cardiovascular health outcomes, although the findings have been
inconsistent. This study investigates the association between VD deficiency and
cardiovascular disease (CVD) within the context of established CVD risk factors.
We utilized a Random Forest model to predict both CVD and VD deficiency
risks, using a dataset of 1,078 observations from a rural Chinese population.
Feature importance was evaluated using SHapley Additive exPlanations (SHAP) to
discern the impact of various risk factors on the model’s output. The results
showed that the model for CVD prediction achieved a high accuracy of 87%,
demonstrating robust performance across precision, recall, and F1 score metrics.
Conversely, the VD deficiency prediction model exhibited suboptimal
performance, with an accuracy of 52% and lower precision, recall, and F1 scores.
Feature importance analysis indicated that traditional risk factors such as systolic
blood pressure, diastolic blood pressure, age, body mass index, and waist-to-hip
ratio significantly influenced CVD risk, collectively contributing to 70% of the
model’s predictive power. Although VD deficiency was associated with an
increased risk of CVD, its importance in predicting CVD risk was notably low.
Similarly, for VD deficiency prediction, CVD risk factors such as systolic blood
pressure, glucose levels, diastolic blood pressure, and body mass index emerged
as influential features. However, the overall predictive performance of the VD
deficiency prediction model was weak (52%), indicating the absence of VD
deficiency-related risk factors. Ablation experiments confirmed the relatively
lower importance of VD deficiency in predicting CVD risk. Furthermore, the
SHAP partial dependence plot revealed a nonlinear relationship between VD
levels and CVD risk. In conclusion, while VD deficiency appears directly or
indirectly associated with increased CVD risk, its relative importance within
predictive models is considerably lower when compared to other risk factors.
These findings suggest that VD deficiency may not warrant primary focus in
CVD risk assessment and prevention strategies, however, further research is
needed to explore the causal relationship between VD deficiency and CVD risk.
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1 Introduction

Cardiovascular disease (CVD) remains a leading cause of morbidity and mortality

worldwide, representing a significant public health challenge in the 21st century (1). In

2019, approximately 17.9 million individuals lost their lives to CVDs, accounting for

about 32% of the total global mortality according to the World Health Organization
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(WHO). Among these fatalities, the majority, specifically 85%,

resulted from heart attacks and strokes. Globally, the countries

with the highest rates of CVD are India and China (2). It is

becoming increasingly prevalent in China, where it is the leading

cause of death (3). With the relentless rise in the global

prevalence of CVD-related conditions such as hypertension,

atherosclerosis, heart failure, stroke, myocardial infarction,

coronary artery disease (CAD), and peripheral artery disease

(PAD), there is an urgent need to identify modifiable risk factors.

These factors can be harnessed to reduce the burden of this

devastating disease. Although the etiology of CVD is complex,

certain risk factors contribute to these conditions, such as

elevated blood pressure, physical inactivity, smoking, age,

cholesterol levels, family history, and body mass index (BMI) (4).

The primary behavioral risk factors for heart disease and stroke

include tobacco use, excessive alcohol consumption, unhealthy

diet, and lack of physical activity. These factors can lead to

elevated levels of blood pressure, blood glucose, and blood lipids,

as well as obesity, which can be used to identify individuals at

higher risk of experiencing heart attack, stroke, heart failure, and

related conditions.

In recent years, emerging research has highlighted the role of

vitamin D, a fat-soluble hormone primarily known for its crucial

role in calcium homeostasis and bone health, as a potential

contributor to the complex network of factors involved in CVD

pathogenesis (5). Based on the existing evidence, vitamin D

deficiency is emerging as a significant novel risk factor for CVD,

potentially contributing causally to its development (6). Globally,

around 1 billion people suffer from severe vitamin D deficiency

(7). The most reliable indicator of vitamin D levels in the body is

the circulation of 25-hydroxyvitamin D [25(OH)D] (8). Vitamin

D has been extensively studied in cardiovascular clinical settings,

focusing on prevalent conditions such as coronary artery disease,

heart failure, and atrial fibrillation, which are among the most

common CVDs globally (9). Vitamin D deficiency is frequently

observed as a comorbidity in these conditions and has been

linked to unfavorable short-term and long-term outcomes. This

has led to the consideration of vitamin D supplementation for

the prevention and treatment of several CVDs, although further

research is needed due to inconsistent findings.

Numerous studies have explored the influence of vitamin D on

CVD (10–12). Several have found that low levels of vitamin D are

associated with an increased risk of CVD and that vitamin D is

involved in various physiological processes related to

cardiovascular health (13, 14). While some studies report a

significant association between vitamin D deficiency and CVD,

others show no clear link and have shown limitations for vitamin

D supplementation (15, 16). The overall evidence has not been

entirely consistent, and there is a lot of debate still happening

within the scientific community. The inconsistent results often

arise from variations in study designs, populations,

methodologies, and potential confounding factors such as

lifestyle, diet, sun exposure, physical activity, age, diabetes, and

other health conditions. Most studies in the literature have used

statistical methods to analyze the relationship between vitamin D

and CVD, assess CVD prevalence, explore dose-response
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relationships, predict CVD risk, evaluate the severity of vitamin

D deficiency, and determine the significance of their relationship

(17–19). While these studies have explored the pairwise

relationship between CVD and vitamin D and adjusted for

confounding factors, there remains a need to assess the

importance of vitamin D in conjunction with other CVD risk

factors and understand the strength of its association with

CVD, whether strong or weak. Focusing solely on pairwise

relationships may overlook important features that independently

contribute to the outcome or fail to capture the combined effects

of multiple features, especially in cases where the relationship

between features is non-linear. Feature importance, which refers

to the contribution of each feature to a model’s predictions (20),

offers a more comprehensive view. It indicates how informative

a particular feature is to the model’s outcome. Instead of

examining pairwise relationships between features using

statistical methods, which may only capture specific relationships

between two features at a time, assessing feature importance

provides a broader perspective on the overall impact of each

feature on the outcome.

Machine learning (ML) algorithms have the ability to capture

complex non-linear interactions among features, unlike

traditional statistical models, which often assume linear

correlations and may struggle to handle high-dimensional data

(21). This capability enables ML models to identify even subtle

but significant associations (either strong or weak) between risk

factors and CVD, providing a more comprehensive

understanding of disease etiology by extracting feature

importance alongside predictions. Because CVD is becoming one

of the biggest threats to human health, it is increasingly

important to develop an efficient CVD prediction strategy that

analyzes the importance of various CVD risk factors. Most

current medical approaches focus on disease detection rather

than prediction. If CVD could be predicted in advance, early

intervention might reduce the disease’s impact. However, even

though the medical field collects vast amounts of data on a daily

basis, analyzing these massive datasets using traditional methods

can be challenging. Recent research has shown that ML methods

can produce better outcomes (22). To identify individuals who

are at high CVD risk, ML has the potential to outperform

clinical prediction models, which are essentially based on

statistics (23). Numerous studies have indicated that ML models

exhibit better performance in calibration & discrimination

compared to statistical models (24–26). ML models have the

potential to entirely upgrade our approach to risk prediction and

may even take the place of traditional statistical regression

models in different fields (27, 28). In order to properly

implement preventive public health interventions, ML models

can help identify new underlying patterns (29). Weng et al. (30)

and Monteiro et al. (31) concluded that the prediction of CVD

risk can be greatly enhanced using ML. These pieces of evidence

show that ML is experiencing a significant surge in utilization,

particularly within the medical domain. Learning from input

data, often known as training data, and subsequently employing

this acquired knowledge to predict forthcoming events using new

data is its primary goal.
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To the best of our knowledge, no comprehensive study has

focused on feature importance in predicting CVD risk using ML,

specifically focusing on the importance of vitamin D in

interaction with other risk factors. The noteworthy study

conducted by Wang et al. (17) on a Chinese rural population

utilized statistical methods and emphasized the association

between vitamin D levels and CVD risk. By taking into account

some confounding factors, their conclusion highlights that

vitamin D deficiency is linked with an increased CVD risk.

While this study provides valuable insights, its cross-sectional

nature may not fully reflect the dynamic changes in vitamin D

status that occur over longer periods. This is crucial because, in

long-term prospective cohort studies, the observed association

between vitamin D levels and CVD risk can be underestimated

due to regression dilution bias (a phenomenon where

fluctuations in vitamin D levels over time reduce the apparent

strength of the association) (32).

Despite these findings, the specific role of vitamin D deficiency

in the multifactorial interplay of CVD risk remains underexplored.

An open question here is: does vitamin D deficiency significantly

impact CVD risk when considered alongside other predictive

factors? If so, this would suggest that more attention should be

paid to vitamin D in CVD prevention. Accordingly, we aim to

conduct an in-depth analysis of feature importance in predicting

CVD risk, mainly focusing on vitamin D deficiency, to illuminate

its actual significance and strength of association (whether weak

or strong) with CVD risk within the context of other features.

Additionally, we plan to explore this relationship bidirectionally

by predicting vitamin D deficiency along with the feature

importance analysis, while keeping CVD as one of the predictors.

This approach will provide deeper insights into their association

and serve two main purposes. Firstly, it helps to clarify whether

vitamin D deficiency shares similar risk factors with CVD,

thereby addressing whether the previous results indicating an

association between them stem from common risk factors.

Secondly, given the medical importance of vitamin D deficiency,

predicting its risk on its own holds practical value. By analyzing

both directions, we aim to enhance our understanding of their

interplay, providing insights into their association. Furthermore,

we incorporate ablation studies to refine our analysis.

Moreover, the reported study by Wang et al. has demonstrated

a nonlinear relationship between CVD risk and vitamin D levels, so

our goal is to employ a supervised ML algorithm that can cope with

non-linearity for CVD risk prediction. To approach CVD risk

prediction as a classification problem, we employed a Random

Forest (RF) model (33), an ensemble learning technique that

combines multiple decision trees to make predictions. Previous

research has consistently demonstrated that RF outperforms

numerous other ML models, particularly in risk prediction tasks

related to CVD (34–38). The evidence from the literature

strongly supports the use of RF as a preferred ML model for

CVD risk prediction, due to its superior performance and

robustness across diverse datasets and scenarios (39).

Additionally, RF provides a built-in method known as “Gini

importance”, which relies on Gini impurity (40), for assessing

feature importance. While this method provides a ranking of
Frontiers in Cardiovascular Medicine 03
features based on their importance, it cannot indicate the

direction (positive/negative) of a feature’s impact and does not

consider the intricate interactions between the features, limiting

its interpretability. To address these issues, we utilized a novel

method called “SHapley Additive exPlanations (SHAP)” which is

based on SHAP values (41). Unlike traditional metrics, SHAP

offers a deeper understanding of feature contributions by

quantifying the significance of each feature along with their

direction and providing insights into individual predictions. By

explicitly considering feature interactions and evaluating all

possible subsets of features, SHAP provide a more nuanced

interpretation of model behavior.

The paper is structured as follows: Section 2. covers related

works, while Section 3. contains materials and methods including

data description and preprocessing, explanation of RF and SHAP,

experimental setup, model validation, and evaluation metrics.

Section 4. presents results, comprising predictive performance

assessment, various SHAP methods, and ablation results. Section 5.

addresses paper discussion, limitations, and future work, while

conclusions are drawn in Section 6.
2 Related works

Different reliable databases and scholarly websites were

thoroughly examined in order to do an extensive analysis of the

existing literature for this work. The 2 principal sources were

PubMed, and Google Scholar.

Previous research has extensively analyzed the relationship

between CVD and vitamin D, though most of this work has

focused on statistical analysis (6, 10–12, 14–16, 18, 19, 42, 43).

While some studies have applied ML methods, these typically

focus either exclusively on CVD or vitamin D. For example, the

datasets used in (34–37, 44–49) lack features related to vitamin

D, and even if ML models were employed for CVD risk

prediction, there was no further description regarding feature

importance. Sambasivam et al. (50) utilized multiple ML

models to analyze the predictive performance of vitamin D

deficiency severity and conducted a comparative analysis of

these models. Similarly, Guo et al. (51) used ML to predict

vitamin D status and compared the results from the models

they used. However, feature importance analysis was not taken

into consideration in both studies, and CVD was not included

at all in their analysis.

The studies (52–54) compared various ML models for

predicting CVD. While they conducted a brief analysis to

identify the most contributing features, they did not utilize

SHAP for a comprehensive feature analysis, as their primary

focus was on analyzing the ML models. SHAP, however, provides

deeper insights into the direction of feature relationships, feature

interactions, and the relative as well as individual importance of

each feature. Moreover, vitamin D was not included among the

predictors in their analysis. However, these studies concluded a

range of major risk factors depending on the models and

datasets used. Some commonly identified factors included age,

systolic blood pressure, and cholesterol.
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The study (39) by Kim et al. used ML to explore the influence

of vitamin D levels on the prediction of acute ischemic stroke. The

study concluded that individuals with vitamin D deficiency were

more likely to experience worse outcomes than those with higher

vitamin D levels which might have certain associations with

other predictive variables. Although a feature importance graph

was created, it was not the main focus of their study.

In previous research, no study has utilized the same dataset to

conduct a comprehensive analysis employing ML to predict CVD

risk and assess relative feature importance by considering

vitamin D as part of the feature analysis. Likewise, no study has

conducted such analysis to predict the risk of vitamin D

deficiency and assess relative feature importance, integrating

CVD as part of the feature analysis.
3 Materials and methods

3.1 Data description and preprocessing

This study utilized the dataset obtained from (17), which was

collected through questionnaires, blood reports, and physical &

laboratory examinations of participants from Henan province,

China, conducted in July & August of each year (2013–2015). It

has a total of 1,078 observations with 32 features. In any

scientific or analytical work, data serves as the primary building

block. Without sufficient and appropriate data, it becomes

challenging to draw meaningful conclusions. Data preprocessing

is a crucial step in data analysis pipelines. It involves cleaning

and preparing raw data before it is used for analysis. The first

step is to address missing values. The dataset used in this study

contained only a few missing values which we handled using

mean imputation in continuous features and mode imputation in

categorical features. Mean imputation involves replacing missing

values with the mean of the respective feature while imputing

with the mode that fills the missing values with the most

frequent value in the feature (55). These imputations could

potentially skew the data towards the central tendency. However,

given that the features in our dataset demonstrated a normal

distribution and had very few missing values, these imputations

were considered appropriate, as they preserved the original

structure and sample size of the dataset.

To gain insights into our analysis of the association between

vitamin D deficiency and CVD risk, we transformed the original

continuous feature “25(OH)D” into a categorical feature named

Vitamin D “VD” with three categories based on 25-

hydroxyvitamin D concentration level: Deficiency (,20 ng/ml),

Insufficiency (�20 ng/ml & �30 ng/ml), and Sufficiency (.30

ng/ml). The thresholds for these categories were taken from the

study (14), and we will discuss them later in the discussion

section to explain why we chose these.

We addressed the multicollinearity by examining pairwise

correlations between independent features. An absolute

threshold of 0.7 was used to determine correlated features. We

then removed one feature from each correlated pair to reduce
Frontiers in Cardiovascular Medicine 04
redundancy and improve the interpretability of our

model. Features with stronger correlations to “CVD” within

each correlated pair were retained to ensure that the features

selected for analysis are more closely aligned with our

predictive objectives.

Three features (HTN(hypertension), CHO/HF(coronary heart

disease or heart failure), & STROKE) were removed, as they

represented subcategories directly associated with CVD, and

including them could potentially bias the prediction of CVD risk.

Finally, we excluded “nation” from the analysis due to our focus

on the Chinese population, as only three samples were from

non-Chinese categories, making its inclusion irrelevant. The

dataset has a total of 21 features after performing all of the above

steps and is described completely in Table 1.

In order to prepare the categorical features for analysis, we used

one-hot encoding, the most widely used approach in ML to encode

categorical data (56). It transforms the categorical features into a

binary format where each unique category becomes a separate

binary column, to maintain the distinctiveness of categories

without imposing ordinal relationships.
3.2 Random forest model

RF starts by generating multiple bootstrap samples from the

original dataset (33). This process involves resampling the data

with replacement, thereby maintaining the sample size while

creating diverse subsets for training each decision tree. During

the construction of each decision tree, a unique subset of

features is randomly selected from the full feature set and

utilized at every split node within that tree. This random

feature selection process occurs independently for each tree,

ensuring that different decision trees within the ensemble utilize

distinct subsets of features. Consequently, this enhances the

diversity among individual trees and reduces their correlation.

Each decision tree is trained on a bootstrap sample using its

specific subset of features. This step involves recursively

partitioning the feature space, starting from the root node and

continuing to the leaf nodes where no further splits are made.

The objective is to improve the homogeneity of the subsets

created at each node by selecting the feature and threshold

value that either minimizes impurity or maximizes information

gain. Impurity measures the mixedness of classes within a

subset, while information gain quantifies the reduction in

uncertainty about the class labels achieved by splitting the data

based on a particular feature. In classification tasks, the aim is

to assign a class label to each data instance based on its

features. Each decision tree makes its prediction, and the

ensemble prediction is determined by a majority voting scheme

(aggregation) after all decision trees have made their

predictions. Each decision tree votes for its predicted class label,

and the final prediction is the class label that receives the most

votes among all decision trees. This approach reduces the risk

of overfitting and biases by considering the opinions of multiple

models trained on different subsets of data.
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TABLE 1 Features of the dataset.

S/N Attribute Description Type Distribution
1 age Age (years) Continuous 59:78+ 11:80

Categorical

2 gender Gender 1: Male 1: 428

2: Female 2: 650

Categorical

3 edu Education 1: Junior high school & below 1: 953

2: High school & above 2: 125

Categorical

4 marry Martial status 1: Married/Cohabitation 1: 932

2: Single/Divorcement 2: 146

5 BMI Body mass index (kg/m2) Continuous 25:50+ 3:65

6 GLU Glucose (mmol/l) Continuous 6:23+ 2:77

7 TC Total cholestrol (mmol/l) Continuous 4:68+ 1:01

8 TG Triglycerides (mmol/l) Continuous 1:83+ 1:38

9 HDL High density lipoprotein (mmol/l) Continuous 1:24+ 0:32

10 INS Insulin (U/mL) Continuous 13:30+ 7:83

Categorical

11 VD Vitamin D levels 1: Deficiency 1: 587

2: Insufficiency 2: 311

3: Sufficiency 3: 180

12 WHR Waist-to-hip ratio Continuous 0:91+ 0:07

Binary

13 Salt Salt intake 0: No 0: 891

1: Yes 1: 187

Binary

14 tea Tea intake 0: No 0: 941

1: Yes 1: 137

Categorical

15 Activity Physical activity 1: Mild 1: 475

2: Moderate 2: 182

3: Severe 3: 421

16 SBP Systolic blood pressure (mm Hg) Continuous 131:35+ 18:92

17 DBP Diastolic blood pressure (mm Hg) Continuous 80:72+ 10:51

Binary

18 T2DM Presence of type 2 diabetes mellitus 0: No 0: 728

1: Yes 1: 350

Categorical

19 occupation Occupation 1: Factory worker 1: 90

2: Agriculture & related worker 2: 915

3: Administrator/manager 3: 73

Binary

20 high-fat High fat intake 0: No 0: 877

1: Yes 1: 201

Binary

21 CVD Cardiovascular disease presence 0: No 0: 484

1: Yes 1: 594
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3.3 Shapley Additive Explanations (SHAP)

SHAP is a powerful method for interpreting the outputs of

any ML model (RF in our case), offering both local and global

explanations (41, 57). It uses cooperative game theory to

compute SHAP values that provide insights into an instance’s

output by evaluating the contribution of each input feature.

These values identify which features matter most to the model

and how they influence the output. In ML, every feature gets a

SHAP value based on its contribution to the prediction and

these values are calculated by considering every possible
Frontiers in Cardiovascular Medicine 05
combination of features and assessing their marginal

contributions (41). The impact of each feature on each final

prediction, the relative importance of each feature, and the

model’s dependence on feature interaction are all indicated by

SHAP values. Positive SHAP values indicate that the presence

of a feature increases the prediction, while negative values

indicate the opposite. The magnitude of the SHAP value

represents the impact of the feature on the prediction. Larger

values imply stronger influence. Features with higher absolute

SHAP values are more influential in determining the

prediction outcome.
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TABLE 2 Tested and optimal hyperparameters for both models.

Hyperparameters For CVD
Prediction

For VD Deficiency
Prediction

Tested n_estimators ¼ [20,60,100,120],
max_features ¼ [0.2,0.6,1.0], max_depth ¼ [2,4,8],

min_samples_split ¼ [10,30,60],
min_samples_leaf ¼ [5,10,20]

Optimal n_estimators : 100,
max_features : 0.2,
max_depth : 8,

min_samples_split : 30,
min_samples_leaf : 10

n_estimators : 20,
max_features : 0.2,
max_depth : 8,

min_samples_split : 10,
min_samples_leaf : 20

Rubab and Kelleher 10.3389/fcvm.2024.1435738
3.4 Experimental setup

We aimed to develop 2 binary classification RF models: one to

predict “CVD” and the other to predict “VD deficiency”. While

“VD” is basically a three-class categorical feature (see Table 1),

we simplified the classification task for the VD Deficiency

prediction by merging the “Insufficiency” and “Sufficiency”

classes into a single category labeled as “0”, which contained 491

instances indicating the absence of VD deficiency. We retained

the “Deficiency” class as “1”, comprising 587 instances for VD

deficiency prediction. This conversion allowed us to treat the

problem as a binary classification task, aligning with our primary

objective of investigating the relationship between VD deficiency

and CVD. However, we retained “VD” with its 3 categories for

CVD prediction.

We utilized the same validation techniques and evaluation

metrics to assess the predictive performance of both models,

while also employing the same SHAP methods for feature

importance analysis. The SHAP methods used in our study

involved beeswarm, dependence, and global bar plots.

Additionally, ablation studies were conducted for each prediction

experiment with a consistent setup: we systematically removed

the “VD_Deficiency” feature for the CVD prediction experiment

and the “CVD” feature for the VD deficiency prediction

experiment, aiming to reveal their individual impact to the

predictive performance of the respective models. The proposed

workflow for our study is shown in Supplementary Figure S1.
3.5 Model validation

We initially split the dataset randomly into two parts: 80% for

training and 20% for testing. Using the training set, we trained our

RF models, fine-tuned their hyperparameters, and evaluated their

predictive performance. For hyperparameter tuning, we employed

Grid Search with Cross-Validation (GSCV) to ensure robustness

and prevent overfitting. Although the dataset showed only a

slight imbalance, we used stratified cross-validation as a

precautionary measure.

Grid search iterates through all possible combinations of

hyperparameter values covered by the specified grid, evaluating

each combination to determine the optimal hyperparameter set

based on a specified evaluation metric. Specifically, it involves

defining a grid of hyperparameter values to search over (same

for both models), and training and evaluating the models using

cross-validation for each combination within this grid. In our

case, we employed a 5-fold stratified CV, partitioning the

training dataset into five equally sized subsets while preserving

the distributions of target classes. We then iterated over five

distinct combinations of training and validation subsets,

training the models on four-fifths of the data and evaluating

their performance on the remaining one-fifth. Through this

iterative process, we obtained robust estimates of the

performance of our models while minimizing bias and variance.

Finally, we assessed the performance of our models on the test
Frontiers in Cardiovascular Medicine 06
set to validate their ability to generalize to new, unseen data.

Table 2 displays the hyperparameter values utilized for GSCV,

including the specifics of the optimal hyperparameter set for

both models.
3.6 Evaluation metrics

In this study, we performed a comprehensive evaluation of our

predictive RF models employing established metrics such as

accuracy, precision, recall, and F1 score. Accuracy measures the

overall correctness of model predictions, while precision

indicates the model’s ability to avoid false positives by

calculating the proportion of true positives among all positive

predictions. We also assessed recall, also known as sensitivity,

which measures the model’s capability to capture relevant

instances by correctly identifying the proportion of true positives

among all actual positives. Additionally, we utilized the F1 score,

a harmonic mean of precision and recall, to provide a balanced

assessment of model performance, considering both false

positives and false negatives.

We performed GSCV for all four evaluation metrics. Precision,

recall, and F1 score metrics were assessed with the minority class

designated as the positive class due to the slight data imbalance.

The best hyperparameter set was selected based on the accuracy

metric, prioritizing the set with the highest mean accuracy across

the 5 CV folds. Subsequently, we utilized this optimal

hyperparameter set to retrain the models on the full training

split of the data and then ran the retrained models on the test

set to obtain the test scores for each metric.
4 Results

The data preprocessing, implementation of RF models, model

validation, model evaluation, and SHAP analysis were executed

in Python 3.10.9, utilizing libraries such as pandas, NumPy,

Matplotlib, Seaborn, Scikit-learn, and SHAP. Next, we present an

overview of the prediction performance achieved by the models

proposed in our study, and discuss the feature importance using

SHAP in predicting CVD risk and VD deficiency, focusing on

the relationship of VD deficiency with CVD and their interaction

with other features.
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TABLE 3 Summary of mean validation and test metric scores for both RF
models with optimal hyperparameters.

Metric For CVD
Target

For VD Deficiency
Target

Mean validation
scores

Accuracy 0:84+ 0:02 0:58+ 0:02

Precision 0:80+ 0:04 0:56+ 0:03

Recall 0:85+ 0:03 0:37+ 0:05

F1 Score 0:82+ 0:02 0:45+ 0:04

Test scores Accuracy 0.87 0.52

Precision 0.85 0.46

Recall 0.87 0.24

F1 Score 0.86 0.32

Rubab and Kelleher 10.3389/fcvm.2024.1435738
4.1 Predictive performance assessment

Table 3 presents the mean validation scores for all metrics

across the 5 folds for the optimal hyperparameter set along with

the test metric scores for both RF models.

4.1.1 CVD prediction
The model achieved a mean accuracy of 84% during

hyperparameter tuning, indicating that it could correctly classify

individuals into CVD risk categories with high accuracy. The

mean validation scores for precision, recall, and F1 score were

80%, 85%, and 82% respectively. These scores suggest that the

model consistently performed well across different evaluation

metrics during validation. The test scores further validate the

robustness of this model, demonstrating its ability to generalize

effectively to unseen data with an improved accuracy of 87%.

Additionally, the precision, recall, and F1 score on the test set

were all above 85%, demonstrating the model’s ability to

correctly identify individuals at risk of CVD while minimizing

false positives and false negatives. Overall, these results suggest

the strong performance of this model, providing reliable

predictions of CVD risk based on the independent features

provided in Table 1.

4.1.2 VD deficiency prediction
The predictive performance of this model appears to be less

optimal (see Table 3). The best mean accuracy achieved during

hyperparameter tuning was 58%, indicating that the model

struggled to accurately classify individuals into VD deficiency

categories. The mean validation scores for precision, recall, and

F1 score were notably low, with values of 56%, 37%, and 45%,

respectively. These scores suggest that this model exhibited less

stability and poor overall performance during validation. On the

test set, this model performed even worse with an accuracy of

52%, and all other metrics also showed a decrease in their scores,

potentially indicating overfitting. This suggests that the

independent features are not significantly contributing to the

model’s performance, and it is very hard to predict VD

deficiency with these predictors as they seem to be less relevant

to VD deficiency than CVD.

The difference in performance between these two models

indicates that predicting CVD risk based on the given dataset is

more straightforward than predicting VD deficiency, and the
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feature set provided is better suited for modeling CVD risk than

VD deficiency.
4.2 Global feature interpretation

Utilizing the SHAP global importance plot, we assessed the

mean absolute value of each feature’s SHAP score across all

observations within the dataset. This technique allowed us to

quantify the influence of each feature on the model’s

predictions, providing insights into their relative importance. By

constructing stacked bar plots for each model based on their

mean absolute values, we gained clear visualizations of the

cumulative impact of each feature on the predictive

performance of our models (see Supplementary Figures S2

and S3). These visualizations helped identify the top-ranking

features, showing the factors that contributed most significantly

to the outcomes of our models.

In Supplementary Figures S2 and S3, the x-axis shows the

average impact of each feature on the model’s output, and the

y-axis shows the top 15 features in descending order based on

their importance, with the most influential features appearing at

the top of the plot. The length of each bar indicates the average

magnitude of the SHAP values for that feature across all

observations. Longer bars represent features with greater

influence on the model’s predictions, while shorter bars indicate

lesser importance. The colors in the graph distinguish the

categories of binary target features, with “blue” denoting “CVD”

and “Deficient” class, and “red” indicating “non-CVD” and

“non-Deficient” class for Supplementary Figures S2 and S3,

respectively. Every bar is divided in half due to the binary nature

of the targets, where the prediction of one category inherently

explains the other. Supplementary Figure S2 illustrates a skewed

distribution across the features which suggests variations in

importance, with certain features exerting a more significant

influence on the prediction outcome than others. In contrast, in

Supplementary Figure S3, although there is still some skewness,

the distribution appears slightly less pronounced. This implies

that the importance of features is distributed somewhat more

evenly, with fewer factors exerting an overly significant impact

on the prediction outcome.

We present the top 15 features, each with their corresponding

mean absolute SHAP values (summing from both classes),

alongside their respective contributions as percentages to the

overall feature score, for both models, in Table 4. The feature

score is the sum of mean absolute SHAP values for each feature

across all classes. The feature score for the CVD prediction

model is 0.848, while for the VD deficiency prediction model, it

is 0.363. The difference in feature scores between these two

models indicates that the CVD prediction model relies more

heavily on its top 15 features for making predictions compared

to the VD deficiency prediction model.

For CVD prediction (see Supplementary Figure S2), the feature

“SBP” emerges as the most influential predictor, contributing

35.1% to the overall prediction of CVD risk, which means that

“SBP” plays a crucial role in determining an individual’s
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TABLE 4 Mean absolute SHAP values & overall % contributions.

For CVD Prediction For VD Deficiency Prediction

Features SHAP Scores % Scores Features SHAP Scores % Scores
SBP 0.2974 35.1 SBP 0.0690 19.0

DBP 0.1630 19.2 GLU 0.0326 9.0

age 0.0786 9.3 DBP 0.0322 8.9

WHR 0.0446 5.3 BMI 0.0306 8.4

BMI 0.0376 4.4 CVD 0.0292 8.0

INS 0.0330 3.9 TG 0.0192 5.3

GLU 0.0297 3.5 TC 0.0187 5.2

Acitivity_3 0.0250 3.0 HDL 0.0182 5.0

VD_Deficiency 0.0238 2.8 age 0.0178 4.9

Acitivity_1 0.0228 2.7 INS 0.0161 4.4

TG 0.0179 2.1 gender_1 0.0122 3.4

T2DM 0.0159 1.9 Activity_1 0.0121 3.3

VD_Insufficiency 0.0117 1.4 WHR 0.0112 3.1

HDL 0.0086 1.0 Activity_3 0.0088 2.4

gender_1 0.0074 0.9 high-fat 0.0082 2.3
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susceptibility to CVD. Focusing on the top 5 contributing features,

namely “SBP”, “DBP”, “age”, “WHR”, and “BMI”, these features

collectively account for approximately 70% of the prediction.

This highlights the significance of traditional risk factors such as

blood pressure, age, and obesity-related measures in predicting

CVD risk. “VD_Deficiency” ranks among the top 10 contributors

in CVD risk prediction. While its rank apparently suggests

significance, its overall contribution of just 2.8% with SHAP

score of 0.0238 is relatively low, indicating a weak relationship

with CVD. Although “VD_Deficiency” shows an association with

CVD, it may not be as important as other highly related features

when considered alongside them.

For VD deficiency prediction (see Supplementary Figure S3),

similar to CVD prediction, “SBP” emerges as the most influential

predictor for VD deficiency, contributing 19.0% to the overall

prediction. Analyzing the top 5 contributors, “SBP”, “GLU”,

“DBP”, “BMI”, and “CVD” collectively contribute to

approximately 50% of the prediction. Interestingly, while these

factors are primarily CVD risk factors, they also show relevance

to VD deficiency. Notably, “CVD” is among the top contributors,

suggesting a potential bidirectional relationship between CVD

and VD deficiency. However, despite “CVD” ranking fifth in this

model, its overall contribution is relatively low compared to the

topmost feature “SBP”. The low overall feature score of this

model indicates that the model itself is very weak, suggesting that

the features are not providing substantial assistance in predicting

VD deficiency. Therefore, “CVD” may not be an important

feature for predicting VD deficiency, even though it is associated

with it.

Overall, the observed weak relationship between CVD and VD

deficiency may arise from a multifactorial interplay among various

predictive factors. It is plausible that the association between CVD

and VD deficiency is not purely causal but rather influenced by

complex interactions involving multiple physiological and

environmental variables. Interestingly, the top five predictive

features identified in both the CVD and VD deficiency

prediction models overlap significantly. This overlap raises the
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possibility that these factors, such as blood pressure, glucose, age,

and obesity-related measures, may have direct or indirect

relationships with both VD deficiency and CVD risk. Therefore,

while VD deficiency is associated with CVD, its significance in

predicting CVD risk may be suppressed by its interactions with

the shared major predictive factors.
4.3 SHAP beeswarm plot

The SHAP beeswarm plot is a scatter plot used to visualize the

distribution of SHAP values for each feature across all observations

in a dataset. In Supplementary Figures S4 and S5, each data point

within the plot represents an individual instance from the test set.

Its position along the x-axis indicates both the magnitude and

direction of the corresponding feature’s SHAP value and the

y-axis displays the top 15 features arranged in descending order

of importance. A SHAP value of “0” signifies no contribution to

the model’s prediction. Values to the right (positive) suggest the

feature increases the likelihood of the model predicting the

presence of CVD or VD deficiency. Conversely, values to the left

(negative) indicate a decrease in the likelihood of predicting

CVD or VD deficiency. The magnitude of the SHAP values tells

the degree of influence each feature observation has on the

model’s prediction outcome. The color scale on the right

indicates the actual value of the feature for each observation,

with “High” representing high values (which can mean high

numerical values, presence/absence for binary features, or one-

hot encoded categories) and “Low” representing low values.

Horizontal dispersion of points reveals the variability of SHAP

values across observations, indicating patterns of feature

importance and their interactions. Features with wider

distributions suggest greater variability in their impact on model

predictions, while those with narrower distributions exhibit more

consistent effects. Influential features significantly affecting model

predictions can be identified by observing the spread and

concentration of points. A widespread or clustering of points at
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extreme ends of the plot typically indicates high importance.

Additionally, features associated with consistent patterns of large

positive or negative SHAP values across observations are

considered influential.

Supplementary Figure S4 illustrates the distribution of SHAP

values for predicting the CVD class. Conversely, the SHAP

Beeswarm plot for the non-CVD class reveals an opposite pattern.

“SBP” has a concentration of red dots to the extreme right,

suggesting that higher values of “SBP” have a strong positive

impact on predicting CVD. “DBP” has a similar distribution to

“SBP” showing as the value of “DBP” increases (moving from blue

to red), the impact on the model’s prediction shifts from lowering

to increasing the risk of CVD. “age” has red dots mostly on the

positive side, indicating that older individuals are at higher risk of

CVD. Elevated values of “BMI” and “WHR” are similarly

associated with a higher risk of CVD. The “VD_Deficiency” has

SHAP values scattered across both sides, but with the cluster of red

dots on the positive side, suggesting that when VD deficiency is

true, it contributes to an increased risk of CVD prediction.

However, the SHAP values for this feature are quite small (near 0),

showing its minimal importance compared to the top-ranking

features. Likewise, individuals who engage in mild physical activity

(“Activity_1”) instead of moderate (“Activity_2”) and severe

(“Activity_3”) are depicted as being at a higher risk of CVD.

Supplementary Figure S5 illustrates the distribution of SHAP

values for predicting the VD deficient class. This graph also

shows that higher SBP values contribute to a higher risk of

vitamin D deficiency with a more consistent effect. “GLU” has a

concentration of blue dots on the left with a slight progression

towards the right side, implying an increased likelihood of having

VD deficiency as glucose levels rise. Similarly, “DBP” appears to

correlate higher DBP levels with an increased risk of VD

deficiency. “BMI” and “age” display a blend of positive and

negative SHAP values, indicating a more complex relationship with

VD deficiency. Moreover, distinct clusters in CVD show that

individuals with CVD are more likely to be at risk for VD deficiency.
4.4 Ablation results

In the previous section, we utilized SHAP to assess the relative

importance of features. Another informative approach to

understanding the importance of features involves conducting

ablation studies. This technique helps evaluate the impact of

individual features on the model’s performance by systematically

removing specific features and observing changes in the model’s

performance. By comparing the model’s performance with and

without a particular feature, we can determine the feature’s

influence on the model’s predictions. In our case, the feature of

interest is “VD_Deficiency” in the CVD prediction model and

“CVD” in the VD deficiency prediction model.

4.4.1 CVD prediction
After excluding the “VD_Deficiency” feature from the analysis,

the model achieved the following performance metrics on the test

set: an accuracy of 0.86, precision of 0.83, recall of 0.86, and F1
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score of 0.85. The test accuracy experienced a marginal decrease

of 1%, in comparison to the test scores listed in Table 3,

suggesting that the omission of the “VD_Deficiency” feature had

a minor adverse effect on the model’s ability to accurately

classify individuals into CVD risk categories. The test precision

decreased by 2%, indicating a slight reduction in the model’s

capability to avoid false positives. The test recall also remained

almost the same, indicating that the model’s ability to capture

relevant observations of CVD risk was largely unaffected by

removing “VD_Deficiency” feature. Likewise, the F1 score

decreased by 1%, indicating a slight decrease in the overall

balance between precision and recall. This marginal difference in

the model’s performance, ranging from just 1 to 2%, suggests

that the inclusion or exclusion of the “VD_Deficiency” feature

does not significantly impact the model’s effectiveness, implying

a very weak association between VD deficiency and CVD.

4.4.2 VD deficiency prediction
After excluding the “CVD” feature from the analysis, the model

achieved the following performance metrics on the test set: an

accuracy of 0.50, precision of 0.40, recall of 0.17, and F1 score of

0.24. Compared with the test scores listed in Table 3, there is a

slight decrease of 2% in accuracy, while precision, recall, and F1

scores experienced larger decreases of 6%, 7%, and 8%, respectively.

Although these differences suggest that the “CVD” feature may

contribute to the model’s performance to some extent, the overall

poor performance of the model indicates that the observed changes

in metrics lack meaningful practical significance.
5 Discussion

In our analysis, we examined the importance of various

features. Our findings highlight that both “SBP” and “DBP” play

the most important role in predicting CVD, with “SBP” being

the major risk factor for CVD followed by “DBP”. This result is

in line with earlier findings reported in studies (58, 59). The high

importance of “age” also aligns with the well-established

understanding that CVD risk tends to rise with age, as noted in

(30). Additionally, “WHR” and “BMI” are recognized markers of

obesity, a known CVD risk factor (60). The top 10 features

identified in our analysis largely coincide with recent research

outlining 10 key CVD risk factors (61). Notably,

“VD_Deficiency” appears to have low significance in predicting

CVD risk and a weak relationship with an increased CVD risk.

The lack of substantial evidence linking VD deficiency to CVD

risk is notable, as other factors such as age, obesity-related

measures, elevated blood pressure, physical inactivity, high

cholesterol, etc. are consistently highlighted across studies. This

observation is consistent with information from various studies

and reputable sources like the World Health Organization (WHO),

the Centers for Disease Control and Prevention (CDC), the

National Health Service (NHS), and the American Heart

Association (AHA) (61, 62). The strong predictive performance of

our CVD risk prediction model, along with the evidence from past

research, enhances the reliability of our results. Our ablation results
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further confirm the relatively lower importance of VD deficiency

compared to other significant factors in assessing CVD risk.

One important factor to consider is that VD levels are

primarily influenced by solar UVB exposure, which not only

drives VD synthesis but also increases serum nitric oxide (NO)

levels, a compound known to have cardiovascular benefits, such

as lowering blood pressure (63, 64). This suggests that VD levels

may serve as an index for both VD and NO. Consequently, the

weak association observed between VD deficiency and CVD risk

may be due to the broader cardio-protective effects of sunlight

exposure through nitric oxide production. This highlights the

complex interplay between sunlight, VD, and NO in maintaining

cardiovascular health (65, 66).

The analysis of feature importance in predicting VD deficiency

suggests the relevance of CVD risk factors namely, “SBP”, “GLU”,

“DBP”, and “BMI”. Our results indicate that higher values of these

key features are associated with an increased risk of VD deficiency.

While existing literature suggests some associations between VD

deficiency and these features (67–69), it typically discusses the

association by considering the target and risk factors in reverse;

that is, VD deficiency is associated with an increased risk of

these features. However, the significance and direction of these

relationships still require further investigation due to inconsistent

findings, for instance, in the study (70). Given the potential

interaction of VD deficiency with CVD risk factors, it is evident

that an association between VD deficiency and CVD exists. Our

results confirm the direction of these relationships. However, due

to the poor performance of this model, the significance of the

true relationship of these features (including CVD) with VD

deficiency diminishes. VD deficiency can be influenced by a wide

range of risk factors beyond those listed, including sunlight

exposure, dietary intake of VD, seasonal variations, and more

(69, 71). If these critical predictors are not included or accurately

captured in the model, it may fail to fully comprehend the

underlying mechanisms leading to VD deficiency, thereby

impacting its performance. Even the predictors that we included

and are known to be associated with VD deficiency in the

literature, such as age and gender, are assigned very low ranks in

our results. This may be due to the presence of top-ranked

features that have some association but are not very important in

VD deficiency prediction.

A potential confounding factor for our analysis is that we

created the VD feature by categorizing the continuous feature

”25(OH)D”. This feature transformation may have affected the

results we obtained. To check whether this occurred we

conducted another experiment to predict CVD, maintaining the

VD feature in its original continuous form, denoted as “25(OH)

D”, while keeping the same settings as in our previous CVD

prediction model. The objective was to examine the individual

relationship between “25(OH)D” and CVD risk and to verify

whether the chosen thresholds (same as given by the study (17))

to categorize this feature was appropriate. From this experiment,

we generated a SHAP partial dependence plot. A SHAP partial

dependence plot illustrates the marginal effect of an individual

feature on the model’s prediction while accounting for the

average effect of all other features. This isolates the influence of
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the analyzed feature on the model’s predictions, offering a clear

visualization of its direct impact. Moreover, this plot reveals the

nature of the relationship, whether it’s linear, monotonic, or

exhibits more complex dynamics.

Supplementary Figure S6 illustrates the relationship between

“25(OH)D”, shown on the x-axis, and its SHAP values,

represented on the y-axis, with a color gradient indicating “SBP”.

In this plot, we observe that lower values of “25(OH)D” (towards

the left of the plot) are associated with more positive SHAP

values, suggesting that lower VD levels increase the likelihood of

the model predicting the positive class (CVD). Our threshold for

defining VD deficiency is set at levels below 20. Notably, as VD

levels approach 20, SHAP values begin to decrease. When they

exceed 20, SHAP values increasingly become negative, indicating a

decrease in the likelihood of the model predicting the positive class.

It is noted in (72) that the risk of CVD increases rapidly below

20. Therefore, using 20 as the threshold for VD deficiency may

potentially underestimate the association between vitamin D

deficiency and CVD risk. This observation aligns with the

nonlinear relationship we observe in our data, particularly

evident in Supplementary Figure S6, which suggests that

exploring associations at lower thresholds may provide additional

insights. Overall, the graph depicts a nonlinear relationship

between “25(OH)D” and CVD risk, consistent with the findings

of the study cited (17). Although the 20 threshold is commonly

used and supported by the Endocrine Society (73), it may be

useful to further investigate lower thresholds for enhanced

understanding of the relationship between VD and CVD.

In summary, the association between VD deficiency and CVD

exists, whether directly or indirectly, but the relative strength of this

association is very weak. This implies that VD deficiency may not

be a significant factor when interacts with other major CVD risk

factors. Our findings indicate this weak association based on the

relative importance of the features. Although there may be a

causal association, the results are inconsistent in the literature. It

remains unclear whether low VD levels directly cause CVD. The

relationship between VD and the onset and progression of CVD

is not well understood; it may simply reflect other health factors

that are causally linked to the risk of CVD (74, 75). Additionally,

VD’s causative role in CVD etiology has not been validated by

Mendelian randomization studies (76, 77).

While this study offers insights into the relationship between

CVD risk and VD deficiency within the Chinese population, it is

important to acknowledge its limitations. Firstly, the cross-

sectional nature of the study restricts the ability to explore the

causal relationships. Additionally, the study’s focus on a specific

geographic location and population may constrain the

applicability of its findings to broader populations with diverse

demographic profiles, varied environmental exposures, and

different healthcare systems. Our future research will focus on

acquiring longitudinal data to gain deeper insights into the

causal dynamics between VD deficiency and various health

outcomes, such as CVD. Furthermore, we aim to explore the

potential risk factors associated with VD deficiency and enhance

the predictive performance of our VD deficiency prediction

model. Finally, we plan to utilize newly available datasets from
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diverse populations to expand upon and compare our current

research findings.
6 Conclusions

Our research suggests that while there exists an association

between VD deficiency and increased CVD risk in the Henan

province of China, this relationship appears to be relatively weak

in terms of its importance within predictive models. It is possible

that this association between CVD and VD deficiency is not

purely causal but is rather influenced by complex interactions of

VD deficiency with the other CVD risk factors. Our findings

suggest that VD deficiency does not exert a significant impact on

CVD risk when compared to other well-established risk factors.

Therefore, it may not warrant special attention as a primary

focus in CVD risk assessment and prevention strategies.

However, further investigation is important to validate these

findings by exploring the causal relationship between VD

deficiency and CVD risk, clarifying whether VD deficiency

directly influences the development or progression of CVD.
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